首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrophysiological properties of cultured human melanocytes were investigated using the whole-cell configuration of the patch-clamp technique. Depolarizations to membrane potentials more positive than -30 mV resulted in the rapid development (<1 ms to peak) of an inward current. The maximum peak current was observed at +10 mV and reached an average amplitude of about 270 pA. During the depolarizations, the current inactivated with a time constant of about 2 ms. The current was abolished by the addition of 0.3 μM tetrodotoxin, a blocker of voltage-gated Na+-channels, and disappeared when Na+ was omitted from the extracellular medium. In addition, the melanocytes contain at least two types of outward K+-current. The first type, observed in every cell, was highly sensitive (Ki 1 mM) to the K+-channel blocker TEA, required depolarizations beyond zero to be activated and did not inactivate. The second type was less regularly observed (10% of the cells). This current activated at more negative voltages (–20 mV), was resistant to TEA (20 mM) but was blocked by 2 mM 4-aminopyridine and inactivated rapidly during depolarizations. We conclude that human melanocytes are equipped with voltage-dependent Na+-channels, a delayed rectifying K+-current and a K+-current similar to the A-current in neurones.  相似文献   

2.
Using the whole-cell voltage-clamp technique, early embryonic tetrodotoxin (TTX) and Mn2+-insensitive slow Na+ current was detected in 10-22 week old fetal human heart cells as well as in 1-day-old and young cardiomyopathic hamster myocytes. This slow Na+ current in both heart cell preparations has the same kinetics and pharmacology. This type of slow Na+ current was absent in heart cells of newborn and young normal hamsters and became less present in myocytes of 19 and 22 week old human heart myocytes. Our results demonstrate that the slow Na+ channel does exist in early fetal human life and this type of channel continues to be functional after birth in myocytes of the hereditary cardiomyopathic hamster.  相似文献   

3.
The interaction of a series of pyrethroids with the Na+ channel of mouse neuroblastoma cells has been followed using both an electrophysiological and a 22Na+ influx approach. By themselves, pyrethroids do not stimulate 22Na+ entry through the Na+ channel (or the stimulation they give is too small to be analyzed). However, they stimulate 22Na+ entry when used in conjuction with other toxins specific for the gating system of the channel. These include batrachotoxin, veratridine, dihydrograyanotoxin II or polypeptide toxins like sea anemone and scorpion toxins. This stimulatory effect is fully inhibited by tetrodotoxin with a dissociation constant of 1.6 nM for the tetrodotoxin-receptor complex. Half-maximum saturation of the pyrethroid receptor on the Na+ channel is observed in the micromolar range for the most active pyrethroids, Decis and RU 15525. The synergism observed between the effect of pyrethroids on 22Na+ influx on the one hand, and the effects of sea anemone toxin II, Androctonus scorpion toxin II, batrachotoxin, veratridine and dihydrograyanotoxin II on the other, indicates that the binding component for pyrethroids on the Na+ channel is distinct from the other toxin receptors. It is also distinct from the tetrodotoxin receptor.Some of the pyrethroids used in this study bind to the Na+ channel but are unable to stimulate 22Na+ entry. These inactive compounds behave as antagonists of the active pyrethroids.An electrophysiological approach has shown that pyrethroids by themselves are active on the Na+ channel of mammalian neurones, and essentially confirm the conclusions made from 22Na+ flux measurements.Pyrethroids are also active on C9 cells in which Na+ channels are ‘silent’, that is, not activatable by electrical stimulation. Pyrethroids chemically activate the silent Na+ channel in a manner similar to that with veratridine, batrachotoxin, or polypeptide toxins, which are known to slow down the inactivation process of a functional Na+ channel.  相似文献   

4.
Scorpion toxins, the basic miniprotiens of scorpion venom, stimulated the passive uptake of Na+ and Ca2+ in chick ermbryo heart cells. Half-maximum stimulation was obtained for 20–30 nM Na+ and 40–50 nM Ca2+. Scorpion toxin-activated Na+ and Ca2+ uptakes were fully inhibited by tetrodotoxin, a specific inhibitor of the action potential Na+ ionophore in excitable membranes. Half-maximum inhibition was obtained with the same concentration of tetrodotoxin (10 nm) for both Na+ and Ca2+. Scorpion toxin-stimulated Ca2+ uptake was dependent on extracellular Na+ concentration and was not inhibited by Ca2+ channel blocking drugs which are inactive on heart cell action potential. Thus, in heart cells scorpion toxin affects the passive Ca2+ transport, which is coupled to passive Na+ ionphore. Other results suggest that (1) tetrodotoxin and scorpion toxin bind to different sites of the sarcolemma and (2) binding of scorpion toxin to its specific sites may unmask latent tetrodotoxin — sensitive fast channels.  相似文献   

5.
FMRFamide-gated Na+ channels of molluscan neurones belong to the ENa/Deg family of channels which have diverse functions. FMRFamide (Phe-Met-Arg-Phe-NH2) Na+ channels were detected electrophysiologically in specified neurones of Helix (Helix aspersa) and Helisoma (Helisoma trivolvis), and clones (FaNaCs) subsequently identified. We have now made a study to determine the distribution of mRNA for the clones HaFaNaC (Helix) and HtFaNaC (Helisoma) in the nervous systems of these species using standard in situ hybridization techniques. Immunohistochemical experiments were also made using an HtFaNaC antibody to detect the channel protein in Helisoma neurones. Many neurones in the central ganglia, including those which exhibit the FMRFamide Na+ current, stained for FaNaC-mRNA, suggesting a much wider distribution of the channel than was indicated by the earlier work. An immunoreactive response to the channel antibody was also observed in some Helisoma neurones, such as the giant dopamine neurone of the left pedal ganglion, also shown to possess HtFaNaC-mRNA and to exhibit the FMRFamide Na+ current. Taken together, these experiments suggest that the clones HaFaNaC and HtFaNaC are major, if not the only, subunits of the FMRFamide-gated Na+ channel detected electrophysiologically in the identified neurones of these species. However, fewer neurones in Helisoma reacted with the HtFaNaC-antibody than those which exhibited message for the channel. This discrepancy may be due to a difference in sensitivity of the two techniques, or because not all of the channel mRNA is normally expressed as a membrane protein.  相似文献   

6.
Summary Electrophysiological experiments showed that a tetrodotoxin (TTX) sensitive slowly inactivating Na+ current contributed to the excitability of the sensory neuron (SN1) that innervates the slow receptor muscle in the abdominal muscle receptor (MR1) of crayfish, Procambarus clarkii. Following either tetraethylammonium (TEA) blockage of the K+ delayed rectifier currents or exposure to high temperature, a depolarizing plateau potential was evoked by the slow Na+ current. Ca++ substitution by other divalent cations had no effect on the plateau potential, demonstrating that Ca++ is not involved in plateau potential genesis. Simultaneous intrasomatic and extraaxonic recordings coupled with 4-aminopyridine (4-AP) exposure indicated that the slowly inactivating Na+ current is primarily somatic, and does not contribute significantly to spiking.Abbreviations 4-AP 4-aminopyridine - HAP hyperpolarizing after-potential - MR1 slowly adapting muscle receptor organ - SR1 sensory neuron of MR1 - TEA tetraethylammonium - TTX tetrodotoxin  相似文献   

7.
Some trypsin-like proteases are endowed with Na+-dependent allosteric enhancement of catalytic activity, but this important mechanism has been difficult to engineer in other members of the family. Replacement of 19 amino acids in Streptomyces griseus trypsin targeting the active site and the Na+-binding site were found necessary to generate efficient Na+ activation. Remarkably, this property was linked to the acquisition of a new substrate selectivity profile similar to that of factor Xa, a Na+-activated protease involved in blood coagulation. The X-ray crystal structure of the mutant trypsin solved to 1.05 Å resolution defines the engineered Na+ site and active site loops in unprecedented detail. The results demonstrate that trypsin can be engineered into an efficient allosteric protease, and that Na+ activation is interwoven with substrate selectivity in the trypsin scaffold.  相似文献   

8.
Abstract— The effects of brief exposures of a number of depolarizing agents on 24Na+ influx and on the Na+, K+ and ATP contents of synaptosomes were studied using a Millipore filtration technique to terminate the reaction. When synaptosomes were incubated in normal medium, there was a rapid influx of 24Na+ and a gain in Na’contents; neither the 24Na+ influx nor the Na+ gain were blocked by tetrodotoxin suggesting that this Na+ entry did not involve Na+-channels. Veratridine markedly increased the rate of 24Na+ influx into synaptosomes and also increased the Na+ content and decreased the K+ content of synaptosomes within the first 10s of exposure. The normal ion contents were reversed by 1 min. The effects of veratridine on Na+ influx and on synaptosomal ion contents were prevented by tetrodotoxin and required Na+ in the medium. The ionophores gramicidin D and valinomycin also rapidly reversed the Na+ and K+ contents of synaptosomes, but these effects could not be blocked by tetrodotoxin. The reducing effect of gramicidin D on synaptosomal K+ content required Na’in the medium, whereas valinomycin caused a fall in the K+ content of synaptosomes in a Na+-free medium. Veratridine and gramicidin D, at concentrations known to reverse the synaptosomal ion contents, did not affect synaptosomal ATP levels. In contrast, valinomycin and NaCN caused an abrupt fall in synaptosomal ATP levels. The above findings suggest that veratridine quickly alters synaptosomal Na+ and K+ contents by opening Na +-channels in the presynaptic membrane, and provide direct evidence for the existence of Na+-channels in synaptosomes. In contrast, gramicidin D and valinomycin appear to act independently of Na +-channels, possibly by their ionophoric effects and, in the case of valinomycin, by diminishing synaptosomal ATP contents and hence diminishing Na+-pump activity. The rapid reversals of Na+ and K+ contents by these drugs could affect the resting membrane potentials, Na+-Ca2+ exchange across the synaptosomal membrane, and the release, synthesis and uptake of neurotransmitters by synaptosomes.  相似文献   

9.
During Days 4 to 7 in ovo, beating of embryonic chick hearts becomes progressively more sensitive to inhibition by tetrodotoxin, an inhibitor of fast Na+ channels, and progressively less sensitive to inhibition by D600, an inhibitor of slow Ca2+/Na+ channels. The developmental change in tetrodotoxin sensitivity is not retained in heart cells cultured in monolayer. In contrast, the developmental change in D600 sensitivity is retained. Veratridine-stimulated 22Na+ influx mediated by fast Na+ channels is inhibited by tetrodotoxin (Ki = 1.6 nM) in cells prepared from either 3-day or 12-day embryos. These results suggest that young embryonic hearts contain physiologically inactive Na+ channels. 22Na+ influx mediated by slow Ca2+/Na+ channels is inhibited by D600 with a Ki of 40 nM for cells from 3-day hearts and 8 μM for cells from 12-day hearts. Beating of heart cells in aggregate cultures is also inhibited by D600. Aggregates which have reactivated after inhibition by tetrodotoxin are 10-fold more sensitive to inhibition by D600 than untreated controls. The results suggest that the primary developmental event is a change in slow Ca2+/Na+ channels which reduces their sensitivity to D600 and diminishes their ability to support beating without the activity of the fast Na+ channel.  相似文献   

10.
Ionic bases of action potentials in identified flatworm neurones   总被引:1,自引:0,他引:1  
Summary The ionic bases for generation of action potentials in three types of identified multimodal neurones of the brain ofNotoplana acticola, a polyclad flatworm, were studied. The action potentials were generated spontaneously, in response to water-borne vibrations, or by intracellularly injected current pulses. At least three components comprise the depolarizing excitable phase of the action potentials: (a) a rapidly inactivating TTXsensitive Na+ component (Fig. 2); (b) a Ca++ component that is unmasked by intracellular TEA+ (Figs. 4, 6, 7); (c) a TTX-resistant Na+ component (Fig. 8). Two K+ currents appear to account for the repolarization phase of the action potentials: (a) a rapid K+ current that is blocked by intracellular TEA+ (Figs. 4, 7, 8) and (b) a Ca++ -activated K+ conductance that is blocked by Ca++ and Ba++ (Fig. 6). Ionic mechanisms in the generation of action potentials in the central multimodal neurones ofNotoplana pharmacologically resemble those in higher metazoans.Abbreviations TTX tetrodotoxin - TEA + tetraethylammonium ion - LY lucifer yellow - HRP horseradish peroxidase - BRA bilaterally reciprocally arrayed neurons - SC single contralaterally projecting - SIC single ipsilaterally and contralaterally projecting neurons - HAP hyperpolarizing after potential - AHP after hyperpolarization - EGTA ethyleneglycol-bis-(-amino-ethyl ester) N,N-tetra-acetic acid  相似文献   

11.
The contribution of Na+ ions to the nonsynaptic electrogenesis was studied in the larval muscle fibers of mealworm, Tenebrio molitor, using currentclamp and voltage-clamp techniques. Na-dependent graded responses were generated by depolarizing current stimuli in Ca2+-free solutions. These responses were insensitive to tetrodotoxin and were blocked by Co2+. Large inward-going currents were elicited by step depolarizations in Ca2+-free solutions under voltage-clamp conditions. The inward currents were totally eliminated by removal of Na+ from the bathing solution. These results indicate that the calcium channel of mealworm muscle is permeable to Na+.  相似文献   

12.
The cell line C9 used in this paper has a resting potential of ?50 mV (±10 mV) but is unable to generate an action potential upon electrical stimulation. The cell membrane has receptors for the selectivity filter toxin tetrodotoxin as well as for the gating system toxins, veratridine, scorpion toxin and sea anemone toxin. The Na+ channel which remains silent to electrical stimulation in the absence of toxins can be chemically activated by the gating system toxins. This has been demonstrated by electrophysiological techniques and by 22Na+ flux studies. The electrophysiological approach has shown that the sea anemone toxin is able to induce a spontaneous slow-wave activity inhibited by tetrodotoxin. 22Na+ influx analyses have shown that veratridine and the sea anemone toxin produce an important increase of the initial rate of 22Na+ influx into the C9 cell. The stimulation of 22Na+ entry by these gating system toxins is similar to that found using spiking neuroblastoma cells. Veratridine and the sea anemone toxin on one hand as well as veratridine and the scorpion toxin on the other hand are synergistic in their action to stabilize an open and highly permeable form of the sodium channel. Stimulation of 22Na+ entry into the cell through the sodium channel maintained open by the gating system neurotoxins is completely suppressed by tetrodotoxin.  相似文献   

13.
Summary Whole-cell patch-clamp experiments were performed with neurons cultured from rat dorsal root ganglia (DRG). Two types of Na+ currents were identified on the basis of sensitivity to tetrodotoxin. One type was blocked by 0.1 nm tetrodotoxin, while the other type was insensitive to 10 m tetrodotoxin. The peak amplitude of the tetrodotoxin-insensitive Na+ current gradually decreased after depolarization of the membrane. The steady-state value of the peak amplitude was attained several minutes after the change of holding potential. Such a slow inactivation was not observed in tetrodotoxin-sensitive Na+ current. The slow inactivation of the tetrodotoxin-insensitive Na+ current was kinetically distinct from the ordinary short-time steady-state inactivation. The voltage dependence of the slow inactivation could be described by a sigmoidal function, and its time course had a double-exponential process. A decrease of external pH partially antagonized the slow inactivation, probably through an increased diffusion potential across the membrane. However, the slow inactivation was not due to change in surface negative charges, since a shift of the kinetic parameters along the voltage axis was not observed during the slow inactivation. Due to the slow inactivation, the inactivation curves for the tetrodotoxininsensitive Na+ current were shifted in the negative direction as the prepulse duration was increased. Consequently, the window current activated at potentials close to the resting membrane potential was markedly reduced. Thus, the slow inactivation may be involved in the long-term regulation of the excitability of sensory neurons.We thank Prof. Hirosi Kuriyama for his support and advice and Dr. M. Yoshii for helpful discussions. This study was supported by the Japanese Ministry of Education (Scientific Research 02670090).  相似文献   

14.
The Na+ channel activity (tetrodotoxin sensitive 22Na+ flux induced by veratridine and/or anemone toxin II) was studied in two fractions of brain cell plasma membranes, named A and B, isolated by the method of Gray and Whittaker ((1962) J. Anat. 96, 79–87) from rats 5, 10, 30 and 60 days old. The 22Na+ flux was measured in membrane vesicles formed by the isolated membranes, in the absence of drugs (control), in the presence of veratridine, and in the presence of veratridine plus tetrodotoxin. Fraction A consists primarily of neuronal and glial membranes in rats of 5 and 10 days of age, while in the older rats this fraction becomes enriched in myelin. In Fraction A of 5-day-old and 10-day-old rats, veratridine (25 μM) increases the 22Na+ flux 2.4- and 1.6-fold, respectively, and the increment continues to diminish with age, until it becomes negligible in the 60-day-old rats. Fraction B consists of synaptosomes and membrane vesicles, and at the four ages studied veratridine (25 μM) causes an increment of the 22Na+ flux of about 2.5-fold. Fractions A and B from 10-day-old rats, and Fraction B from 60-day-old rats, which are sensitive to veratridine, also respond to anemone toxin II. When veratridine is used in presence of anemone toxin II (0.5 μM), the K0.5 for veratridine is diminished and the maximum 22Na+ flux is increased. The increments of 22Na+ flux caused by veratridine and/or anemone toxin II in Fractions A and B are blocked by tetrodotoxin (K0.5 approx. 5 nM). Fraction A from 60-day-old rats could be subfractionated by osmotic shock and sucrose gradient centrifugation to obtain three subfractions, two of which are enriched in axolemma and display Na+ chennel activity. The other subfraction is enriched in myelin and shows no Na+ channel actiivty. The plasma membrane preparations from young rats (up to 10 days) are devoid of myelin and are useful for studies of Na+ channel activity.  相似文献   

15.
The effect of thiamine deficiency on energy-requiring processes in brain tissue was studied by comparing cortical slices prepared from control and pyrithiamine-treated rats. Veratridine was used to stimulate energy metabolism by opening voltage-sensitive sodium channels resulting in enchanced Na+/K+ pumping; subsequent tetrodotoxin addition closed the sodium channels. Pyrithiamine-treated slices showed both lower basal and veratridine-stimulated respiration rates compared to control slices. K+ was released from the tissue upon addition of veratridine and was taken up again upon addition of tetrodotoxin. The movement of K+ was monitored directly with a K+-sensitive electrode as well as by measuring the rubidium diffusion potential. There was no difference between control and pyrithiamine-treated slices in K+ fluxes in response to veratridine and tetrodotoxin. The extent of reuptake of K+ upon tetrodotoxin addition was inversely related to the extracellular Ca2+ concentration and to the incubation temperature. Veratridine resulted in a marked decrease in tissue levels of ATP and creatine phosphate; these levels remained quite low upon tetrodotoxin addition. Despite the different respiration rates, control and pyrithiamine-treated slices showed the same ATP and creatine phosphate levels in response to veratridine and tetrodotoxin.  相似文献   

16.
Squid olfactory receptor neurons are primary bipolar sensory neurons capable of transducing water-born odorant signals into electrical impulses that are transmitted to the brain. In this study, we have identified and characterized the macroscopic properties of voltage-gated Na+ channels in olfactory receptor neurons from the squid Lolliguncula brevis. Using whole-cell voltage-clamp techniques, we found that the voltage-gated Na+ channels were tetrodotoxin sensitive and had current densities ranging from 5 to 169 pA pF−1. Analyses of the voltage dependence and kinetics revealed interesting differences from voltage-gated Na+ channels in olfactory receptor neurons from other species; the voltage of half-inactivation was shifted to the right and the voltage of half-activation was shifted to the left such that a “window-current” occurred, where 10–18% of the Na+ channels activated and did not inactivate at potentials near action potential threshold. Our findings suggest that in squid olfactory neurons, a subset of voltage-gated Na+ channels may play a role in generating a pacemaker-type current for setting the tonic levels of electrical activity required for transmission of hyperpolarizing odor responses to the brain. Accepted: 1 October 1998  相似文献   

17.
Cultured human neuroblastoma cell lines were tested for the action potential sodium ionophore utilizing the Li+ ion rather than the 22Na+ ion. The cell lines studied included CHP-134, CHP-100, CHP-126, CHP-212 and LA-N-1. Veratridine-dependent uptake of Li+ and 22Na+ and its inhibition by tetrodotoxin implies the presence of the action-potential sodium ionophore. CHP-165, and undifferentiated tumor and RAJI a lymphoblast had no veratridine-dependent Li+ uptake. Thus, veratridine-dependent Li+ uptake provides a convenient means of assaying human neural cells for the action-potential sodium ionophore without the use of the radioactive Na+ ion.  相似文献   

18.
UV irradiation has multiple effects on mammalian cells, including modification of ion channel function. The present study was undertaken to investigate the response of membrane currents in guinea-pig ventricular myocytes to the type A (355, 380 nm) irradiation commonly used in Ca2+ imaging studies. Myocytes configured for whole-cell voltage clamp were generally held at −80 mV, dialyzed with K+-, Na+-free pipette solution, and bathed with K+-free Tyrode’s solution at 22°C. During experiments that lasted for ≈ 35 min, UVA irradiation caused a progressive increase in slowly-inactivating inward current elicited by 200-ms depolarizations from −80 to −40 mV, but had little effect on background current or on L-type Ca2+ current. Trials with depolarized holding potential, Ca2+ channel blockers, and tetrodotoxin (TTX) established that the current induced by irradiation was late (slowly-inactivating) Na+ current (INa). The amplitude of the late inward current sensitive to 100 μM TTX was increased by 3.5-fold after 20–30 min of irradiation. UVA modulation of late INa may (i) interfere with imaging studies, and (ii) provide a paradigm for investigation of intracellular factors likely to influence slow inactivation of cardiac INa.  相似文献   

19.
Abstract: To investigate the route of axonal Ca2+ entry during anoxia, electron probe x-ray microanalysis was used to measure elemental composition of anoxic tibial nerve myelinated axons after in vitro experimental procedures that modify transaxolemmal Na+ and Ca2+ movements. Perfusion of nerve segments with zero-Na+/Li+-substituted medium and Na+ channel blockade by tetrodotoxin (1 µM) prevented anoxia-induced increases in Na and Ca concentrations of axoplasm and mitochondria. Incubation with a zero-Ca2+/EGTA perfusate impeded axonal and mitochondrial Ca accumulation during anoxia but did not affect characteristic Na and K responses. Inhibition of Na+-Ca2+ exchange with bepridil (50 µM) reduced significantly the Ca content of anoxic axons although mitochondrial Ca remained at anoxic levels. Nifedipine (10 µM), an L-type Ca2+ channel blocker, did not alter anoxia-induced changes in axonal Na, Ca, and K. Exposure of normoxic control nerves to tetrodotoxin, bepridil, or nifedipine did not affect axonal elemental composition, whereas both zero-Ca2+ and zero-Na+ solutions altered normal elemental content characteristically and significantly. The findings of this study suggest that during anoxia, Na+ enters axons via voltage-gated Na+ channels and that subsequent increases in axoplasmic Na+ are coupled functionally to extraaxonal Ca2+ import. Intracellular Na+-dependent, extraaxonal Ca2+ entry is consistent with reverse operation of the axolemmal Na+-Ca2+ exchanger, and we suggest that this mode of Ca2+ influx plays a general role in peripheral nerve axon injury.  相似文献   

20.
Voltage-gated Na+ channels, classically associated with impulse conduction in excitable tissues, are also found in a variety of epithelial cell types where their possible functions are not known so well. We have previously reported expression of a voltage-gated Na+ channel specifically in the highly metastatic Mat-LyLu rat prostate cancer cell line; blockage of the current with tetrodotoxin (TTX) significantly reduced the invasiveness of the cells in vitro, suggesting that the channel may have a functional role in metastasis. The aim of the present study was to characterize this current using the whole-cell patch clamp recording technique, and compare it to Na+ currents found in various other tissues. The inward current of the Mat-LyLu cells was abolished completely, but reversibly, in Na+-free solution, confirming that Na+ was indeed the permeant ion. Activation occurred at −40 mV and currents reached a maximal amplitude at around 6 mV. Boltzmann fits to current activation and steady-state inactivation revealed that the currents were half activated at about −15 mV and half inactivated at −80 mV. Both current inactivation and recovery from inactivation followed a double-exponential time course with fast and slow components. The Na+ currents were highly sensitive to block by TTX (IC50 ≃ 18 nM), whilst 1 μM μ-conotoxin GIIIA mostly had no effect. 100 μM Cd2+ also had no effect on the current, whilst 2.5 mM Cd2+, Mn2+, and Co2+ each caused a depolarizing shift in activation and a reduction in peak conductance of around 20%. In conclusion, the Na+ channel expressed in the highly metastatic Mat-LyLu cell line appeared to have electrophysiological and pharmacological properties of TTX-sensitive channels. Further work is needed, however, to elucidate the exact nature of the channel protein and the mechanism(s) of its involvement in cellular invasiveness. J. Cell. Physiol. 175:50–58, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号