首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The temperatures of the lipid phase transition at which the solid phase disappears were determined by using the X-ray diffraction method in thylakoid membranes of the blue-green alga, Anacystis nidulans. The temperatures were determined as 26 and 16°C for cells grown at 38 and 28°C, respectively.  相似文献   

2.
The effect of ethanol on [14C]pantothenate incorporation into CoA and on total CoA levels was measured in 3-day-old primary cultures of adult rat liver parenchymal cells. Ethanol decreased the incorporation of radioactivity into CoA a maximum of 67%, 5 mm ethanol was saturating for the inhibitory effect and 0.2 mm ethanol was sufficient for half-saturation. This inhibitory effect did not result from a loss of CoA precursors or from cell death. Ethanol concentrations up to 10 mm did not decrease the ATP content of cells or the total protein content of cells which adhered to the incubation flask. Ethanol (5 mm) had no effect on the cyteine + cystine content of the cells. Intracellular pantothenate concentrations were not affected by 5 mm ethanol, and increasing the pantothenate concentration did not affect ethanol inhibition. Ethanol inhibition of [14C]pantothenate conversion to CoA could be fully reversed by rinsing the cells free of ethanol. The ethanol inhibition could also be fully reversed by addition of 4-methylpyrazole, indicating that ethanol must be oxidized via alcohol dehydrogenase to exert its inhibitory effect. Acetaldehyde, the immediate product of alcohol dehydrogenase, was also an inhibitor of the incorporation of [14C]pantothenate into CoA; the maximum inhibition was 63%. Acetaldehyde concentrations maintained between 18 and 103 μm inhibited incorporation by 57%. The inhibition by acetaldehyde did not correlate well with changes in the NADH and NAD+ ratio of the cells (as determined by measuring changes in the lactate-to-pyruvate ratio). The ability of glucagon, dibutyryl cAMP + theophylline, or dexamethasone to stimulate [14C]pantothenate conversion to CoA was not decreased by the addition of ethanol or acetaldehyde, indicating that ethanol inhibition does not occur by reversal of the cAMP-mediated regulatory mechanism for CoA biosynthesis.  相似文献   

3.
When mitochondria are incubated with radioactively labeled mitochondrial aspartate aminotransferase (EC 2.6.1.1), the enzyme is taken up into the organelles. Mersalyl and p-hydroxymercuriphenyl sulfonic acid, but not N-ethylmaleimide or ethacrynic acid, decrease the extent of this uptake. Inhibition of the uptake by low concentrations of mercurial reagents is due to blockage of a single sulfhydryl group per monomer of the enzyme. Blockage of mitochondrial thiols does not inhibit uptake of the enzyme. A single sulfhydryl group out of a total of six per monomer of the native enzyme reacts with 5,5′-dithiobis-(2-nitrobenzoic acid). This is the same sulfhydryl group that reacts with low levels of mercurial reagents with consequent inhibition of uptake of the enzyme into mitochondria but without effect on the catalytic activity. N-Ethylmaleimide does not react with this group. N-Ethylmaleimide reacts with a different sulfhydryl group with concomitant decrease in enzymic activity but with no effect on uptake of the enzyme into mitochondria. High levels of mercurial reagents similarly decrease enzymic activity. Unlike the effect on uptake into mitochondria, the inhibition by mercurial reagents of enzymic activity is not reversed by treatment with cysteine. The significance of these observations with respect to the mechanism of uptake of aspartate aminotransferase into mitochondria is discussed, and comparisons are made between the reactivities of sulfhydryl groups in rat liver aspartate aminotransferase and in the enzymes from other animals.  相似文献   

4.
Ceruloplasmin, a copper ferroxidase, promotes the incorporation of Fe(III) into the iron storage protein, apoferritin. The product formed is identical to ferritin as judged by polyacrylamide electrophoresis and iron/protein measurements. Of several proteins examined, only apoferritin accumulates the Fe(III) produced by ceruloplasmin. When ceruloplasmin was replaced by tyrosinase, which we have shown to have ferroxidase activity, no iron incorporation into apoferritin was observed. It is proposed that Fe(III) is transferred directly and specifically to apoferritin. These data support a more specific role for ceruloplasmin in iron metabolism than has previously been proposed.  相似文献   

5.
The effect of hypolipidemic drugs, WY14643 and DH990, on plant lipid metabolism has been studied. The total incorporation of [14C]acetate into lipids was inhibited by addition of both drugs to aged potato (Solanum tuberosum) tuber discs, spinach (Spinacia oleracea) leaves, and spinach chloroplasts, while the incorporation in Chlorella vulgaris cells was affected only by DH990. Moreover, DH990 inhibited the incorporation of 14C-labeled fatty acids into phosphatidylcholine and phosphatidylethanolamine of potato discs, and decreased the incorporation into phosphatidylglycerol of Chlorella cells. DH990 inhibited the formation of polyunsaturated fatty acids in potato discs, Chlorella cells, and spinach leaves, whereas WY14643 had no effect on the formation of these fatty acids. Stearoyl-ACP desaturase from safflower (Carthamus tinctorius) seeds was very sensitive to both drugs, especially DH990, which completely blocked the activity at 2 mM levels. When safflower lysophospholipid acyltransferases were solubilized by detergent treatment, only DH990 inhibited the incorporation of [14C]oleoyl-CoA into lysophosphatidylcholine or lysophosphatidylethanolamine. Both drugs inhibited fatty acid synthesis from [14C]malonyl-CoA in the microsomal fraction from safflower seeds, but only DH990 inhibited FAS activity in the soluble fraction; both drugs inhibited severely the formation of stearic acid. Both acetyl-CoA carboxylase and acetyl-CoA synthetase were sensitive to both drugs.  相似文献   

6.
The fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, has been used to investigate the effects of controlled and uncontrolled growth on the dynamic properties of the lipid regions of hepatocyte plasma membranes. DPH was incubated with plasma membranes derived from quiescent and regenerating liver and Morris hepatoma 7777, and the resulting systems were studied by fluorescence polarization spectroscopy. Membranes from the rapidly growing hepatoma exhibited a significantly lower fluorescence polarization than observed in quiescent liver, suggesting the presence of a more fluid membrane lipid domain. Membranes from regenerating liver exhibited a time-dependent increase in membrane fluidity, reaching a maximum 12 h after growth stimulation. A close correspondence between membrane fluidity and the cholesterol-phospholipid ratio was also observed where a decrease in this ratio resulted in a more fluid lipid matrix. These results suggest that cell cycling, as observed in regenerating liver and Morris hepatoma 7777, results in significant increases in membrane fluidity, a property which may play an important regulatory role in various cell functions.  相似文献   

7.
Membrane lipids of yeast mitochondria have been enriched by growing yeast cells in minimal medium supplemented with specific unsaturated fatty acids as the sole lipid supplement. Using the activity of marker enzymes for the outer (kynurenine hydroxylase) and inner (cytochrome c oxidase and oligomycin-sensitive ATPase) mitochondrial membranes, Arrhenius plots have been constructed using both pro-mitochondria and mitochondria obtained from O2-adapting cells in the presence of a second unsaturated fatty acid (i.e. linoleate (N2) to elaidic (O2)). Transition temperatures which reflect the unsaturated fatty acid enrichment of the new membranes reveal interesting features involved in the mechanism of the assembly of these two mitochondrial membranes. This approach was further enforced with both lipid depletion and mitochondrial protein inhibition studies. Kynurenine hydroxylase which does not require fatty acid for its continued synthesis during aerobiosis seems to be incorporated into the preformed linoleate-anaerobic outer membrane. The newly synthesized activities of inner mitochondrial membrane enzymes on the other hand, appear to integrate their activity into newly formed aerobic-elaidic-rich inner membrane. These latter enzymes show a distinct dependence on fatty acid supplement for their continued synthesis during their aerobic phase. This suggests that O2-dependent proteo-lipid precursors are formed before these enzymes are integrated into their membrane mosaic. Two separate models are proposed to explain these results, one for the lipid-rich outer mitochondrial membrane and another for the protein-rich inner mitochondrial membrane.  相似文献   

8.
9.
10.
Regulation of mitochondrial protein synthesis by thyroid hormone has been studied in isolated rat hepatocytes and liver mitochondria. Small doses (5 micrograms/100 g body wt) of triiodothyronine (T3) injected into hypothyroid rats increased both state 3 and 4 respiration by approximately 100%, while the ADP:O ratio remained constant. This suggests that T3 increases the numbers of functional respiratory chain units. T3 also induces mitochondrial protein synthesis by 50-100%. Analysis of the mitochondrial translation products show that all of the products were induced. No differential translation of the peptides involved in the respiratory chain was found. Regulation of the cytoplasmically made inner membrane peptides was also investigated in isolated hepatocytes. The majority of these peptides were not influenced by T3, in contrast to the finding with mitochondrial translation products. Those found to be regulated by T3 belong to two subsets, which were either induced or repressed by hormone. Thus, T3 stimulated a general increase in the synthesis of mitochondrially translated inner membrane peptides, but regulates selectively those inner membrane peptides translated on cytoplasmic ribosomes. The findings suggest that hormone regulation of the respiratory chain is exerted through a few selective proteins, perhaps those which require subunits made from both nuclear and mitochondrial genes.  相似文献   

11.
12.
The relationship between the delta 9-desaturase activity of the psychrophilic bacterium Micrococcus cryophilus grown at different temperatures and the physical state of its membrane lipids as measured by ESR spectroscopy has been studied. Arrhenius plots of desaturase activity were biphasic with a discontinuity at a temperature which depended upon the bacterial growth temperature. Changes in the desaturase activation energy, which increased as the growth temperature was lowered, are discussed in the context of membrane lipid fluidity adaptation to changing environmental temperature. The fluidity of membranes and isolated lipids was measured using nitroxide-labeled fatty acids. The spectra of 2-(10-carboxydecyl)-2-hexyl-4,4-dimethyl-3-oxazolidinoxyl in membranes indicated that there were two lipid environments within the membrane whose relative proportions were dependent both on temperature of measurement and on bacterial growth temperature. In contrast, 2-(3-carboxypropyl)-4,4-dimethyl-2-tridecyl-3-oxazolidinoxyl spectra showed a single lipid environment and plots of log order parameter (S3) vs 1/T were biphasic with inflexion temperatures which were closely related to the bacterial growth temperature. As with membranes, plots of log S3 vs 1/T for total lipids, phosphatidylglycerol and cardiolipin, but not phosphatidylethanolamine, were biphasic and showed inflexions which correlated well with bacterial growth temperature. These results are interpreted as being consistent with a location for the desaturase within the bulk lipid of the membrane rather than in association with specific lipid types.  相似文献   

13.
The rat liver adenylate cyclase system shows a discontinuity in the Arrhenius plots at 20°C in the nonstimulated activity (basal) with activation energies of 16 and 28 Kcal/mole. The discontinuity disappears when the enzyme is stimulated either by glucagon, sodium fluoride, 5′ guanylyl-imidodiphosphate or glucagon plus 5′ guanylyl-imidodiphosphate and the energy of activation was the same with all the compounds tested. If the activator was initially in contact with the membranes at 0°C the energy of activation was similar to that observed below the break (26 Kcal/mole) but it changed to that above the break if the compound contacted the membranes at temperatures above the break (22–24°C). We discuss the possibility of two different conformations of the enzyme; both conformations can be “frozen” by any of the compounds tested, “isolating” the enzyme from any subsequent physical change of the membrane due to temperature.  相似文献   

14.
The effect of toluene on Escherichia coli has been examined. In the presence of Mg2+, toluene removes very little protein, phospholipid, or lipopolysaccharide from E. coli. In the absence of Mg2+, or in the presence of EDTA, toluene removes considerably more cell material, including several specific cytoplasmic proteins such as malate dehydrogenase (EC 1.1.1.37). In contrast, glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and glutamate dehydrogenase (EC 1.4.1.4) are not released at all under the same conditions.Cells treated with toluene in the presence of Mg2+ remain relatively impermeable to pyridine nucleotides, while cells treated with toluene in the presence of EDTA become permeable to these compounds. Freeze-fracture electron microscopy shows that toluene causes considerable damage to the cytoplasmic membrane, while the outer membrane remains relatively intact. These results indicate that the permeability characteristics of toluene-treated cells depend at least partly on the state of the outer membrane after the toluene treatment.  相似文献   

15.
16.
Upon transfer of the fresh-water fish, Sarotherodon mossambicus, to 50% sea water, extensive changes take place in the functions of the gill mitochondria. The changes are (i) loss of ADP/O and RCI; (ii) loss of the ability to contract upon addition of ATP-Mg2+; (iii) lowered energy-dependent 45Ca uptake; (iv) increased amino acid incorporation capacity; (v) increased adenine nucleotide content; and (vi) a higher endogenous Ca2+ content. Administration of thyroxine to the fish reversed these changes, and the effect of thyroxine was also not transient. It is suggested that thyroxine promotes mitochondriogenesis, thereby effecting a restoration of the stress-affected mitochondrial functions.  相似文献   

17.
Quenching of 12-(9-anthroyl) stearic acid (AS) fluorescence by cytochrome c occurs through an energy-transfer mechanism and can be used to measure the binding of the cytochrome to artificial and mitochondrial membranes. The quenching of AS3 fluorescence is biphasic (t12 below 25 msec and above 500 msec) and its extent diminishes at high salt concentration or at high pH and increases in the presence of negatively charged lipids.Addition of cytochrome c to cytochrome c-depleted mitochondria results in binding of the cytochrome to the membrane and quenching of AS fluorescence. The affinity of oxidized cytochrome c for cytochrome c-depleted mitochondria is 1.8 × 106m, while the affinity constant for reduced cytochrome c is 0.5 × 106m. The lower affinity of the reduced cytochrome c for mitochondrial membranes is in accordance with midpoint potential differences between the bound and free forms.  相似文献   

18.
As ascertained by freeze-fracture electron microscopy, imipramine prevents lateral phase separation from taking place in inner mitochondrial membranes at sub-zero temperatures. Electron spin resonance (ESR) measurements performed on mitochondrial membranes labeled with the N-oxyl-4′,4′-dimethyloxazolidine derivative of 16-ketostearic acid, show that the spin probe motion is markedly inhibited below 0°C and that 5 mM imipramine attenuates the temperature effect. These results are explained by supposing that imipramine is able to decrease the transition temperature of the inner mitochondrial membrane lipids as it does for simple lipid systems.  相似文献   

19.
Time-resolved fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene was used to monitor physical changes in the membranes of guinea pig alveolar macrophages following stimulation by N-formyl peptides (either N-formylmethionylphenylalanine (FMP) or N-formyl methionyl leucylphenylalanine (FMLP)) and concanavalin A. The anisotropy of diphenylhexatriene in macrophages showed a dependence on stimulation both in the rate of decay and in the value of anisotropy at infinite time. Subtle differences were observed between the effect of concanavalin A and FMLP on the membrane lipid fluidity as detected by fluorescence anisotropy. Concanavalin A stimulation of macrophages decreased the value of the anisotropy at infinite times in the range of 0–20 °C and increased the value at 25–40 °C; and at all temperatures it decreased the rate of decay of anisotropy. At temperatures below 25 °C, the response to FMLP was similar to concanavalin A, but above 25 °C, FMLP only slightly modified the anisotropy decay profile. Another physical parameter, calcium permeability, was examined because Ca+2 fluxes are dependent upon membrane properties. The temperature-dependent profiles of concanavalin A and FMP-stimulated 45Ca+2 efflux from alveolar macrophages were similar. The rate and extent of 45Ca+2 efflux increased from 4 to 22 °C, with no further increases observed up to 37 °C. This pattern correlated well with observed changes in membrane fluidity.  相似文献   

20.
The physical state of mitochondrial membranes has been investigated by means of stearic acid spin labels and of a maleimide spin label covalently bound to protein sulfhydryl groups. Stearic acid spin labels 5-NS and 16-NS show that n-butanol enhances the lipid fluidity of mitochondrial membranes in the whole temperature range between 4 and 37 degrees C; the effects in the hydrophobic membrane core, probed by 16-NS, are already apparent at 10 mM butanol. In liposomes formed of mitochondrial phospholipids, a fluidizing effect appears only at much higher concentration. Such results are compatible with the idea that butanol destabilizes lipid-protein interactions. On the other hand, the ratio between weakly and strongly immobilized SH groups probed by maleimide spin label is only slightly affected in the temperature range of 4-37 degrees C by addition of high concentrations of n-butanol, indicating that the environments probed are stable to agents inducing fluidity changes in the lipids. There are, however, indications that the environment probed by maleimide is affected by lipids, since the spin label, when bound to lipid-depleted mitochondria, becomes more immobilized, reconstitution of such lipid-depleted membranes with phospholipids restores the original spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号