首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The temperature dependence of the action of polymyxin B on Escherichia coli was studied by using K+, Ca2+, and tetraphenylphosphonium (TPP+) ion-selective electrodes. At room temperature (27 degrees C), Ca2+ was released immediately after addition of polymyxin, while the efflux of K+ occurred after 30 s. The rapid release of Ca2+ was not affected by incubation temperature, while the efflux of K+ was significantly lowered at temperatures below about 25-30 degrees C. The uptake of TPP+ also increased after polymyxin addition. The release of Ca2+ and the uptake of TPP+ supported the disruption of the outer membrane structure reported previously. In experiments with isolated membrane vesicles (the cytoplasmic membrane being exposed), the efflux of K+ was not delayed, but was lowered at temperatures below about 15-20 degrees C. This temperature range differed significantly from that of whole cells, and was interpreted as representing a difference in membrane fluidity between the outer and cytoplasmic membranes. The phase transition temperature of the outer membrane is known to be higher than that of the cytoplasmic membrane; and the temperature dependence of efflux of K+ from membrane vesicles was compatible with the phase transition temperature of liposomes prepared with phospholipids (not containing lipopolysaccharides) extracted from E. coli. Thus, it was speculated that, with whole cells, polymyxin molecules passed through the outer membrane at temperatures above the phase transition and reached the cytoplasmic membrane, increasing its K+ permeability. The mechanism of the permeability change is discussed in terms of deformation of the cytoplasmic membrane structure induced by polymyxin molecules.  相似文献   

2.
A complex containing lipopolysaccharides, phospholipids and proteins is released into the culture medium by Escherichia coli during normal growth. It can be separated from the medium by gelfiltration on Sephadex G-200 or by centrifugation. Electron microscopy revealed that this material is released as vesicles and membrane fragments. To determine the origin of these fragments, they were compared to outer and cytoplasmic membranes with respect to keto-deoxyoctulosonic acid, phospholipid, and protein content, phospholipid composition, fatty acid composition, protein distribution on sodium dodecyl sulfate-polyacrylamide gels, buoyant density, and content of several membrane marker enzymes. The results of this comparison indicate that the membrane fragments found in the culture supernatant of normally growing Escherichia coli consist of practically unmodified outer membrane. Possible mechanisms as to the cause of the release of outer membrane fragments, and its relationship to cell-division, are discussed.  相似文献   

3.
Cells of the gram-negative bacterium Aquaspirillum magnetotacticum, when suspended in buffer and freeze-thawed, produced pinkish orange supernatant fluid. The fluid contained ≤2.0% of total extractable outer membrane component 2-keto-3-deoxyoctonate or of the cytoplasmic membrane marker succinic dehydrogenase. Electrophoretic banding patterns and difference spectra of proteins and hemoproteins released by freeze-thawing cells were distinct from those of membrane-associated substances and similar to those of periplasmic substances obtained by applying conventional fractionation methods to this organism.  相似文献   

4.
Myxococcus coralloides produces two different phosphatases, one acid and the other alkaline. Both enzymes were localized by physical and biochemical techniques. Spheroplasts from M. coralloides released 20–30% of the phosphatase activities. Osmotic shock or treatment with high MgCl2 or LiCl concentrations did not produce a greater release. Cytochemical localization situated the phosphatases in the outer membrane and the periplasmic space. Separation of the cytoplasmic membrane and outer membrane of the cells by sucrose gradient centrifugation showed that phosphatases are located primarily in the outer membrane. membrane.  相似文献   

5.
The major outer membrane lipoprotein (Lpp) of Escherichia coli requires LolA for its release from the cytoplasmic membrane, and LolB for its localization to the outer membrane. We examined the significance of the LolA-LolB system as to the outer membrane localization of other lipoproteins. All lipoproteins possessing an outer membrane-directed signal at the N-terminal second position were efficiently released from the inner membrane in the presence of LolA. Some lipoproteins were released in the absence of externally added LolA, albeit at a slower rate and to a lesser extent. This LolA-independent release was also strictly dependent on the outer membrane sorting signal. A lipoprotein-LolA complex was formed when the release took place in the presence of LolA, whereas lipoproteins released in the absence of LolA existed as heterogeneous complexes, suggesting that the release and the formation of a complex with LolA are distinct events. The release of LolB, an outer membrane lipoprotein functioning as the receptor for a lipoprotein-LolA complex, occurred with a trace amount of LolA, and therefore was extremely efficient. The LolA-dependent release of lipoproteins was found to be crucial for the specific incorporation of lipoproteins into the outer membrane, whereas lipoproteins released in the absence of LolA were nonspecifically and inefficiently incorporated into the membrane. The outer membrane incorporation of lipoproteins including LolB per se was dependent on LolB in the outer membrane. From these results, we conclude that lipoproteins in E. coli generally utilize the LolA-LolB system for efficient release from the inner membrane and specific localization to the outer membrane.  相似文献   

6.
The outer membrane fraction from Rhodopseudomonas sphaeroides was isolated by isopycnic density centrifugation. The purity of this fraction was assayed by several methods. When the outer membrane fraction obtained after French press lysis of cells was compared with the outer membrane fragments released during spheroplast formation, the polypeptide profiles were identical. Detergent solubilization of membrane fractions showed that Triton X-100 nonselectively solubilizes both the cytoplasmic membrane and the outer membrane, whereas Deriphat 160 selectively solubilizes the cytoplasmic membrane. Several outer membrane polypeptides, including the major outer membrane protein, exhibited changes in electrophoretic mobility that depended upon the temperature of solubilization in sodium dodecyl sulfate. Solubilization at room temperature in the presence of ions reproduced the effect of thermal denaturation on the major outer membrane polypeptide.  相似文献   

7.
During apoptosis, cytochrome c is released into the cytosol as the outer membrane of mitochondria becomes permeable, and this acts to trigger caspase activation. The consequences of this release for mitochondrial metabolism are unclear. Using single-cell analysis, we found that when caspase activity is inhibited, mitochondrial outer membrane permeabilization causes a rapid depolarization of mitochondrial transmembrane potential, which recovers to original levels over the next 30-60 min and is then maintained. After outer membrane permeabilization, mitochondria can use cytoplasmic cytochrome c to maintain mitochondrial transmembrane potential and ATP production. Furthermore, both cytochrome c release and apoptosis proceed normally in cells in which mitochondria have been uncoupled. These studies demonstrate that cytochrome c release does not affect the integrity of the mitochondrial inner membrane and that, in the absence of caspase activation, mitochondrial functions can be maintained after the release of cytochrome c.  相似文献   

8.
Peptidoglycan fragments released by Neisseria gonorrhoeae contribute to the inflammation and ciliated cell death associated with gonorrhea and pelvic inflammatory disease. However, little is known about the production and release of these fragments during bacterial growth. Previous studies demonstrated that one lytic transglycosylase, LtgA, was responsible for the production of approximately half of the released peptidoglycan monomers. Systematic mutational analysis of other putative lytic transglycosylase genes identified lytic transglycosylase D (LtgD) as responsible for release of peptidoglycan monomers from gonococci. An ltgA ltgD double mutant was found not to release peptidoglycan monomers and instead released large, soluble peptidoglycan fragments. In pulse-chase experiments, recycled peptidoglycan was not found in cytoplasmic extracts from the ltgA ltgD mutant as it was for the wild-type strain, indicating that generation of anhydro peptidoglycan monomers by lytic transglycosylases facilitates peptidoglycan recycling. The ltgA ltgD double mutant showed no growth abnormalities or cell separation defects, suggesting that these enzymes are involved in pathogenesis but not necessary for normal growth.  相似文献   

9.
A new peptide antibiotic, EM 49, is shown to disrupt the structure of Escherichia coli outer membranes and release outer membrane fragments into the surrounding media. Evidence supporting this conclusion indludes EM 49 stimulated release of outer membrane phospholipids, lipopolysaccharide, and membrane fragments having a phospholipid and polypeptide composition similar to outer membranes. The density of the membrane fragments released by EM 49 was 1.22 g/cm3, which was identical to isolated outer membranes. Approximately 10 to 15% of the E. coli lipopolysaccharide was released upon treatment with EM 49. Both scanning and transmission electron microscopy revealed that the antibiotic caused the formation of numerous protrusions or blebs on the surface of E. coli with apparent release of membrane vesicles from the cells. Direct interaction between EM 49 and outer membranes was demonstrated using outer membranes labeled with the fluorescent dye diphenylhexatriene. Treatment of the fluorescent-labeled outer membranes with EM 49 increased fluorescence intensity and decreased polarization, indicating that the peptide perturbed outer-membrane structure. In addition, strong interactions between EM 49 and purified E. coli phospholipids were detected using the Hummel and Dreyer technique. Association constants between the peptide and phospholipids were approximately 10(5) M-1. A model for the disruptive effect of EM 49 on outer-membrane structure is proposed in which the fatty acid chain of the antibiotic is inserted into the hydrophobic core of the membrane. This orientation would allow the polycationic, peptide portion of the antibiotic to disrupt the antibiotic to disrupt the normal electrostatic interactions between divalent cations and components of the outer membrane. Evidence supporting this conclusion includes specific protection of E. coli from EM 49 by Mg2+ and Ca2+ and inhibition of EM 49 stimulated phospholipid release by these cations. Disruption of the antibiotic to penetrate to the inner membrane, which is probably the primary killing site of EM 49.  相似文献   

10.
Physical properties of Escherichia coli membrane lipids in logarithmic- and stationary-phase cells were studied by measuring the fluorescence polarization change of cis- and trans-parinaric acid as a function of temperature. In aqueous dispersions of phospholipids extracted from cytoplasmic and outer membranes of cells of differing growth phase, a similar polarization increase was observed over the range from physiological temperature to below 0 degrees C, and nearly the same transition ratios were obtained in all samples. The cytoplasmic membrane of both of the growth-phase cells showed a higher polarization ratio above the transition temperatures, compared to that in the aqueous dispersion of phospholipids. The polarization ratios below the transition temperatures of these specimens were lower than the value obtained with the lipids, especially in the stationary-phase specimens. The outer membrane specimens showed a similar polarization change but the transition temperature ranges were considerably higher both in the logarithmic- and the stationary-phase specimens, compared to those in the cytoplasmic membrane specimens. Freeze-thawing of logarithmic-phase cells showed the emergence of activity of certain enzymes which are known to be located in the membranes. The stationary-phase cells did not suffer from any such deleterious effect and maintained a high level of cell viability in a similar treatment. These results indicate that in the stationary-phase cell membranes lipids are in a highly ordered state, and the lipid state causes a membrane stability which results in the high resistance of the cell to freeze-thawing.  相似文献   

11.
Whole cells of Pseudomonas aeruginosa possess rhodanese activity. The enzyme can be released by rapidly resuspending the cells in cold Tris--HCl buffer. Approximately 95% of the rhodanese activity is released by cold shock. Release of the enzyme can be inhibited either by preincubating the cells with Mg2+ or by incorporating Mg2+ into the shocking buffer. The effect of Mg2+ can be reversed by washing the cells twice with buffer prior to cold shock. While rhodanese can be released from P. aeruginosa by cold shock, lactic dehydrogenase, a cytoplasmic enzyme, remains within the cell. Diazo-7-amino-1,3-napthalenedisulfonic acid, a compound which does not penetrate the cytoplasmic membrane, completely inactivated rhodanese and alkaline phosphatase, a periplasmic enzyme, whereas lactic dehydrogenase retained its full activity. These data suggest that rhodanese in P. aeruginosa, like alkaline phosphatase, is located distal to the cytoplasmic membrane in the periplasmic space. Electron micrographs also show that portions of the lipopolysaccharide outer membrane are shed from the cell during cold shock, while cells preincubated with Mg2+ did not release segments of their outer membrane.  相似文献   

12.
D M Kranz  J C Tsang 《Microbios》1976,15(61-62):165-175
The effect of 0.9% sodium chloride solution on the release of alkaline phosphatases from cells of four strains of Serratia marcescens was studied. Saline had a greater action in the releasability of the enzyme on cells of the polymyxin B sensitive strains than those of the polymyxin B resistant strains. SDS-polyacrylamide gel electrophoresis of the released materials showed the presence of proteins and lipopolysaccharide components of the outer membrane as well as enzyme activity in all four strains. Cells from strains harvested under higher temperatures contained more releasable activity in the salin wash fraction than those harvested under refrigerated condition. Active components with molecular weights of 190,000 and 110,000 daltons were either absent or present to a lesser degree in the extracts released by the polymyxin B treatment of the washed cells. However, active components not released by saline were found in the polymyxin B extracts. Contrary to other reports, results of this study clearly showed the ubiquitous nature of alkaline phosphatase in S. marcescens. It appears that their releasability is related to the polymyxin B susceptibility as well as the instability of the outer membrane of the cell envelope.  相似文献   

13.
A heptose-deficient lipopolysaccharide strain of Escherichia coli O8, strain F515, was found to release portions of its outer membrane when cells were exposed to 10 mM citrate buffer (pH 2.75) for 30 min and subsequently exposed to 100 mM tris(hydroxymethyl)aminomethane buffer (pH 8.00). The outer membrane component release was found to be composed of protein, lipopolysaccharide, phospholipid (cardiolipin, phosphatidylethanolamine, and phosphatidylglycerol), and alkaline phosphatase. The outer membrane component was released from the cell envelope in the absence of cell lysis, as no glucose-6-phosphate dehydrogenase activity or succinic dehydrogenase activity was detected. Morphologically, the outer membrane component appeared to consist of laminar fragments and vesicles which had an associated alkaline phosphatase activity.  相似文献   

14.
15.
A mutant of Escherichia coli with a thermosensitive defect, possibly in the outer membrane (omsA mutant), was isolated from E. coli K-12 by mutagenization and selection for thermosensitivity and beta-lactam supersensitivity of growth. The mutant also showed very high sensitivity to other antibiotics, such as macarbomycin, midecamycin, rifampin, and bacitracin. The mutation was recessive to the wild type and was mapped at about 4 min on the E. coli chromosome between fhuA and metD. The mutation caused rapid release into the medium of periplasmic enzymes such as RTEM penicillinase but practically no cytoplasmic enzyme when cells grown at 30 degrees C were transferred to 37 or 42 degrees C. Electron microscopic observations showed many large double-layered vesicles attached to the surface of cells incubated at 42 degrees C. We conclude that the mutant had a mutation that caused a temperature-dependent defect in the outer membrane structure or its assembly (named an oms mutation). The omsA mutant may be useful for production of periplasmic proteins, which it releases into the culture medium on shift up of temperature.  相似文献   

16.
Thermal damage to the outer membrane of Escherichia coli W3110 was studied. When E. coli cells were heated at 55 degrees C in 50 mM Tris-hydrochloride buffer at pH 8.0, surface blebs were formed on the cell envelope, mainly at the septa of dividing cells. Membrane lipids were released from the cells during the heating period, and part of the released lipids formed vesicle-like structures from the membrane. This vesicle fraction had a lipopolysaccharide to phospholipid ratio similar to that of the outer membrane of intact cells, whereas it had a lower content of protein than the isolated outer membrane. After heating bacterial cells at 55 degrees C for 30 min, the resulting leakage from the cells of a periplasmic enzyme, alkaline phosphatase, amounted to 52% of the total activity, whereas no release of a cytoplasmic enzyme, glucose-6-phosphate dehydrogenase, was detected. The results obtained suggest that surface blebs formed by heat treatment almost completely consist of the outer membrane and that the blebs may be gradually released from the cell surface into the heating menstruum to partially form vesicles.  相似文献   

17.
Bid is a Bcl-2 family protein that promotes apoptosis by activating Bax and eliciting mitochondrial outer membrane permeabilization (MOMP). Full-length Bid is cleaved in response to apoptotic stimuli into two fragments, p7 and tBid (p15), that are held together by strong hydrophobic interactions until the complex binds to membranes. The detailed mechanism(s) of fragment separation including tBid binding to membranes and release of the p7 fragment to the cytoplasm remain unclear. Using liposomes or isolated mitochondria with fluorescently labeled proteins at physiological concentrations as in vitro models, we report that the two components of the complex quickly separate upon interaction with a membrane. Once tBid binds to the membrane, it undergoes slow structural rearrangements that result in an equilibrium between two major tBid conformations on the membrane. The conformational change of tBid is a prerequisite for interaction with Bax and is, therefore, a novel step that can be modulated to promote or inhibit MOMP. Using automated high-throughput image analysis in cells, we show that down-regulation of Mtch2 causes a significant delay between tBid and Bax relocalization in cells. We propose that by promoting insertion of tBid via a conformational change at the mitochondrial outer membrane, Mtch2 accelerates tBid-mediated Bax activation and MOMP. Thus the interaction of Mtch2 and tBid is a potential target for therapeutic control of Bid initiated cell death.  相似文献   

18.
Intracellular products, not secreted from the microbial cell, are released by breaking the cell envelope consisting of cytoplasmic membrane and an outer cell wall. Hydrodynamic cavitation has been reported to cause microbial cell disruption. By manipulating the operating variables involved, a wide range of intensity of cavitation can be achieved resulting in a varying extent of disruption. The effect of the process variables including cavitation number, initial cell concentration of the suspension and the number of passes across the cavitation zone on the release of enzymes from various locations of the Brewers' yeast was studied. The release profile of the enzymes studied include alpha-glucosidase (periplasmic), invertase (cell wall bound), alcohol dehydrogenase (ADH; cytoplasmic) and glucose-6-phosphate dehydrogenase (G6PDH; cytoplasmic). An optimum cavitation number Cv of 0.13 for maximum disruption was observed across the range Cv 0.09-0.99. The optimum cell concentration was found to be 0.5% (w/v, wet wt) when varying over the range 0.1%-5%. The sustained effect of cavitation on the yeast cell wall when re-circulating the suspension across the cavitation zone was found to release the cell wall bound enzyme invertase (86%) to a greater extent than the enzymes from other locations of the cell (e.g. periplasmic alpha-glucosidase at 17%). Localised damage to the cell wall could be observed using transmission electron microscopy (TEM) of cells subjected to less intense cavitation conditions. Absence of the release of cytoplasmic enzymes to a significant extent, absence of micronisation as observed by TEM and presence of a lower number of proteins bands in the culture supernatant on SDS-PAGE analysis following hydrodynamic cavitation compared to disruption by high-pressure homogenisation confirmed the selective release offered by hydrodynamic cavitation.  相似文献   

19.
Among 120 strains of gliding bacteria which were screened for restriction endonucleases, 27 were found positive. Additionally, three strains carried enzymes able to release the supercoiled state of closed circular DNA. By using a new rapid method, restriction endonuclease activity was released by stirring about 0.5 g of cells (fresh weight) in a motor-driven glass homogenizer in buffer containing Triton X-101, ethylenediaminetetraacetic acid, and mercaptoethanol. A yield from 60 to 80% of the total activity present in the cells was obtained with minimal destruction of the cells. The enzyme activity in the crude extract was measured semi-quantitatively by digestion of DNA and subsequent separation of the fragments on an agarose slab gel. The method appears to be generally applicable for the extraction of restriction endonucleases from gram-negative bacteria on an analytical scale and in a modified form for large-scale preparation of restriction enzymes.  相似文献   

20.
The cell envelope of a marine pseudomonad as seen in thin section by electron microscopy has the double-membrane structure typical of other gram-negative bacteria. Cells washed with a solution containing Na(+), K(+), and Mg(++) at their concentrations in the growth medium, when suspended briefly in 0.5 m sucrose, lost 13% of their hexosamine in a form nonsedimentable by centrifugation at 73,000 x g. Since the resulting cells in thin section appeared unchanged, it was concluded that the material released was derived from a nonstaining, loosely bound outer layer. This same layer could be removed from the cells by washing with 0.5 m NaCl. A second nonsedimentable fraction was released after successive suspension of the cells in 0.5 m sucrose. Since this material was released only when the outer double-track structure had broken, it was concluded that it arose from a layer immediately underlying the latter layer. The three layers differed in their content of hexosamine and protein. None of the layers released contained muramic or diaminopimelic acid. The cell form remaining was rod shaped and appeared in thin section to be bounded only by its cytoplasmic membrane. This form contained all the muramic and diaminopimelic acid in the cell. Treatment with lysozyme released the muramic and diaminopimelic acid and converted the rod form to a protoplast, indicating that in the rod form (mureinoplast) a thin layer of peptidoglycan is located on the outside surface of the cytoplasmic membrane. Thus, five separate layers have been detected in the cell envelope of this marine pseudomonad.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号