首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
The in vivo turnover of several rat liver microsomal proteins was studied using techniques designed to maximize antibody recognition specificity and minimize reutilization of radioactive labels. The kinetics of degradation of seven cytochrome P-450 isozymes, NADPH-cytochrome P-450 reductase, and epoxide hydrolase were determined in untreated rats and rats treated with phenobarbital or beta-naphthoflavone. In the cases where induction of these enzymes occurred with the above chemicals, rates of synthesis of the proteins were also estimated. In general, the degradation rates of the different proteins were rather similar to each other, and the effects of phenobarbital and beta-naphthoflavone on these rates were not very great. However, in the case of cytochromes P-450, a general trend was observed in which the heme moiety was degraded more rapidly than the apoprotein. Changes in the rates of synthesis of the individual proteins appear to contribute more to the altered steady-state levels which are expressed than do the rates of degradation, and profiles of steady-state enzyme concentrations predicted by the kinetic constants approximate those observed in vivo.  相似文献   

2.
Hydroxylation of p-chlorotoluene with heminthiol complexes, Fenton's system and Udenfriend's system was studied and the complexes assessed as models of cytochrome P-450 monooxygenases. Five species of possible hydroxylation products of p-chlorotoluene, namely, p-chlorobenzyl alcohol, 2-chloro-5-methylphenol, p-chlorobenzaldehyde, 4-chloro-2-methylphenol and 5-chloro-2-methylphenol, were studied using high performance liquid chromatography. The oxidation reactions were characterized by the yields of hydroxylation products and the product ratio. The system consisting of hemin and cysteine ethyl ester as well as Udenfriend's system gave relatively high hydroxylation yields and the former only induced a methyl migration during hydroxylation (methyl NIH shift). However, neither Fenton's nor Udenfriend's systems induced a methyl NIH shift. The hemin-thiol complex is thus concluded to be a good chemical model of cytochrome P-450 monooxygenases.  相似文献   

3.
A minor form of hepatic microsomal cytochrome P-450 has been purified to apparent homogeneity from rats treated with the polychlorinated biphenyl mixture, Aroclor 1254. This newly isolated hemoprotein, cytochrome P-450e, is inducible in rat liver by Aroclor 1254 and phenobarbital, but not by 3-methylcholanthrene. Two other hemoproteins, cytochromes P-450b and P-450c, have also been highly purified during the isolation of cytochrome P-450e based on chromatographic differences among these proteins. By Ouchterlony double-diffusion analysis with antibody to cytochrome P-450b, highly purified cytochrome P-450e is immunochemically identical to cytochrome P-450b but does not cross-react with antibodies prepared against other rat liver cytochromes P-450 (P-450a, P-450c, P-450d) or epoxide hydrolase. Purified cytochrome P-450e is a single protein-staining band in sodium dodecyl sulfate-polyacrylamide gels with a minimum molecular weight (52,500) slightly greater than cytochromes P-450b or P-450d (52,000) but clearly distinct from cytochromes P-450a (48,000) and P-450c (56,000). The carbon monoxide-reduced difference spectral peak of cytochrome P-450e is at 450.6 nm, whereas the peak of cytochrome P-450b is at 450 nm. Ethyl isocyanide binds to ferrous cytochromes P-450e and P-450b to yield two spectral maxima at 455 and 430 nm. At pH 7.4, the 455:430 ratio is 0.7 and 1.4 for cytochromes P-450b and P-450e, respectively. Metyrapone binds to reduced cytochromes P-450e and P-450b (absorption maximum at 445–446 nm) but not cytochromes P-450a, P-450c, or P-450d. Metabolism of several substrates catalyzed by cytochrome P-450e or P-450b reconstituted with NADPH-cytochrome c reductase and dilauroylphosphatidylcholine was compared. The substrate specificity of cytochrome P-450e usually paralleled that of cytochrome P-450b except that the rate of metabolism of benzphetamine, benzo[a]pyrene, 7-ethoxycoumarin, hexobarbital, and testosterone at the 16α-position catalyzed by cytochrome P-450e was only 15–25% that of cytochrome P-450b. In contrast, cytochrome P-450e catalyzed the 2-hydroxylation of estradiol-17β more efficiently (threefold) than cytochrome P-450b. Cytochrome P-450d, however, catalyzed the metabolism of estradiol-17β at the greatest rate compared to cytochromes P-450a, P-450b, P-450c, or P-450e. The peptide fragments of cytochromes P-450e and P-450b, generated by either proteolytic or chemical digestion of the hemoproteins, were very similar but not identical, indicating that these two proteins show minor structural differences.  相似文献   

4.
We report the existence of a microsomal, heat-stable, trypsin-sensitive factor that stimulates the O-demethylation of methoxyflurane (CHCl2CF2OCH3) by partially purified preparations of rabbit hepatic cytochrome P-450. The factor is able to stimulate by five to twelve-fold the methoxyflurane metabolizing activity of cytochrome P-450. In contrast, the metabolism of benzphetamine is not affected by the presence of the factor. The factor is inactivated by extraction with methanol, chloroform, butanol and ethanol. It remains intact after treatment with 6M guanidine hydrochloride and is soluble in trifluoroethanol. Thus, the weight of evidence indicates that this factor is a rather hydrophobic protein.  相似文献   

5.
Two inhibitors of thrombin-stimulated arachidonic acid release from platelets, p-bromophenacyl bromide and mepacrine, were examined for their ability to inhibit the phospholipase C-diglyceride lipase pathway. This pathway involves hydrolysis of phosphatidylinositol to diglyceride, followed by release of arachidonate from diglyceride, and has been proposed as an alternative or addition to phospholipase A2 as a mechanism for arachidonate release. p-Bromophenacyl bromide, a potent alkylating agent, was shown to cause a time-dependent inhibition of phosphatidylinositol-specific phospholipase C activity in crude platelet extracts; the inhibition was >90% after 15 min incubation with 100 μmp-bromophenacyl bromide. However, p-bromophenacyl bromide was also shown to destroy about one-half of the titratable sulfhydryl groups in whole platelets under similar conditions. The lack of specificity of p-bromophenacyl bromide was further demonstrated by our finding that thrombin-stimulated serotonin release was also inhibited by conditions inhibiting arachidonate release and that diglyceride lipase activity was decreased by higher levels of p-bromophenacyl bromide. Mepacrine was found to inhibit the activity of phosphatidylinositol-specific phospholipase C and had a greater effect at low substrate concentrations. The loss of [14C]arachidonate from both endogenous phosphatidylinositol and phosphatidylcholine in intact platelets was also inhibited. Thrombin-stimulated serotonin release was impaired by mepacrine also but only at a concentration 10-fold greater than that required to prevent arachidonate release. Thus we have shown that these two agents which inhibit arachidonate release are inhibitors of the phosphatidylinositol-specific phospholipase C-diglyceride lipase pathway. The multiple effects produced by both compounds limit their utility as agents to examine the source and mechanism of arachidonate release.  相似文献   

6.
7.
Stimulation of the rates of NAD(P)H oxidation, superoxide generation, and hydrogen peroxide formation by three anthracenedione antineoplastic agents in the presence of NADPH-cytochrome P-450 reductase, NADH dehydrogenase, or rabbit hepatic microsomes was studied and the results compared with those obtained for the anthracyclines Adriamycin and daunorubicin. In all cases the anthracenediones, including mitoxantrone and ametantrone, were significantly (5- to 20-fold) less effective than the anthracyclines in stimulating NAD(P)H oxidation, superoxide formation, or hydrogen peroxide production. Of the three anthracenediones studied, the ring-monohydroxylated compound showed the greatest activity followed by the ring-dihydroxylated derivative (mitoxantrone). In contrast, the non-ring-hydroxylated anthracenedione (ametantrone) was a relatively ineffective electron acceptor and inhibited the reduction of more effective acceptors such as Adriamycin. Michaelis-Menten kinetic constants were determined by analysis of the rates of NADPH oxidation. NADP+ and 2'-AMP inhibited the reduction of the ring-hydroxylated anthracenediones and anthracyclines, demonstrating the enzymatic nature of the reaction. The non-ring-hydroxylated anthracenedione inhibited the reduction of Adriamycin by both P-450 reductase and NADH dehydrogenase with 50% inhibition achieved at approximately 300 microM. Thus, there appears to exist a structural relationship between anthracenedione ring hydroxylation and metabolic activation. These results also suggest that the relative inability of the anthracenediones to function as artificial electron acceptors in comparison to the anthracyclines may be correlated with diminished anthracenedione cardiotoxicity.  相似文献   

8.
L-2,4-Diaminobutyric acid (Dab) reacts with K2PtCl4 yielding PtCl2(N,O-Dab), which rearranges to PtCl2(N,N-Dab). Reaction with L-ornithine and L-lysine yields the corresponding PtCl2(N,O-Orn) and PtCl2(N,O-Lys), respectively, whereas reaction with 4,5-diaminovaleric acid (Dav) yields PtCl2(N,N- Dav).  相似文献   

9.
Adducts (1:1) of halides of cobalt(II), nickel(II), manganese(II), copper(II), iron(III) and chromium(III) with dibenzoyldisulphide have been isolated and characterized on the basis of elemental analysis, molar conductance, magnetic susceptibility, infrared spectra, molecular weight and thermogravimetric analysis data.  相似文献   

10.
Incubation of hepatic microsomes from phenobarbital-treated rats with methyl 2-isopropyl-4-pentenoate results in rapid destruction of the microsomal cytochrome P-450. The destruction does not occur in the absence of NADPH or with methyl 2-isopropylpentanoate. Administration of methyl 2-isopropyl-4-pentenoate to phenobarbital-pretreated rats leads to hepatic accumulation of a “green” pigment which, after methylation and purification, yields an abnormal porphyrin chromatographically and spectroscopically indistinguishable from that similarly obtained with 2-isopropyl-4-pentenamide (allylisopropylacetamide). Field desorption mass spectrometry showed that both abnormal porphyrins exhibited molecular ions at me 730. The mass spectrum of the zinc and copper complexes confirmed this value. Esterification in deuterated methanol of the amide-derived porphyrin showed that only two methyl esters were formed. Finally, methyl 4,5-epoxy-2-isopropylpentanoate and the known metabolites of 2-isopropyl-4-pentenamide were shown not to destroy cytochrome P-450. These results clearly establish that the carbonyl groups of the two destructive substrates are intimately involved in formation of the isolated porphyrin adducts, and exclude participation of the corresponding epoxide metabolites in the destruction of cytochrome P-450.  相似文献   

11.
The crystal structures of the organocobalt complexes, pyCo(GH)2Me(1), pyCo(GH)2Et(2) and pyCo(GH)2Pri(3) (py = pyridine, GH = monoanion of glyoxime) are reported. Compound (1) crystallizes in the space group P212121 with cell parameters a = 8.508(1), b = 13.586(2) and c = 11.614(6) Å; (2) crystallizes in the space group P212121 with cell parameters a = 8.448(4), b = 12.164(2) and c = 13.651(2) Å; (3) crystallizes in the space group P21/c with cell parameters a = 8.443(7), b = 12.913(2), c = 14.341(2) Å and β = 92.86(4).The three structures have been solved by Patterson and Fourier methods and refined by least squares methods to final R values of 0.045(1), 0.068(2) and 0.057(3) using 1819(1), 1653(2) and 1582(3) independent reflections. The pyCoalkyl fragment shows significant variation of CoN and CoC bond lengths. The latter increase from 2.003(4) to 2.084(9) Å following the increase of the alkyl bulk. The CoN(py) distances increase from 2.064(3) to 2.101(6) Å with the increasing σ-donor power of the alkyl group trans to pyridine. In comparison with cobaloximes having the same axial ligands, pyCo(DH)2alkyl (DH = monoanion of dimethylglyoxime) does not show significant differences on the pyCo alkyl fragment. CoN axial bond lengths and exchange rates of the axial neutral ligand are consistent for the two series, although changes in bond lengths are detected only when rate constants are from two to three orders of magnitude different.  相似文献   

12.
The mixture of chromium, nicotinic acid and the amino acids glycine, glutamic acid and cysteine which stimulates the rate of CO2 production in a yeast bioassay system was subjected to the separation scheme based on ion-exchange chromatography which has been used to separate the chromium- containing fractions in brewer's yeast, [S.J. Haylock, P.D. Buckley and L.F. Blackwell, J. Inorg. Biochem., 18, 195 (1983)]. Four chromium-containing fractions (C2 to C5) were obtained by salt gradients and two further fractions (G1 and G2) were obtained using a pH gradient. All were amino acid-containing complexes of chromium and all except C5 also contained nicotinic acid. However, none of the isolated chromium fractions showed any activity in a yeast bioassay. On the basis of previous work, the activity of the original mixture was attributed to the presence of an oxygen-coordinated trans chromium(III)-dinicotinate complex. Biologically- inactive chromium complexes such as Cr(glu)2(H2O)+2 and Cr(gly)2(H2O)+2 after elution by ammonium hydroxide from Dowex 50W-X12 cation- exchange columns, stimulated the rate of CO2 production in the yeast bioassay. Elution with other bases, such as lithium hydroxide, potassium hydroxide and sodium hydroxide led to inactive fractions in all cases. A warning is therefore given that the use of ammonium hydroxide-elution of ion-exchange columns to isolate glucose tolerance factor fractions from biological samples (such as brewer's yeast) can lead to active fractions which do not relate to the native material.  相似文献   

13.
The preferential interactions of proteins with solvent components in concentrated amino acid solutions were measured by high-precision densimetry. Bovine serum albumin and lysozyme were preferentially hydrated in all of the amino acids examined, glycine, α- and β-alanine, and betaine i.e., addition of these amino acids resulted in an unfavorable free energy change. It was shown that, for the former three amino acids, known to have a positive surface tension increment, their perturbation of the surface free energy of water is consistent with their preferential exclusion from the protein surface. In the case of betaine, which does not increase the surface tension of water, preferential exclusion from protein surface must reflect the chemical structure of this cosolvent, which is considerably more hydrophobic than that of the other three amino acids.  相似文献   

14.
Crystalline, multinuclear [FeX(OCOAr)]n (X = Cl, Br, I; Ar = C6H5, C6H5CHCH, C6H5CH2) is produced by reactions acids (ArCOOH) and alkyl halides (RX). The reactions proceed smoothly above 180 °C, and the formation of [FeX(OCOAr)]n is accompanished by formation of ester (ArCOOR), and H2; the stoichiometry of the reaction is expressed by an equation, Fe + 2 ArCOOH + RX → (1/n)[FeX(OCOAr)]n + ArCOOR + H2. [FeX(OCOAr)]n has been characterized by elemental analysis, its chemical reactivities with basic ligands, IR spectroscopy, powder X-ray diffraction pattern, thermogravimetric analysis, and magnetic susceptibility. A reaction mechanism involving a successive reaction of ArCOOH and RX with iron is proposed to elucidate the formation of [FeX(OCOAr)]n. A reaction of metallic iron with a mixture of C6H5COOH and CCl4 gives C6H5COCl in a good yield.  相似文献   

15.
Biliary metabolites from physiological doses of all-trans-[10-3H]retinoic acid were examined in normal and vitamin A-deficient rats. The bile from normal and vitamin A-deficient rats contained approximately 60% of the administered dose following a 24-h collection period. However, vitamin A-deficient rats show a 6-h delay in the excretion of radioactivity compared to normal rats. Retinoyl-beta-glucuronide excretion was particularly sensitive to the vitamin A status of the rats. In normal rats, retinoyl-beta-glucuronide reached a maximum concentration of 235 pmol/ml of bile 2 h following the dose and then rapidly declined. Vitamin A-deficient rats show a relatively constant concentration of this metabolite (100-150 pmol/ml of bile) over a 10-h collection period. Retinoic acid excretion was low in both normal and deficient rats. The concentration of retinotaurine, a recently identified biliary metabolite, was approximately equal to retinoyl-beta-glucuronide in normal rats and appeared in the bile 2 h later than the glucuronide.  相似文献   

16.
The dilithio-derivative of a terminal acetylenic secondary alcohol reacts with alkyl halide to form the long-chain acetylenic alcohol by C-alkylation. Similar condensation with the NN-dimethylamide of an ω-bromo-acid, followed by hydrolysis, gives the acetylenic hydroxy-acid in low yield. 13-Hydroxydocos-8-ynoic acid is obtained by this route and, more satisfactorily, by condensation of 7-bromo-NN-dimethylheptanamide with the lithium derivative of pentadec-1-yn-6-one ethylene glycol ketal, with subsequent hydrolysis and reduction. Catalytic partial hydrogenation of the acetylenic hydroxy-acid, and then cis-hydroxylation with potassium permanganate, gives two isomers of (±)-8,9 (erythro) 13-trihydroxydocosanoic acid. One of these corresponds to the (+)-8,9,13-trihydroxydocosanoic acid isolated by Stodola and his co-workers from the extracellular lipid produced by a yeast obtained from the frass of white spruce.  相似文献   

17.
The reaction of arsenic acid with N,N′,N″-Tris(2,3-dihydroxybenzoyl)-1,5,10-Triazadecane(3,4-LICAM) provides the first example of an encapsulated arsenic anion. The structural features of this compound, thought to have an octahedral configuration around the arsenic, was established by 13C NMR, IR, UV and FAB mass spectroscopy as well as elemental analysis.  相似文献   

18.
The oxidation of uric acid and 3-N-ribosyluric acid by hydrogen peroxide and methemoglobin was stimulated by the addition of sodium nitrite, which alone has no effect on the urates. The urates were not oxidized by either hydrogen peroxide alone or hydrogen peroxide and sodium nitrite unless methemoglobin was present. t-Butyl hydroperoxide also oxidized the urates in the presence of methemoglobin, but the reaction was not stimulated by sodium nitrite. The addition of either sodium azide or potassium cyanide reduced the rate of the reaction with either hydrogen peroxide or t-butyl hydroperoxide both in the presence and absence of sodium nitrite. Possible explanations for the stimulation by nitrite of peroxide-induced degradation of urates are presented.  相似文献   

19.
The synergic extraction equilibrium of Tm(III) with acetylacetone (Hacac) and 1,10-phenanthroline (phen) in various organic solvents has been studied. The adduct formation constants, βs, for Tm(acac)3? phen, were determined in heptane, cyclohexane, carbon tetrachloride, benzene and chloroform. The solvent effect on βs is explained in connection with the activity coefficients of the neutral ligand, the chelate, and the adduct in the organic solvent. The activity coefficients can be calculated from the corresponding solubility parameters on the basis of the regular solution theory, and the solubility parameters of the solutes were estimated from their two-phase partition coefficients. It is demonstrated that βs in different organic solvents except those having a specific interaction with the solute, such as chloroform, can be calculated by the present approach.  相似文献   

20.
The syntheses of the complexes formulated as SnMe2Cl2(Ad)2 (I), SnMe2Cl2(Ado)2 (II), SnMe2Cl2- (9-MeAd)2 (III) [Ad = adenine, Ado = adenosine, 9-MeAd = 9-methyladenine] as well as the more unexpected SnPhCl2(OH)(Ad)2·3H2O (IV) and SnPhCl3(Ado)2 (V) by reaction of SnMe2Cl2 or SnPh2Cl2 with the appropriate bases in methanol is described. 1H NMR studies suggest that coordination is through the N-7 position of the adenine base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号