首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biosynthesis in vivo of the two reducible aldimine crosslinks of immature rabbit articular collagen, hydroxylysinohydroxynorleucine and hydroxylysinonorleucine, is demonstrated. The peak amount of crosslink was detected 1–2 weeks following labeling of the cartilage with [14C]lysine. The subsequent diminution which occurred was due primarily to a decrease in the amount of hydroxylysinohydroxynorleucine. Natural reduction of the aldimine crosslinks in vivo did not occur. Glucosylgalactosyl hydroxylysine and galactosylhydroxylysine, in a 1.451.00 ratio, were synthesized. Seventy-three percent of the hydroxylysine residues were glycosylated. [3H]NaBH4 reduction of non-14C-labeled cartilage showed diminished amounts of reducible crosslink with time and the presence of hexosyl lysines and hexosyl hydroxylysines in mature articular cartilage.  相似文献   

2.
The amounts of lysine-derived crosslinks in collagens from tendon, cartilage, intervertebral disc, and bone and changes in the composition of sternal cartilage glycosaminoglycans were estimated in two lines of chickens, a control-isogenic line and a line that develops scoliosis. In the scoliotic line, scoliosis first appears at 3-4 weeks and progressively increases in severity and incidence so that 90% of the birds express the lesion by week 10. We have reported previously that cartilage, tendon, and bone collagens from scoliotic birds are more soluble than corresponding collagens from normal birds. Herein, collagen crosslinking and altered proteoglycan metabolism are examined as possible mechanisms for the differences in collagen solubility. At 1 week of age there were fewer reducible crosslinking amino acids (hydroxylysinonorleucine, dihydroxylysinonorleucine, and lysinonorleucine) in collagens from sternal cartilage and tendon in the scoliotic line than in the isogenic line. However, by week 3 and at weeks 5 or 7 values were similar in both groups. The amounts of hydroxypyridinium in vertebral bone and intervertebral disc collagen were also similar in both groups of birds. Consequently, differences in collagen crosslinking do not appear to be a persistent developmental defect underlying the expression of scoliosis in the model. However, differences were observed in cartilage proteoglycans and glycosaminoglycans from the scoliotic line that were not present in cartilage from the isogenic line. The average molecular weight of the uronide-containing glycosaminoglycans was 30% less in the scoliotic line than in the isogenic line, i.e., 12,000 compared to 18,000. The size distribution of cartilage proteoglycans from the scoliotic line also differed from that of proteoglycans from the isogenic line.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We have used hydrothermal isometric tension (HIT) techniques in a sheep model to assess collagen crosslink stability and its contribution to the mechanical properties of the ovine thoracic aorta during perinatal and postnatal development. Aortic tissue was studied from fetal sheep, lambs, and adult sheep. Strips of tissue were loaded under isometric tension and heated to a 90 degrees C isotherm which was sustained for 3 hours. The decrease in load at this temperature is associated with collagen peptide bond hydrolysis and chain slippage, and the rate of this decrease is an inverse indicator of collagen crosslinking. The half-time of load decay (t1/2) was computed before and after tissue was treated with NaBH4 which stabilizes immature, reducible crosslinks. We observed a two-fold increase in t1/2 of untreated tissue from the lamb to the adult, indicating that aortic collagen crosslinking increased during postnatal development. Furthermore, the t1/2 of NaBH4-stabilized lamb tissue was similar to that of the untreated adult tissue, suggesting that much of the immature crosslinking in the lamb is stabilized during postnatal development. These observations suggest (a) increased crosslinking occurs during postnatal development and (b) that this increase is largely due to a conversion of immature crosslinks into their mature heat stable form.  相似文献   

4.
The activity and antigenicity of the collagen crosslinking enzyme, lysyl oxidase, and the proportions of reducible crosslink in skin biopsies from Ehlers-Danlos Type V subjects were equivalent to those of control skin. These results reveal that both the potential for crosslinking, and the ability to form reducible crosslinks is present in Ehlers-Danlos syndrome Type V subjects, clearly demonstrating that the defect in this disorder is not due to a defective crosslinking mechanism.  相似文献   

5.
Enzymatically mediated crosslinks and nonenzymatic glycation were quantified in granulation tissue collagen in two models of hyperglycemia, diabetes and galactosemia, that have opposite effects on collagen solubility. The effects of castration, which alters collagen solubility, was also investigated. Collagen from both diabetic and galactosenic rats had significantly increased levels of dihydroxylysinonorleucine (DHLNL), a difunctional reducible crosslink. Galactosemic rats had significantly decreased levels of hydroxypyridinium, a trifunctional product of DHLNL and hydroxylyse, relative to control values, while diabetic rats had normal levels. Values for all other detectable crosslinks in collagen from hyperglycemic rats were indistinguishable from control values. Nonezymatic glycation was increased in both groups of hyperglycemic rats. In diabetic rats, but not in galactosemic rats, nonenzymatic glycation was strongly correlated DHLNL content. Castration had no effect on crosslink content of collagen from diabetic or galactosemic rats. This study demonstrates that (1) collagen crosslinking is abnormal in granulation tissue collagen in both experimental diabetes and galactosemia, (2) these changes are similar to those observed in skin collagen from insulin-dependent diabetic subjects and (3) the crosslinking abnormalities are not correlated with alterations in collagen solubility. We conclude that hyperglycemia-associated increases in immature crosslinks cannot acount for altered collagen solubility, although impaired maturation of such crosslinks may be partially responsible for the lathyrogenic effect of galactosemia.  相似文献   

6.
Enzymatically mediated crosslinks and nonenzymatic glycation were quantified in granulation tissue collagen in two models of hyperglycemia, diabetes and galactosemia, that have opposite effects on collagen solubility. The effects of castration, which alters collagen solubility, was also investigated. Collagen from both diabetic and galactosemic rats had significantly increased levels of dihydroxylysinonorleucine (DHLNL), a difunctional reducible crosslink. Galactosemic rats had significantly decreased levels of hydroxypyridinium, a trifunctional product of DHLNL and hydroxylysine, relative to control values, while diabetic rats had normal levels. Values for all other detectable crosslinks in collagen from hyperglycemic rats were indistinguishable from control values. Nonenzymatic glycation was increased in both groups of hyperglycemic rats. In diabetic rats, but not in galactosemic rats, nonenzymatic glycation was strongly correlated with DHLNL content. Castration had no effect on crosslink content of collagen from diabetic or galactosemic rats. This study demonstrates that (1) collagen crosslinking is abnormal in granulation tissue collagen in both experimental diabetes and galactosemia, (2) these changes are similar to those observed in skin collagen from insulin-dependent diabetic subjects and (3) the crosslinking abnormalities are not correlated with alterations in collagen solubility. We conclude that hyperglycemia-associated increases in immature crosslinks cannot account for altered collagen solubility, although impaired maturation of such crosslinks may be partially responsible for the lathyrogenic effect of galactosemia.  相似文献   

7.
During incubation with physiological buffers at 37°, as well as during in vivo maturation, native collagen fibers display a progressive increase in tensile strength and insolubility. This is paralleled by a progressive loss of reducible, intermolecular crosslinks. The experiments described in this paper indicate that nucleophilic addition of lysine and/or hydroxylysine residues to the electrophilic double bond of the reducible crosslinks transforms them into more stable, non-reducible crosslinks. Indeed, modification of lysine/hydroxylysine residues completely blocks this transformation, while modification of his, arg, glu and asp is without effect. On the basis of these and other experiments, tentative structures are proposed for the stable crosslinks.  相似文献   

8.
The 3-hydroxypyridinium crosslinks of collagen were quantified in tissues of the skeleton and cardiovascular system of normal and copper-deficient rats. The copper-deficient rats used in this study displayed retarded growth, cardiac hypertrophy, anemia, and lowered liver copper concentrations. Quantification of the crosslinks by high performance liquid chromatography indicated that there were lower concentrations of collagen crosslinks in the hearts of copper-deficient animals, a finding that was manifest in both right and left ventricles. This was in contrast to the collagen of the aorta where no alteration in crosslink concentration was observed. The femoral diaphysis of copper-deficient rats also had lower amounts of collagen crosslinks than copper-supplemented animals, whereas crosslinking in the tibial diaphysis and articular cartilage was relatively unaffected by copper deficiency. These results are discussed with reference to the cardiac and skeletal abnormalities that occur in copper-deficient animals.  相似文献   

9.
During in vivo maturation, and also during in vitro incubation with physiological buffers, native collagen fibers display a progressive increase in tensile strength and insolubility. Paralleling these physiologically important changes is a progressive loss of the reducible cross-links which initially join the triple-chained subunits of collagen fibers. Although there is evidence suggesting that the reducible cross-links are gradually transformed into more stable, nonreducible cross-links during maturation, the nature of the transformation process and the structure of the stable "mature" cross-links has remained a mystery. In order to test the possibility that cross-link transformation involves addition of a nucleophilic amino acid residue to the reducible cross-links, histidine, arginine, glutamate, aspartate, lysine, and hydroxylysine residues were chemically modified, and the effect of each modification procedure on the in vitro transformation of reducible cross-links was ascertained. The results of these experiments indicated that destruction of histidine, arginine, glutamate, and aspartate residues has no measurable effect on the rate and extent of reducible cross-link transformation in hard tissue collagens. In contrast, modification of lysine and hydrocylysine residues with a wide variety of specific reagents completely blocks the transformation of reducible cross-links. Removal of the reversible blocking groups from lysine and hydroxlylysine residues then allows the transformation to proceed normally. These results indicate that collagen maturation involves nucleophilic addition of lysine and/or hydroxylysine residues to the electrophilic double bond of the reducible cross-links, yielding derivatives which are not only more stable but also capable of cross-linking more collagen molecules than their reducible precursors.  相似文献   

10.
An HPLC method for quantifying the 3-hydroxypyridinium crosslinks of collagen is described. It can be applied to crude hydrolysates of all types of connective tissue. Mineralized tissues can be hydrolyzed directly and analyzed without interference from the mineral ions. The hydroxylysyl (HP) and lysyl (LP) forms of hydroxypyridinium residue were resolved on a reverse-phase C18 column using a gradient of acetonitrile in water and 0.01 M n-heptafluorobutyric acid as an ion-pairing agent. The crosslinking amino acids were accurately quantified down to 2 PM (1 ng) injected, by detecting their natural fluorescence with a spectrofluorometer. Tissues in which hydroxypyridinium crosslinks were plentiful included all forms of cartilage, bone, dentin, ligament, tendon, fascia, intervertebral disc, lung, gut, cervix, aorta, and vitreous humor. Among normal tissues, LP, the minor form of the crosslink, was present in significant amounts relative to HP only in bone and dentin. Both crosslinks were essentially absent from skin, cornea, rat tail tendon, and basement membranes.  相似文献   

11.
Photo- and chemical crosslinking of proteins have offered various avenues for studying protein structure and protein interactions with biomolecules. Conventional photoactivatable groups generally lack reaction selectivity toward amino acid residues. New photoactivatable groups reacting with selected residues have emerged recently, increasing crosslinking efficiency and facilitating crosslink identification. Traditional chemical crosslinking usually employs highly reactive functional groups, while recent advance has developed latent reactive groups with reactivity triggered by proximity, which reduce spurious crosslinks and improve biocompatibility. The employment of these residue selective chemical functional groups, activated by light or proximity, in small molecule crosslinkers and in genetically encoded unnatural amino acids is summarized. Together with new software development in identifying protein crosslinks, residue selective crosslinking has enhanced the research of elusive protein-protein interactions in vitro, in cell lysate, and in live cells. Residue selective crosslinking is expected to expand to other methods for the investigation of various protein–biomolecule interactions.  相似文献   

12.
Fibrosis is characterized by the excessive deposition of extracellular matrix and crosslinked proteins, in particular collagen and elastin, leading to tissue stiffening and disrupted organ function. Lysyl oxidases are key players during this process, as they initiate collagen crosslinking through the oxidation of the ε‐amino group of lysine or hydroxylysine on collagen side‐chains, which subsequently dimerize to form immature, or trimerize to form mature, collagen crosslinks. The role of LOXL2 in fibrosis and cancer is well documented, however the specific enzymatic function of LOXL2 and LOXL3 during disease is less clear. Herein, we describe the development of PXS‐5153A, a novel mechanism based, fast‐acting, dual LOXL2/LOXL3 inhibitor, which was used to interrogate the role of these enzymes in models of collagen crosslinking and fibrosis. PXS‐5153A dose‐dependently reduced LOXL2‐mediated collagen oxidation and collagen crosslinking in vitro. In two liver fibrosis models, carbon tetrachloride or streptozotocin/high fat diet‐induced, PXS‐5153A reduced disease severity and improved liver function by diminishing collagen content and collagen crosslinks. In myocardial infarction, PXS‐5153A improved cardiac output. Taken together these results demonstrate that, due to their crucial role in collagen crosslinking, inhibition of the enzymatic activities of LOXL2/LOXL3 represents an innovative therapeutic approach for the treatment of fibrosis.  相似文献   

13.
The relative proportions of pyridinoline and deoxypyridinoline in bone showed large species variations, although the total number of pyridinium crosslinks in rat, rabbit and bovine bone collagen was only 25-30% of that found in articular cartilage. Three pyridinium-containing peptides were isolated from cyanogen bromide digests of rat femoral bone and were characterized by their Mr values and amino-acid compositions. The results showed that pyridinoline and its deoxy analogue were equally distributed at two locations stabilizing the 4D stagger through interactions involving both the N- and C-terminal telopeptide regions. Less than stoichiometric amounts of pyridinium crosslinks were present in the peptides, suggesting that the isolated peptides contained additional (unidentified) maturation products of the bifunctional, reducible crosslinks.  相似文献   

14.
The entire primary structure of the collagen X helical region is presented, including identification of the extensive post-ribosomal modifications by amino acid sequencing and mass spectrometry. As in collagen I, a single residue of 3-hydroxyproline was identified, but for collagen X this was located near the N-terminal end of the helix. Lysine residues in collagen X are extensively hydroxylated/glycosylated: at least 11 sites were localized and shown to be fully glycosylated, exclusively as glucosyl-galactosyl derivatives. The lysine-derived crosslinks, dihydroxylysinonorleucine and hydroxylysinonorleucine, were shown to be present in a 3:2 molar ratio primarily within the C-terminal portion of the helix.  相似文献   

15.
Rat lung collagen was labelled in vivo by a single intraperitoneal injection of [3H]lysine at several key timepoints in lung development: days 11 (alveolar proliferation), 26 (start of equilibrated growth), 42 (end of equilibrated growth), and 100 (adult lung structure present). The rates of deposition of labelled hydroxylysine and the difunctional, Schiff base-derived crosslinks hydroxylysinonorleucine (HLNL) and dihydroxylysinonorleucine (DHLNL) were quantified. We also measured total lung content of the trifunctional, mature crosslink hydroxypyridinium (OHP) in these same animals. While the relative rates of accumulation of labelled collagen [3H]hydroxylysine differed by a factor of about 6 at the different times of injection of labelled precursor, quantitative and qualitative patterns of collagen crosslinking were very similar at all of the lung developmental stages studied. Furthermore, there was little or no breakdown of the lung collagen pool as defined by the presence of labelled crosslinks; changes in lung DHLNL content could be completely accounted for by its maturation to OHP, regardless of the age of the rats when injected with the radioactive precursor. We conclude that mature, crosslinked collagen in the lungs of rats, which is obligatorily an extracellular pool, is not being degraded at a measurable rate. Therefore, studies of others that have shown apparent high rates of breakdown of newly synthesized collagen in lungs of whole animals using different methods are probably not reflective of the metabolic fate of total lung collagen, and may indicate that degradation of normal lung collagen occurs predominantly or exclusively intracellularly.  相似文献   

16.
The changes in the content of mature crosslinks with pyridinoline structure and soluble/insoluble collagen ratio in the costal cartilage tissue of human beings aged from 1 month to 57 years were found to be age-dependent. The effect of the pyridinoline crosslink content on the soluble/insoluble collagen ratio in human costal cartilage tissue may constitute no less than 67% of the total influence of the sum of all factors. The pronounced nonlinearity of the studied dependencies points to a possible involvement of a factor(s) other than the pyridinoline crosslink content.  相似文献   

17.
The major reducible crosslinks found in collagen were separated and analyzed on an extended basic amino acid analyzer column. Reaction with ninhydrin allows the direct analysis of collagen crosslinks, including hydroxyaldol-histidine, a naturally occurring, nonreducible crosslink. In addition to known crosslinks, direct amino acid analysis of tissue hydrolysates reveals the presence of an unknown, ninhydrin-reactive component, in both NaB3H4-reduced and unreduced collagenous tissues. Initial fractionation of hydrolysates on a Bio-Gel P-2 gel filtration column provides partial separaton of amino acids and crosslinks and enables more direct analysis of the crosslinks present in the samples, as well as detecting potential new crosslinks. The results also show that, prior to NaB3H4 reduction, substantial amounts of known crosslinks are normally present in bovine skin and bone.  相似文献   

18.
The present study was designed to address a specific question: can we define collagen aging in vivo in terms of alterations in collagen crosslinking? In order to assess the complete spectrum of change throughout life, tissues from rats, monkeys and (where available) humans were examined at ages ranging from fetal to old. Skin and lung were selected in order to include all of the crosslinks derived from lysyl oxidase-generated aldehydes that have been identified thus far, both reducible and nonreducible. Crosslinks analyzed included hydroxylysinonorleucine, dihydroxylysinorleucine, histidinohydroxymerodesmosine, hydroxypyridinium, lysyl pyridinium, and a deoxy analogue of hydroxypyridinium found in skin that differs structurally from lysyl pyridinium. Tissues from both a short-lived species (rats) and a long-lived species (monkeys) were analyzed to test further the hypothesis that changes in crosslinking are linked predominantly to biological age of the animal, rather than temporal aging. We found that biological aging seems to regulate certain predictable changes during the first part of the lifespan: the disappearance postnatally of dihydroxylysinonorleucine in skin, the rapid decrease in difunctional crosslink content in lung and skin during early growth and development, and the gradual rise in hydroxypyridinium and lysyl pyridinium in lung tissue. Changes in crosslinking were far less predictable during the second half of the lifespan. Although hydroxypridinium content continued to rise or reached a plateau in rat and monkey lungs, respectively, it showed a decrease in human lungs. The analogous trifunctional crosslink in skin, the so-called 'pyridinoline analogue', decreased dramatically in both rats and monkeys in later life. Our data suggest that caution must be taken in drawing inferences about human connective tissue aging from experiments performed in short-lived species such as rodents. Furthermore, the finding that there may be fewer total lysyl oxidase-derived crosslinks per collagen molecule in very old animals as compared with young animals suggests that we may need to expand our concepts of collagen crosslinking.  相似文献   

19.
A stable nonreducible trifunctional cross-linking amino acid has been isolated from mature bovine skin collagen fibrils. Previous cross-link peptide isolations and amino acid analyses indicate the compound has properties identical with those of hydroxyaldolhistidine. Its newly proposed structure was verified using fast atom bombardment mass spectrometry, and 1H and 13C nuclear magnetic resonance. The data indicated that the cross-link consists of the prosthetic groups from one residue each of histidine, hydroxylysine, and lysine. The 1H and 13C nuclear magnetic resonance data indicated that imidazole C-2 of histidine is linked to C-6 of norleucine (epsilon-deaminated lysine residue) which in turn is linked to the C-6 amino group of hydroxylysine. Based on the trivial names for other cross-linking residues found in collagen and elastin it was given the name histidinohydroxylysinonorleucine. In vitro incubation studies for up to 24 weeks, in aqueous solution at physiological pH and ionic strength, using 6-month-old bovine embryo skin demonstrated a one-to-one stoichiometric relationship between the disappearance of the labile reducible bifunctional cross-link dehydrohydroxylysinonorleucine and the appearance of histidinohydroxylsinonorleucine. These results can partially explain the previously observed disappearance of dehydrohydroxylysinonorleucine with chronological age.  相似文献   

20.
The changes in crosslink contents in tissues after formalin fixation   总被引:1,自引:0,他引:1  
The aim of this study was to detect crosslinks of collagen and elastin in formalin-fixed tissue, to perform quantification of these crosslinks, and to investigate the effects of formalin fixation on crosslink contents in human yellow ligament and cartilage. Pyridinoline (Pyr) is a stable and nonreducible crosslink of collagen. Pentosidine (Pen) is a senescent crosslink formed between arginine and lysine in matrix proteins, including collagen. Desmosine (Des) and its isomer isodesmosine (Isodes) are crosslinks specifically found in elastin. It is useful to measure crosslink contents of collagen and elastin as a way of investigating the properties of various tissues or their pathological changes. If it is possible to evaluate crosslinks of collagen and elastin in formalin-fixed tissues, we can investigate crosslinks in a wide variety of tissues. We used HPLC to compare the concentrations of Pyr, Pen, Des, and Isodes in the formalin-fixed tissues with their concentrations in the frozen tissues. Pyr and Pen were detected in both the formalin-fixed yellow ligament and the cartilage, and their concentrations were not significantly affected by or related to the duration of formalin fixation. Des and Isodes were detected in the formalin-fixed yellow ligament but in significantly lower amounts compared to the frozen samples. We concluded that crosslinks of collagen were preserved in formalin, but crosslinks of elastin were not preserved in it. The reason for this might be that formalin did not fix elastin tissues sufficiently or it destroyed, masked, or altered elastin crosslinks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号