首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Examination of components of the cAMP system in primary cultures of differentiating chick myoblasts revealed a basal intracellular cAMP level of 50–100 pmole/mg of DNA, which increased ten to fifteen-fold for approximately 1 hr between 37.5 and 39.5 hr of culture, only 5–6 hr before the initiation of myoblast fusion. Activities of the enzymes adenylate cyclase and protein kinase were examined during the initial stages of myoblast differentiation. Both the basal activity and the degree of NaF stimulation of adenylate cyclase increased during the time examined, the appearance of these changes coinciding in time of culture with the observed peak of cAMP. The protein kinase present was sensitive to cAMP, and its basal and cAMP stimulated activities increased throughout the prefusion period of culture. The results suggest a causal relationship between the increase in adenylate cyclase activities, the increase in intracellular cAMP, and the onset of fusion; and the possibility that intracellular cAMP levels control the expression of myoblast differentiation is discussed.  相似文献   

2.
Rat mast cells preincubated with chelating agent and bathed in calcium-free medium fail to release histamine when stimulated by compound 48/80 and show elevated levels of cyclic AMP. When calcium is added to the bathing medium, these cells undergo a prompt secretory response yet cyclic AMP levels do not fall. It is suggested that the level of cyclic AMP may not regulate the change in membrane permeability believed produced by compound 48/80.  相似文献   

3.
4.
5.
In this work, we studied the effect of intracellular 3',5'-cyclic adenosine monophosphate (cAMP) on Li+ transport in SH-SY5Y cells. The cells were stimulated with forskolin, an adenylate cyclase activator, or with the cAMP analogue, dibutyryl-cAMP. It was observed that under forskolin stimulation both the Li+ influx rate constant and the Li+ accumulation in these cells were increased. Dibutyryl-cAMP also increased Li+ uptake and identical results were obtained with cortical and hippocampal neurons. The inhibitor of the Na+/Ca2+ exchanger, KB-R7943, reduced the influx of Li+ under resting conditions, and completely inhibited the effect of forskolin on the accumulation of the cation. Intracellular Ca2+ chelation, or inhibition of N-type voltage-sensitive Ca2+ channels, or inhibition of cAMP-dependent protein kinase (PKA) also abolished the effect of forskolin on Li+ uptake. The involvement of Ca2+ on forskolin-induced Li+ uptake was confirmed by intracellular free Ca2+ measurements using fluorescence spectroscopy. Exposure of SH-SY5Y cells to 1 mm Li+ for 24 h increased basal cAMP levels, but preincubation with Li+, at the same concentration, decreased cAMP production in response to forskolin. To summarize, these results demonstrate that intracellular cAMP levels regulate the uptake of Li+ in a Ca(2+)-dependent manner, and indicate that Li+ plays an important role in the homeostasis of this second messenger in neuronal cells.  相似文献   

6.
The hypophysiotrophic hormone corticotropin releasing factor (CRF) stimulates the anterior pituitary corticotroph to export stress hormones such as adrenocorticotrophic hormone (ACTH). In rat anterior pituitary cells, CRF-induced elevation of cyclic AMP was profoundly potentiated (by an order of magnitude) by stimulators of protein kinase C. This effect occurred within minutes, was concentration dependent, and exhibited the appropriate pharmacological specificity to attribute the effects to protein kinase C. Phorbol myristate acetate (PMA), phorbol dibutyrate (PDB) and teleocidin were active with appropriate EC50's, while 4-alpha-PMA was inactive. PMA and PDB were also ACTH secretagogues in their own right. We suggest that protein kinase C can modulate CRF receptor coupling to the adenylate cyclase holoenzyme in anterior pituitary cells.  相似文献   

7.
Renal cell carcinoma (RCC) is the most common renal tumour in adults. Altered levels of secondary messengers, that is, intracellular calcium and cyclic AMP (cAMP), have been implicated in the pathogenesis of various malignancies. In the present study, we measured levels of intracellular calcium and cAMP in RCC. The intracellular calcium level was significantly reduced, whereas the cAMP level was significantly augmented in RCC as compared with adjacent grossly normal renal parenchyma. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Adrenalin and glucagon inhibit glycogen, fatty acid and cholesterol synthesis by elevation of cyclic AMP, activation of cyclic AMP-dependent protein kinase and increased phosphorylation of the rate-limiting enzymes of these pathways. Here, we review recent evidence which indicates that inhibition of these biosynthetic pathways in muscle, adipose tissue and liver is much more indirect than has previously been supposed. In particular, cyclic AMP-dependent protein kinase does not appear to inhibit glycogen synthase, acetyl-CoA carboxylase and HMG-CoA reductase by phosphorylating them directly. It appears to achieve the same end result by inactivation of the protein phosphatases which dephosphorylate these regulatory enzymes in vivo, although this has only been established definitively in the case of glycogen synthesis.  相似文献   

9.
The regulation of creatine kinase (CK) induction during muscle differentiation was analyzed with MM14 mouse myoblasts. These cells withdraw from the cell cycle and commit to terminal differentiation when fed with mitogen-depleted medium. Myoblasts contained trace amounts of an isozyme of brain CK (designated BB-CK), but differentiation was accompanied by the induction of two other isozymes of muscle and brain CKs (designated MM-CK and MB-CK). Increased CK activity was detectable within 6 h of mitogen removal, 3 h after the first cells committed to differentiation and 6 h before fusion began. By 48 h, MM-CK activity increased more than 400-fold, MB-CK activity increased more than 150-fold, and BB-CK activity increased more than 10-fold. Antibodies prepared against purified mouse MM-CK cross-reacted with muscle and brain CKs (designated M-CK and B-CK, respectively) from a variety of species and were used to demonstrate that the increase in enzymatic activity was paralleled by an increase in the protein itself. CK antibodies were also used to aid in identifying cDNA clones to M-CK. cDNA sequences which corresponded to protein-coding regions cross-hybridized with B-CK mRNA; however, a subclone containing the 3'-nontranslated region was unique and was used to quantitate M-CK mRNA levels during myoblast differentiation. M-CK mRNA was not detectable in myoblasts, but within 5 to 6 h of mitogen withdrawal (6 to 7 h before fusion begins) it accumulated to about 30 molecules per cell. By 24 h, myotubes contained approximately 1,100 molecules per nucleus of M-CK mRNA.  相似文献   

10.
Isolated renal cortical tubules from male hamsters were utilized to examine the possible relationship between cyclic AMP (cAMP) and efflux of calcium. Both parathyroid hormone (PTH) and prostaglandin E1 (PGE1) produced dose-related increases in cAMP levels and calcium efflux from isolated tubules. Maximal concentrations of both hormones resulted in changes in cAMP which were 6 fold greater and changes in calcium efflux which were 2 fold greater with PGE1 than with PTH. Effects of sub-maximal amounts of either hormone on both cAMP and calcium efflux were potentiated to tubule incubations resulted in increases in tissue-associated cAMP over the same degree by inclusion of methyl-isobutylxanthine (MIX). Addition of either exogenous cAMP or dibutyryl cAMP (db-cAMP) produced dose-related increases in calcium efflux which occurred more rapidly with db-cAMP than with cAMP. Increasing amounts of cAMP added to the same concentration range resulting in increases in calcium efflux. Addition of 2', 3' cyclic AMP, 5'AMP or db-cyclic GMP had no significant effect on calcium efflux while 3', 5' cyclic CMP significantly reduced this response. The results indicate that cAMP increases efflux of calcium from renal tubules and may play a central role in hormone-dependent transport of this ion.  相似文献   

11.
When amoebae of Dictyostelium discoideum, suspended in buffer, were treated with 100 nM pulses of cAMP, the extracellular cAMP phosphodiesterase (ePD) activity increased dramatically and the synthesis of the phosphodiesterase inhibitor (PDI) was repressed. In addition, the time of appearance on the cell surface of contact sites A, membrane-bound cAMP phosphodiesterase, and cAMP binding sites was accelerated by 3–4 hr and the concentration of intracellular cAMP increased ?20-fold. When the concentration of the cAMP pulse was reduced to 1 nM, the effect of the pulses on membrane differentiation and on the cAMP pool was virtually the same, while the effect on the ePD-PDI system was reduced. When cAMP was added to the suspension continuously, the nucleotide had no effect on membrane differentiation and failed to stimulate the intracellular cAMP pool, however, the ePD-PDI system was regulated normally. When the developmental mutant, HC112, was treated with cAMP pulses, membrane differentiation and the level of the cAMP pool were unaffected, while the ePD-PDI system responded to the exogenous cAMP. In another mutant, HC53, membrane differentiation was stimulated by cAMP pulses and this response was accompanied by a sharp increase in the concentration of the cAMP pool. These results suggest that the ePD-PDI system and membrane differentiation are regulated independently by exogenous cAMP and that regulation of the ePD-PDI system does not require activation of the adenylyl cyclase.  相似文献   

12.
The effects of isoproterenol and forskolin on tension, cyclic AMP levels, and cyclic AMP dependent protein kinase activity were compared in helical strips of bovine coronary artery. Elevation of cyclic AMP and activation of the protein kinase appeared to be well correlated with relaxation of potassium-contracted arteries by isoproterenol. Forskolin, at 1 microM or higher concentrations, also markedly elevated cyclic AMP levels, activated the kinase, and relaxed the arteries. However, a lower concentration of forskolin (0.1 microM) caused significant increases in both cyclic AMP levels and cyclic AMP dependent protein kinase activity, but did not relax the muscles. Relaxation caused by isoproterenol was accompanied by an apparent translocation of cyclic AMP dependent protein kinase activity from the soluble to the particulate fraction in these preparations. A similar shift in the distribution of the kinase was caused by various concentrations of forskolin, irrespective of whether the arteries were relaxed or not. In contrast to previous results in other tissues, low concentrations of forskolin (less than or equal to 1 microM), which themselves markedly elevated cyclic AMP levels in the arteries, did not potentiate the effects of isoproterenol on cyclic AMP levels or tension in these preparations. These results suggest that either cyclic AMP is not solely responsible for the relaxation caused by these agents, or some form of functional compartmentalization of cyclic AMP and cyclic AMP dependent protein kinase exists in this tissue.  相似文献   

13.
The regulation of cell proliferation by calcium and cyclic AMP   总被引:10,自引:0,他引:10  
Calcium, in partnership with cyclic AMP, controls the proliferation of non-tumorigenic cells in vitro and in vivo. While it does not seem to be involved in the proliferative activation of cells such as hepatocytes (in vivo) or small lymphocytes (in vitro), it does control two later stages of prereplicative (G1) development. It must be one of the very many regulatory and permissive factors affecting early prereplicative development, because severe calcium deprivation reversibly arrests some types of cell early in the G1 phase of their growth-division cycle in vitro. However, calcium more specifically and much more often regulates a later (mid or late G1) stage of prereplicative development. Thus, regardless of its severity or the type of cell, calcium deprivation in vitro or in vivo reversibly stops proliferative development at that part of the G1 phase in which the cellular cyclic AMP content transiently rises and the synthesis of the four deoxyribonucleotides begins. The evidence points to calcium and the cyclic AMP surge being co-generators of the signal committing the cell to DNA synthesis. The evidence is best explained so far by the cyclic AMP surge causing a surge of calcium ions which combine with molecules of the multi-purpose, calcium-dependent, regulator protein calmodulin (CDR) somewhere between the cell surface and the cytosol. The resulting Ca-calmodulin complexes then stimulate many different (and possibly membrane-associated) enzymes such as protein kinases, one of which produces the DNA-synthetic initiator. Calcium has little or no influence on the proliferation of tumor cells. Some possible explanations of this very important loss of control are considered.  相似文献   

14.
The effect of adrenocorticotropic hormone (ACTH) on the intracellular concentration of cyclic nucleotides was studied in cultures of neurons from embryonic chick cerebral hemispheres. Incubation of neurons with ACTH(1-24) in the presence of phosphodiesterase inhibitor isobutylmethylxanthine resulted in a sustained increase in cyclic AMP while rise in cyclic GMP level was transient. The values obtained for half-maximal stimulation were 0.5 microM and 0.03 nM for cyclic AMP and cyclic GMP respectively. Concomitantly, ACTH(1-24) stimulated guanylate cyclase activity (half-maximal stimulation at 0.02 nM). These results suggest the existence of two distinct populations of ACTH receptors in neurons and provide the first evidence that cyclic GMP does mediate the action of ACTH in neurons.  相似文献   

15.
When epithelial cell cultures are transferred from a medium with a normal extracellular calcium concentration (1-2 mM) to a medium with a low extracellular calcium concentration (LC, less than 50 microM free Ca2+) cell-cell contacts are disrupted, and the tight junction-dependent transepithelial resistance drops. In this study, I used MDCK epithelial cells to investigate the effects of LC on the localization of the tight junction protein cingulin, and the role of protein kinases in the events induced by LC. Immunofluorescence analysis showed that within 15 min of incubation of confluent monolayers in LC, cingulin labeling was dislocated from the cell periphery, as an array of granules forming a ring-like structure. At later times after calcium removal, cingulin labeling appeared mostly cytoplasmic, in a diffuse and granular pattern, and cells appeared rounded and smaller. These events were not influenced by lack of serum, or by preincubation with 10 mM sodium azide or 6 mg/ml of cycloheximide. However, the disruption of cell-cell contacts, the cell shape changes, and the redistribution of cingulin and other junctional proteins induced by LC were inhibited when cells were pretreated with the protein kinase inhibitor H-7 (greater than or equal to 30 microM). The inhibitors H-8 and, to a lesser degree, staurosporine were also effective, whereas HA-1004 and ML-7 showed essentially no activity, suggesting a specificity of action of different inhibitors. Measurement of the transepithelial resistance showed that the kinase inhibitors that could prevent junction disassembly could also reduce the drop in transepithelial resistance induced by LC. Dose-response curves demonstrated that H-7 is the most effective among the inhibitors, and the transepithelial resistance was 70% of control up to 1 h after calcium removal. These results suggest that low extracellular calcium modulates junctional integrity and cytoskeletal organization through an effector system involving protein kinases.  相似文献   

16.
17.
Dynamics of retinal waves are controlled by cyclic AMP   总被引:7,自引:0,他引:7  
Stellwagen D  Shatz CJ  Feller MB 《Neuron》1999,24(3):673-685
Waves of spontaneous activity sweep across the developing mammalian retina and influence the pattern of central connections made by ganglion cell axons. These waves are driven by synaptic input from amacrine cells. We show that cholinergic synaptic transmission during waves is not blocked by TTX, indicating that release from starburst amacrine cells is independent of sodium action potentials. The spatiotemporal properties of the waves are regulated by endogenous release of adenosine, which sets intracellular cAMP levels through activation of A2 receptors present on developing amacrine and ganglion cells. Increasing cAMP levels increase the size, speed, and frequency of the waves. Conversely, inhibiting adenylate cyclase or PKA prevents wave activity. Together, these results imply a novel mechanism in which levels of cAMP within an immature retinal circuit regulate the precise spatial and temporal patterns of spontaneous neural activity.  相似文献   

18.
The extracellular signal regulated kinase (ERK1/2) signaling cascade has been implicated as both a pro-apoptotic and anti-apoptotic pathway depending on cell type and context. In the T84 intestinal epithelial cell line, cAMP activates ERK1/2 resulting in the inhibition of apoptosis. Cyclic-AMP signaling relies on the binding and activation of a cAMP binding protein. In most cell types, the majority of this signaling occurs through an isoform of protein kinase A (PKAI or PKAII). Despite evidence to the contrary, we hypothesized that ERK1/2 activation is through a PKA isoform. Pharmacological activators and inhibitors of PKA as well as siRNA were used to further interrogate this potential signaling pathway. Our results demonstrate that at doses sufficient to increase PKA activity, PKAII specific cAMP analogs activate ERK1/2 while PKAI analogs do not. Pharmacological inhibition of the PKAII regulatory subunit and catalytic subunit as well as siRNA knockdown of the catalytic subunit blocks ERK1/2 activation. We conclude that in the T84 cell line, cAMP binding to the PKAII regulatory subunit leads to the subsequent phosphorylation of ERK1/2 and provides insight into the mechanism of cAMP mediated survival signaling in the intestinal epithelium. These results directly implicate PKAII as a mediator of cell survival in T84 cells and provide evidence for an additional means by which cAMP can influence intestinal cell turnover.  相似文献   

19.
20.
1. 1. The effect of stimulation of adenylate cyclase by pancreozymin-C-octapeptide on the cyclic AMP level of rat pancreatic fragments has been investigated.
2. 2. In normal Krebs-Ringer bicarbonate medium pancreozymin-C-octapeptide causes a slight increase in pancreatic cyclic AMP level; this increase can be considerably enhanced by incubation in a calcium-free incubation medium.
3. 3. The dose-responce curve for pancreazymin-C-octapeptide in calcium-free medium is shifted to lower peptide concentrations, compared to the curve in normal Krebs-Ringer bicarbonate medium.
4. 4. The maximal stimulatory effect of pancreozymin-C-octapeptide id obtained at a 1-methyl-3-isobutylxanthine concentration of 10 mM.
5. 5. It suffices to lower the Ca2+-concentration of the medium from 2.5 to 1.5 mM to get the maximal increase in cyclic AMP content under influence of pancreozymin-C-octapeptide.
6. 6. It is concluded that extracellular calcium antagonizes the stimulation of adenylate cyclase by pancreozymin-C-octapeptide. This suggest that a low cytoplasmic Ca2+-concentration is required for the maximal response of acinar cell adenylate cyclase to pancreozymin.
Keywords: cyclic AMP formation; Ca2+; Pancreozymin-C-octapeptide; Adeny; ate cyclase; (Rat pancreas)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号