首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Frog (Rana catesbeiana) rod outer segment membrane contains cyclic GMP phosphodiesterase (EC 3.1.4.1). Irradiation of dark-adapted rod outer segment membrane increased the enzyme activity by 5–20-fold in the presence of GTP. The phosphodiesterase in rod outer segment membrane is also activated by mixing a photo-product of 11-cis (regenerated), 9-cis or 7-cis rhodopsin which is stable at 0°C. However, neither opsin in the membrane nor all-trans retinal activates the enzyme. The phosphodiesterase in rod outer segment membrane is also activated by irradiation at ?4°C. Thus, we conclude that the phosphodiesterase is activated by a common photolysis intermediate of these rhodopsin isomers, perhaps before metarhodopsin II decays.  相似文献   

2.
Freeze-fracture electron microscopy was used to follow morphological changes induced by Naja mossambica mossambica venom V4II cardiotoxin in rod outer segment membrane preparations. The extent of the morphological changes depended on the purity of the cardiotoxin. Pure cardiotoxin had no detectable effect upon the preparation, but, when contaminated with venom phospholipase A2, let to a rapid disintegration of the membrane vesicles. With trace amounts (up to about 0.5% of the cardiotoxin) of phospholipase A2, the membrane vesicles disintegrated into smooth lamellae and particles in solution. These two components were separated by centrifugation. The pellet, which showed the presence of smooth lamellae and aggregated particles, was composed of unbleached rhodopsin, initial membrane lipids, lysolipids and cardiotoxin. The supernatant, which showed only the presence of dispersed particles, was composed of unbleached rhodopsin, lysolipids and cardiotoxin. With cardiotoxin containing larger amounts of phospholipase A2 (more than 0.5% of the cardiotoxin), membrane vesicles were disintegrated into large aggregates of amorphous material, composed of bleached rhodopsin, initial membrane lipids, lysolipids and cardiotoxin. These results confirm our previous observation on the release of integral membrane proteins from membrane vesicles by the action of cardiotoxin containing traces of phospholipase A2 (Gulik-Krzywicki, T., Balerna, M., Vincent, J.P. and Lazdunski, M. (1981) Biochim. Biophys. Acta 643, 101–114) and suggest its possible use for isolation and purification of integral membrane proteins.  相似文献   

3.
Thin-layer chromatography was used to separate the major phospholipid headgroup classes of the rod outer segment disk membrane into subfractions which differ markedly in fatty acid composition. At least 18% of the rod outer segment phosphatidylcholine must contain two saturated fatty acids. Furthermore, two unsaturated fatty acids are found in at least 43% of the phosphatidylserine, 24% of the phosphatidylcholine, and 24% of the phosphatidylethanolamine. The unsaturated acids are predominantly polyunsaturated in all cases. A similar separation, but with less resolution, was achieved with silicic acid column chromatography.The temperature dependence of the polarization of the fluorescence of trans-parinaric acid (9,11,13,15-all-trans-octadecatetraenoic acid) showed that the thermal behavior of aqueous dispersions of the phosphatidylcholine subfractions was consistent with their fatty acid compositions.  相似文献   

4.
Using frog rod outer segments, we measured changes of the absorption spectrum during the conversion of rhodopsin to a photosteady-state mixture composed of rhodopsin, isorhodopsin and bathorhodopsin by irradiation with blue light (440 nm) at ? 190°C and during the reversion of bathorhodopsin to a mixture of rhodopsin and isorhodopsin by irradiation with red light (718 nm) at ? 190°C. The reaction kinetics was expressed by one exponential in the former case and by two exponentials in the latter. These results suggest that rhodopsin is composed of a single molecular species, while bathorhodopsin is composed of two kinds of molecular species designated as batho1-rhodopsin and batho2-rhodopsin. On warming the two forms of bathorhodopsin, each bathorhodopsin converted to its own lumirhodopsin, metarhodopsin I and finally a free all-trans-retinal plus opsin. The absorption spectra of the two forms of bathorhodopsin, lumirhodopsin and metarhodopsin I were measured at ? 190°C. We infer that a rhodopsin molecule in the excited state relaxes to either batho1-rhodopsin or batho2-rhodopsin, and then converts to its own intermediates through one of the two parallel pathways.  相似文献   

5.
6.
7.
Freely diffusable lipid spin labels in bovine rod outer segment disc membranes display an apparent two-component ESR spectrum. One component is markedly more immobilized than that found in fluid lipid bilayers, and is attributed to lipid interacting directly with rhodopsin. For the 14-doxyl stearic acid spin label this more immobilized component has an outer splitting of 59 G at 0°C, with a considerable temperature dependence, the effective outer splitting decreasing to 54 G at 24°C. Spin label lipid chains covalently attached to rhodopsin can also display a two-component spectrum in rod outer segment membranes. In unbleached, non-delipidated membranes the 16-doxyl stearoyl maleimide label shows an immobilized component which has an outer splitting of 59 G at 0°C and a considerable temperature dependence. This component which is not resolved at high temperatures (24–35°C), is attributed to the lipid chains interacting directly with the monomeric protein, as with the diffusable labels. In contrast, in rod outer segment membranes which have been either delipidated or extensively bleached, a strongly immobilized component is observed with the 16-doxyl maleimide label at all temperatures. This immobilized component has an outer splitting of 62–64 G at 0°C, with very little temperature dependence (61–62 G at 35°C), and is attributed to protein aggregation.  相似文献   

8.
9.
Sequences of X-ray diffraction patterns were obtained from dehydrating, artificially oriented multilayers of isolated, bovine rod outer segment disks. A direct-phase analysis was applied to highly hydrated specimens to determine sequences of low resolution (approx. 30 Å) electron density profiles of the disks as dehydration proceeded. The profiles were found to evolve smoothly as the multilayer lattice simultaneously shrank and became increasingly ordered. The bilayer profiles were largely invariant under dehydration and the evolution of the diffraction consistent with simple decreases in fluid spacings. The specimens were observed to phase separate into characteristic primary and a secondary lattices when the multi-layer became too dehydrated. The small unit cell size of the secondary lattice was suggestive of a lipid phase. Large changes in the diffraction patterns from phase separated specimens were observed upon bleaching of the specimen. The changes were consistent with a reversible disordering of the primary lattice.  相似文献   

10.
Guanosine 3′,5′-cyclic monophosphate phosphodiesterase (EC 3.1.4.1) in frog rod outer segment prepared by a sucrose stepwise density gradient method was activated by light in the presence of GTP. Rhodopsin in rod outer segment was solubilized with sucrose laurylmonoester and then purified by concavanalin A-Sepharose column. Addition of photo-bleached preparation of the purified rhodopsin to the rod outer segment, which had been prepared by 43% (w/w) sucrose floatation, caused the activation of phosphodiesterase in the dark, while each component of the photo-product eluted from the column (all-trans retinal and opsin) did not. Regenerated rhodopsin prepared from 11-cis retinal and purified opsin activated phosphosdiesterase when it was bleached. From these facts it is suggested that an intermediate or a process of photolysis of rhodopsin causes activation of phosphodiesterase.  相似文献   

11.
The rod photoreceptors of vertebrate retinas contain a cGMP phosphodiesterase (PDE) that is activated by light. The light is absorbed by rhodopsin that activates an intermediate GTP-binding protein; this species then activates the PDE. Photo-excited rhodopsin passes through a series of transient states, and the purpose of this study is to identify the earliest state that interacts with the GTP-binding protein and thus activate the PDE. The majority of evidence points to this state being metarhodopsin II (MII), but PDE activation is seen at low temperatures where the rhodopsin reaction sequence is not expected to pass beyond the metarhodopsin I (MI) stage. Light thresholds for PDE activation have been determined under conditions where little MII is generated, and these are compared with the concentration of MII. The conclusion is that for a criterion threshold of PDE activity, the MII concentration is constant, irrespective of the amount of MI present, which suggests that MI cannot activate the PDE system.  相似文献   

12.
Activation of guanosine 3,5-cyclic monophosphate (cGMP) phosphodiesterase (EC 3.1.4.35.) in frog rod outer segment membrane by rhodopsin and its analogues was investigated. The Schiff-base linkage between opsin and retinal in rhodopsin was not always necessary for the phosphodiesterase activation. The binding of -ionone ring of retinal to a hydrophobic region of opsin was not enough to induce the enzyme activation. A striking photo-activation of the enzyme was induced by photo-isomerization of rhodopsin analogues from cis to trans form. It seems probable that an expanded conformation of opsin around the retinylidene chromophore induced by the cis to trans isomerization may be the trigger for the activation of phosphodiesterase. On the other hand, the phosphodiesterase in frog rod outer segment was activated by warming of bathorhodopsin to –12 C and then incubating it at the same temperature. Thus, metarhodopsin II or an earlier intermediate than metarhodopsin II should be a direct intermediate for the enzyme activation.Based on material presented at the Fifth International Congress of Eye Research, Eindhoven, October 1982  相似文献   

13.
The phase behavior of bovine rod outer segment disk lipids has been investigated using freeze-fracture and 31P nuclear magnetic resonance (NMR) techniques. 31P-NMR spectra of isolated disk membranes were taken as a function of temperature between 25°C and 45°C. The 31P-NMR spectrum characteristic of phospholipid bilayers was observed at all temperatures both in the absence of Ca2+ and in the presence of 10 mM and 50 mM Ca2+. A similar study was performed on lipids isolated from the disk membranes. In the absence of Ca2+ only lamellar phase behavior was observed. In the presence of less than 10 mM Ca2+, however, there was a change in morphology to non-lamellar structures. Removal of the Ca2+ caused the system to reassume the lamellar form.  相似文献   

14.
Rod outer segments (ROS) exhibit high acyltransferase (AT) activity, the preferred substrate of which being lysophosphatidylcholine. To study factors possibly regulating ROS AT activity purified ROS membranes were assayed under conditions under which protein kinase C (PKC), cAMP-dependent protein kinase (PKA), and phosphatases were stimulated or inhibited. PKC activation produced a significant increase in the acylation of phosphatidylethanolamine (PE) and phosphatidylinositol (PI) with oleate, it inhibited phosphatidylcholine (PC) acylation, and phosphatidylserine (PS) and phosphatidic acid (PA) acylation remained unchanged. ROS PKA activation resulted in increased oleate incorporation into PS and PI while the acylation of PC, PE, and PA remained unchanged. Inhibition of ROS PKC or PKA produced, as a general trait, inverse effects with respect to those observed under kinase-stimulatory conditions. ROS phosphatase 2A was inhibited by using okadaic acid, and the changes observed in AT activity are described. These findings suggest that changes in ROS protein phosphorylation produce specific changes in AT activity depending on the phospholipid substrate. The effect of light on AT activity in ROS membranes was also studied and it is reported that acylation in these membranes remains unchanged independent of the illumination condition used.  相似文献   

15.
Summary Guanosine triphosphatase (GTPase) activity was studied histo- and cytochemically in the rod outer segments of the rat retina by means of a newly developed method. Differences in the distribution pattern of the enzyme activity exist within the outer segment: the activity is more intense at the tip of the rod outer segments near the pigment epithelium than in their proximal portion. Ultracytochemically, the new procedure reveals the reaction product of GTPase activity partly (i) on the extradisk membrane side and (ii) on the disk membranes. This result is in contrast to the cytochemical localization of guanylate cyclase (GCLase), an enzyme also localized at the tip of the rod outer segments: GCLase activity is restricted to the intradisk membrane area of the rod outer segments. The functional role of GTPase activity in the outer segments of rods is discussed.The authors dedicate this paper to Professor K. Ogawa  相似文献   

16.
17.
Summary The fine structure of the frog's (Rana esculenta) rod outer segments was investigated by two different methods: most of the experiments were made by means of the freeze-etching technique. The replicas were then examined by electron microscopy (40,000 X).By means of a second method, rod outer segments were negatively stained prior to electron microscopy.Inspection of the electron micrographs revealed that the frog's rod outer segments seem to be built up of three groups of elongated structures interpreted as fibrils (Fäden) arranged regularly at approximately equal distances. The diameters of the fibrils are below 100 Å; they depend on the state of light adaptation and on the chemical preparation before freeze-etching. The fibrils partly cross each other. In addition, there were found four groups of approximately equal distances between the fibrils. The order of magnitude of these spacings is from about 50 Å to a few hundred Å.Negatively stained outer segments also reveal fibrils. The results are expressed in a working hypothesis consisting of two parts. It is supposed first that the core of the rod outer segment represents a three dimensional paracrystalline lattice (Raumgitter) of three different types of fibrils (d 1, d2, d4). The distances between the fibrils are interpreted as the lattice constants (a 1, a2, a3, a4). A unit cell of the lattice would consist of a web (Geflecht) of two different types of fibrils (d 1, d2) and four layers of parallel fibrils of the third type (d 4).It is supposed, secondly, on the basis of a volume-evaluation, that the d1-fibrils contain rhodopsin, those of type d 2 another protein (not rhodopsin), and fibrils of type d 4 lipids.The working hypothesis is supported by experimental findings of other authors (obtained by negative staining and diffraction of light and X-rays).Attempts have been made to relate some electron micrographs of ultrathin sections to those of replicas. (Rosenkranz et al., 1969; Rosenkranz, 1969a.)I wish to thank Prof. Dr. H. Stieve for the interest he took in this work through critical discussions and financial support. I also wish to thank Prof. A. Ruthmann, Ph. D., for introducing me to electron microscopy and for his linguistic aid. That Prof. Dr. K. Mühlethaler, ETH Zürich, and Prof. Dr. F. Schwanitz, KFA Jülich, put their freeze-etching apparatus and electron microscope at my disposal is gratefully acknowledged. The technical assistance of Miss M. Deichmann is also acknowledged.  相似文献   

18.
Rhodopsin in rod outer segment disk membranes was enzymatically modified by erythrocyte transglutaminase, which linked small primary amines to glutamine residues. In order to avoid formation of protein crosslinks, rhodopsin was first reductively methylated to modify its lysines. From 1.9 to 2.5 mol of putrescine, ethanolamine, or dinitrophenylcadaverine were incorporated into rhodopsin by transglutaminase during 16 h reaction time. A maximum of 3.5 mol of [14C]putrescine was incorporated per mole of rhodopsin during 48 h. Essentially all of the rhodopsin sequence containing the putrescine could be removed by limited proteolysis of the membranes by thermolysin. Glutamine residues in positions 236, 237, 238, and 344 were modified to approximately equal extents, as determined by isolation of the cyanogen bromide peptides of modified rhodopsin followed by further subdigestion of the peptides. The modified glutamine residues are located in the helix V-VI (or F1-F2) connecting loop and in the carboxyl-terminal region of rhodopsin.  相似文献   

19.
cGMP-Phosphodiesterase 6 (PDE6) is the central effector enzyme in the phototransduction system of vertebrate photoreceptors. We have recently found that PDE6 accumulates in a detergent-resistant membrane (DRM) fraction in response to excitation of bovine rod phototransduction system. Here, we studied the molecular mechanism of the PDE6 translocation to DRM. Pertussis toxin inhibited the translocation of PDE6. Upon addition of AlF(4)(-) to dark-adapted ROS, PDE6 translocated to DRM along with a minor fraction of the alpha subunit of transducin (T alpha). The addition of an excess of the inhibitory subunit of PDE6 blocked its accumulation in the DRM, but did not block the translocation of the minor fraction of T alpha. These data suggested that the formation of a complex between activated T alpha and PDE6 imparted upon T alpha a high affinity for the DRM. The translocation of PDE6 to the DRM may be involved in the spatiotemporal regulation of its activity on disk membranes.  相似文献   

20.
Vertebrate retinal rod Outer Segments (OS) are the site of visual transduction, an energy demanding process for which mechanisms of ATP supply are still poorly known. Glycolysis or diffusion of either ATP or phosphocreatine from the Inner Segment (IS) does not seem to display adequate timing to supply ATP for phototransduction. We have previously reported data suggesting an aerobic metabolism in OS, which would largely account for the light-stimulated ATP need of the photoreceptor.Here, by oxymetry and biochemical analyses we show that: (i) disks isolated by Ficoll flotation consume O2 in the presence of physiological respiring substrates either in coupled or uncoupled conditions; (ii) OS homogenates contain the whole biochemical machinery for the degradation of glucose, i.e. glycolysis and the tricarboxylic acid cycle (TCA cycle), consistently with the results of our previous proteomic study. Activities of the 8 TCA cycle enzymes in OS were comparable to those in retinal mitochondria-enriched fractions. Disk and OS preparations were subjected to TEM analysis, and while they can be considered free of inner segment contaminants, immunogold with specific antibodies demonstrate the expression therein of both the visual pigment rhodopsin and FoF1-ATP synthase. Finally, double immunofluorescence on mouse retina sections demonstrated a colocalization of some respiratory complex mitochondrial proteins with rhodopsin in rod OS.Data, suggestive of the exportability of the mitochondrial machinery for aerobic metabolism, may shed light on those retinal pathologies related to energy supply impairment in OS and to mutations in TCA enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号