首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initiation of growth of a polyaromatic auxotrophic mutant of Saccharomyces cerevisiae was inhibited by several amino acids, whereas growth of the parent prototroph was unaffected. A comparative investigation of amino acid transport in the two strains employing (14)C-labeled amino acids revealed that the transport of amino acids in S. cerevisiae was mediated by a general transport system responsible for the uptake of all neutral as well as basic amino acids. Both auxotrophic and prototrophic strains exhibited stereospecificity for l-amino acids and a K(m) ranging from 1.5 x 10(-5) to 5.0 x 10(-5) M. Optimal transport activity occurred at pH 5.7. Cycloheximide had no effect on amino acid uptake, indicating that protein synthesis was not a direct requirement for amino acid transport. Regulation of amino acid transport was subject to the concentration of amino acids in the free amino acid pool. Amino acid inhibition of the uptake of the aromatic amino acids by the aromatic auxotroph did not correlate directly with the effect of amino acids on the initiation of growth of the auxotroph but provides a partial explanation of this effect.  相似文献   

2.
Aromatic amino acid transport in Yersinia pestis.   总被引:2,自引:2,他引:0       下载免费PDF全文
The uptake and concentration of aromatic amino acids by Yersinia pestis TJW was investigated using endogenously metabolizing cells. Transport activity did not depend on either protein synthesis or exogenously added energy sources such as glucose. Aromatic amino acids remained as the free, unaltered amino acid in the pool fraction. Phenylalanine and tryptophan transport obeyed Michaelis-Menten-like kinetics with apparent Km values of 6 x 10(-7) to 7.5 x 10(-7) and 2 x 10(-6) M, respectively. Tyrosine transport showed biphasic concentration-dependent kinetics that indicated a diffusion-like process above external tyrosine concentrations of 2 x 10(-6) M. Transport of each aromatic amino acid showed different pH and temperature optima. The pH (7.5 TO8) and temperature (27 C) optima for phenylalanine transport were similar to those for growth. Transport of each aromatic amino acid was characterized by Q10 values of approximately 2. Cross inhibition and exchange experiments between the aromatic amino acids and selected aromatic amino acid analogues revealed the existence of three transport systems: (i) tryptophan specific, (ii) phenylalanine specific with limited transport activity for tyrosine and tryptophan, and (iii) general aromatic system with some specificity for tyrosine. Analogue studies also showed that the minimal stereo and structural features for phenylalanine recognition were: (i) the L isomer, (ii) intact alpha amino and carboxy group, and (iii) unsubstituted aromatic ring. Aromatic amino acid transport was differentially inhibited by various sulfhydryl blocking reagents and energy inhibitors. Phenylalanine and tyrosine transport was inhibited by 2,4-dinitrophenol, potassium cyanide, and sodium azide. Phenylalanine transport showed greater sensitivity to inhibition by sulfhydryl blocking reagents, particularly N-ethylmaleimide, than did tyrosine transport. Tryptophan transport was not inhibited by either sulfhydryl reagents or sodium azide. The results on the selective inhibition of aromatic amino acid transport provide additional evidence for multiple transport systems . These results further suggest both specific mechanisms for carrier-mediated active transport and coupling to metabolic energy.  相似文献   

3.
The transport of the aromatic amino acids into isolated rat liver cells was studied. There was a rapid and substantial binding of the aromatic amino acids, L-alanine and L-leucine to the plasma membrane. This has important consequences for the determination of rates of transport and intracellular concentrations of the amino acids. Inhibition studies with a variety of substrates of various transport systems gave results consistent with aromatic amino acid transport being catalysed by two systems: a 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH)-insensitive aromatic D- and L-amino acid-specific system, and the L-type system (BCH-sensitive). The BCH-insensitive component of transport was Na+-independent and facilitated non-concentrative transport of the aromatic amino acids; it was unaffected by culture of liver cells for 24 h, by 48 h starvation, dexamethasone phosphate or glucagon. Kinetic properties of the BCH-inhibitable component were similar to those previously reported for the L2-system in liver cells. The BCH-insensitive component was a comparatively low-Km low-Vmax. transport system that we suggest is similar to the T-transport system previously seen only in human red blood cells. The results are discussed with reference to the importance of the T- and L-systems in the control of aromatic L-amino acid degradation in the liver.  相似文献   

4.
The pool of phenylalanine, tyrosine, and tryptophan is formed in Escherichia coli K-12 by a general aromatic transport system [Michaelis constant (K(m)) for each amino acid approximately 5 x 10(-7)m] and three further transport systems each specific for a single aromatic amino acid (K(m) for each amino acid approximately 2 x 10(-6)m, reference 3). When the external concentration of a particular aromatic amino acid is saturating for both classes of transport system, the free amino acid pool is supplied with external amino acid by both systems. Blocking the general transport system reduces the pool size by 80 to 90% but does not interfere with the supply of the amino acid to protein synthesis. If, however, the external concentration is too low to saturate specific transport, blocking general transport inhibits the incorporation of external amino acid into protein by about 75%. It is concluded that the amino acids transported by either class of transport system can be used for protein synthesis. Dilution of the external amino acid or deprivation of energy causes efflux of the aromatic pool. These results and rapid exchange observed between pool amino acid and external amino acids indicate that the aromatic pool circulates rapidly between the inside and the outside of the cell. Evidence is presented that this exchange is mediated by the aromatic transport systems. Mutation of aroP (a gene specifying general aromatic transport) inhibits exit and exchange of the small pool generated by specific transport. These findings are discussed and a simple physiological model of aromatic pool formation, and exchange, is proposed.  相似文献   

5.
Formation of aromatic amino acid pools in Escherichia coli K-12   总被引:34,自引:27,他引:7       下载免费PDF全文
Phenylalanine, tyrosine, and tryptophan were taken up into cells of Escherichia coli K-12 by a general aromatic transport system. Apparent Michaelis constants for the three amino acids were 4.7 x 10(-7), 5.7 x 10(-7), and 4.0 x 10(-7)m, respectively. High concentrations (> 0.1 mm) of histidine, leucine, methionine, alanine, cysteine, and aspartic acid also had an affinity for this system. Mutants lacking the general aromatic transport system were resistant to p-fluorophenylalanine, beta-2-thienylalanine, and 5-methyltryptophan. They mapped at a locus, aroP, between leu and pan on the chromosome, being 30% cotransducible with leu and 43% cotransducible with pan. Phenylalanine, tyrosine, and tryptophan were also transported by three specific transport systems. The apparent Michaelis constants of these systems were 2.0 x 10(-6), 2.2 x 10(-6), and 3.0 x 10(-6)m, respectively. An external energy source, such as glucose, was not required for activity of either general or specific aromatic transport systems. Azide and 2,4-dinitrophenol, however, inhibited all aromatic transport, indicating that energy production is necessary. Between 80 and 90% of the trichloroacetic acid-soluble pool formed from a particular exogenous aromatic amino acid was generated by the general aromatic transport system. This contribution was abolished when uptake was inhibited by competition by the other aromatic amino acids or by mutation in aroP. Incorporation of the former amino acid into protein was not affected by the reduction in its pool size, indicating that the general aromatic transport system is not essential for the supply of external aromatic amino acids to protein synthesis.  相似文献   

6.
Threonine content of brain decreases in young rats fed a threonine-limiting, low protein diet containing a supplement of small neutral amino acids (serine, glycine and alanine), which are competitors of threonine transport in other systems (Tews et al., 1977). Threonine transport by brain slices was inhibited more by a complex amino acid mixture resembling plasma from rats fed the small neutral amino acid supplement than by mixtures resembling plasma from control rats or from rats fed a supplement of large neutral amino acids. Greater inhibition was seen with mixtures containing only the small neutral amino acids than with mixtures containing only large neutral amino acids. On an equimolar basis, serine and alanine were the most inhibitory; large neutrals were moderately so; and glycine and lysine were without effect. Threonine transport was also strongly inhibited by α-amino-n-butyric acid and homoserine, less so by α-aminoisobutyric acid, and not at all by GABA. The complex amino acid mixtures strongly inhibited α-aminoisobutyric acid transport by brain or liver slices but, in contrast to effects in brain, the extent of the inhibition in liver was not much affected by altering the composition of the mixture. Tryptophan accumulation by brain slices was effectively inhibited by other large neutral amino acids in physiologically occurring concentrations. Threonine, or a mixture of serine, glycine and alanine only slightly inhibited tryptophan uptake; basic amino acids were without effect and histidine stimulated tryptophan transport slightly. These results support the conclusion that a diet-induced decrease in the concentration in brain of a specific amino acid may be related to increased inhibition of its transport into brain by increases in the concentrations of transport-related, plasma amino acids.  相似文献   

7.
Regulation of 3-deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) synthetase was studied in eight strains of Pseudomonas which synthesize phenazine compounds. Repression studies with individual aromatic amino acids led to the finding that enzyme synthesis was repressed in only one strain, P. aureofaciens B1543p, and by only one amino acid, l-tyrosine. Feedback inhibition by the aromatic amino acids varied from strain to strain in terms of the type of inhibitory control, and the particular acid or acids which inhibited. Prephenate and chorismate, as well as a number of naturally occurring phenazine compounds, inhibited the DAHP synthetase activity to varying degrees.  相似文献   

8.
Transport of L-4-azaleucine in Escherichia coli.   总被引:3,自引:3,他引:0       下载免费PDF全文
The uptake of L-4-azaleucine was examined in Escherichia coli K-12 strains to determine the systems that serve for its accumulation. L-4=Azaleucine in radio-labeled form was synthesized and resolved by the action of hog kidney N-acylamino-acid amidohydrolase (EC 3.5.1.B) on the racemic alpha-N-acetyl derivative of DL-[dimethyl-14C]4-azaleucine. L-4-Azaleucine is taken up in E. coli by energy-dependent processes that are sensitive to changes in the pH and to inhibition by leucine and the aromatic amino acids. Although a single set of kinetic parameters was obtained by kinetic experiments, other evidence indicates that transport systems for both the aromatic and the branched-chain amino acids serve for azaleucine. Azaleucine uptake in strain EO317, with a mutation leading to derepression and constitutive expression of branched-chain amino acid (LIV) transport and binding proteins, was not repressed by growth with leucine as it was in parental strain EO300. Lesions in the aromatic amino acid transport system, aroP, also led to changes in the regulation of azaleucine uptake activity when cells were grown on phenylalanine. Experiments on the specificity of azaleucine uptake and exchange experiments with leucine and phenylalanine support the hypothesis that both LIV and aroP systems transport azaleucine. The ability of external azaleucine to exchange rapidly with intracellular leucine may be an important contributor to azaleucine toxicity. We conclude from these and other studies that at least four other process may affect azaleucine sensitivity: the level of branched-chain amino acid biosynthetic enzymes; the level of leucine, isoleucine, and valine transport systems; the level of the aromatic amino acid, aroP, uptake system; and, possibly, the ability of the cell to racemize D and L amino acids. The relative importance of these processes in azaleucine sensitivity under various conditions is not known precisely.  相似文献   

9.
The characteristics of tryptophan uptake in isolated human placental brush-border membrane vesicles were investigated. Tryptophan uptake in these vesicles was predominantly Na+-independent. Uptake of tryptophan as measured with short incubations occurred exclusively by a carrier-mediated process, but significant binding of this amino acid to the membrane vesicles was observed with longer incubations. The carrier-mediated system obeyed Michaelis-Menten kinetics, with an apparent affinity constant of 12.7 +/- 1.0 microM and a maximal velocity of 91 +/- 5 pmol/15 s per mg of protein. The kinetic constants were similar in the presence and absence of a Na+ gradient. Competition experiments showed that tryptophan uptake was effectively inhibited by many neutral amino acids except proline, hydroxyproline and 2-(methylamino)isobutyric acid. The inhibitory amino acids included aromatic amino acids as well as other system-1-specific amino acids (system 1 refers to the classical L system, according to the most recent nomenclature of amino acid transport systems). The transport system showed very low affinity for D-isomers, was not affected by phloretin or glucose but was inhibited by p-azidophenylalanine and N-ethylmaleimide. The uptake rates were only minimally affected by change in pH over the range 4.5-8.0. Tryptophan uptake markedly responded to trans-stimulation, and the amino acids capable of causing trans-stimulation included all amino acids with system-1-specificity. The patterns of inhibition of uptake of tryptophan and leucine by various amino acids were very similar. We conclude that system t, which is specific for aromatic amino acids, is absent from human placenta and that tryptophan transport in this tissue occurs via system 1, which has very broad specificity.  相似文献   

10.
A cDNA was isolated from rat small intestine by expression cloning which encodes a novel Na+-independent transporter for aromatic amino acids. When expressed in Xenopus oocytes, the encoded protein designated as TAT1 (T-type amino acid transporter 1) exhibited Na+-independent and low-affinity transport of aromatic amino acids such as tryptophan, tyrosine, and phenylalanine (Km values: approximately 5 mm), consistent with the properties of classical amino acid transport system T. TAT1 accepted some variations of aromatic side chains because it interacted with amino acid-related compounds such as l-DOPA and 3-O-methyl-DOPA. Because TAT1 accepted N-methyl- and N-acetyl-derivatives of aromatic amino acids but did not accept their methylesters, it is proposed that TAT1 recognizes amino acid substrates as anions. Consistent with this, TAT1 exhibited sequence similarity (approximately 30% identity at the amino acid level) to H+/monocarboxylate transporters. Distinct from H+/monocarboxylate transporters, however, TAT1 was not coupled with the H+ transport but it mediated an electroneutral facilitated diffusion. TAT1 mRNA was strongly expressed in intestine, placenta, and liver. In rat small intestine TAT1 immunoreactivity was detected in the basolateral membrane of the epithelial cells suggesting its role in the transepithelial transport of aromatic amino acids. The identification of the amino acid transporter with distinct structural and functional characteristics will not only facilitate the expansion of amino acid transporter families but also provide new insights into the mechanisms of substrate recognition of organic solute transporters.  相似文献   

11.
The effects of fatty acids, oleate and palmitate, on gamma-aminobutyric acid (GABA), aspartate, and 3,4- dihydroxyphenylethylamine (dopamine) transport and a variety of other membrane functions were studied in rat brain synaptosomes at a constant lipid-to-protein ratio. Under the conditions utilized oleate, but not palmitate, caused statistically significant changes in synaptosomal functions. Oleic acid inhibited the uptake of the amino acid neurotransmitters and dopamine in a tetrodotoxin-insensitive manner; it also induced the release of neurotransmitters from synaptosomes. The synaptosomal membrane potential decreased and the maximum GABA accumulation ratio [( GABA]i/[GABA]o) declined in parallel. The same depolarizing effect was seen in the presence of 50 microM verapamil or when chloride was replaced by propionate. The rate of respiration was stimulated by the unsaturated fatty acid; neither verapamil (50 microM) nor ouabain (100 microM) was effective in preventing the increase in oxygen consumption. By contrast, ruthenium red substantially decreased the stimulatory effect of oleate. The intrasynaptosomal [Ca2+] was increased by 40%, whereas [Na+]i remained unaltered. It is postulated that under the conditions used the inhibition of neurotransmitter uptake and the decrease in their accumulation caused by oleate result from the depolarization of synaptosomes that arises, at least in part, from increased permeability of the plasma membrane to calcium ions.  相似文献   

12.
The uptake of leucine by rat brain synaptosomes was investigated in a Na+-free medium. It was found that leucine was transported into synaptosomes by 2 uptake processes which were both extremely sensitive to inhibition by 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid. These 2 components were distinguishable from each other by kinetic analysis and by their relative sensitivity to inhibition by selected amino acids.  相似文献   

13.
—Bulk prepared neuronal perikarya, nerve endings and glial cells have been used to study amino acid concentrations and GABA metabolism in vitro. All amino acids were more concentrated in synaptosomes and glial cells than in neuronal perikarya. Cell specificity was found with respect to the relative distribution of some amino acids. Glutamate decarboxylase activity was considerably higher in synaptosomes than in glial cells. The inhibitory effect of amino-oxyacetic acid on glutamate decarboxylase activity differed between synaptosomes and glial cells. γ-Aminobutyric acid-α-ketoglutarate transaminase had the highest activity in the glial cell fraction; the inhibition of amino-oxyacetic acid differed between glial and neuronal material. The metabolism of exogenous GABA just accumulated by a cell showed similar time characteristics in neuronal and glial material.  相似文献   

14.
Insulin stimulates in a dose-dependent manner (concentration range of 0.1 - 10 microM) the synaptosomal uptake of amino acids characterized by high-affinity, Na+-dependent, veratridine-sensitive transport systems. This stimulation is observed in synaptosomes prepared from each of several regions of the adult rat brain. Both the initial rate of amino acid uptake and the overall capacity for amino acid accumulation are increased. Since these transport systems have been associated with the neurotransmitter role of the amino acids, we postulate that insulin can modulate neurotransmission in the rat central nervous system by increasing the efficiency of neuroactive amino acid reuptake.  相似文献   

15.
Transport of Aromatic Amino Acids by Pseudomonas aeruginosa   总被引:9,自引:5,他引:4       下载免费PDF全文
Kinetic studies of the transport of aromatic amino acids by Pseudomonas aeruginosa revealed the existence of two high-affinity transport systems which recognized the three aromatic amino acids. From competition data and studies on the exchange of preformed aromatic amino acid pools, the first transport system was found to be functional with phenylalanine, tyrosine, and tryptophan (in order of decreasing activity), whereas the second system was active with tryptophan, phenylalanine, and tyrosine. The two systems also transported a number of aromatic amino acid analogues but not other amino acids. Mutants defective in each of the two and in both transport systems were isolated and described. When the amino acids were added at low external concentrations to cells growing logarithmically in glucose minimal medium, the tryptophan pool very quickly became saturated. Under identical conditions, phenylalanine and tyrosine each accumulated in the intracellular pool of P. aeruginosa at a concentration which was 10 times greater than that of tryptophan.  相似文献   

16.
ATP and glutamine are the sources of endogenous ammonia in rat brain synaptosomes. The amount of endogenous ammonia formed from exogenous ATP is not sufficient to assure the maximum rate of aspartate and glutamate accumulation in the synaptosomes utilizing pyruvate + malate. Addition of exogenous NH4+ or depolarization of synaptosome plasma membranes with high K+ concentration led to a twofold increase in the rate of accumulation of these amino acids. This indicates that both exogenous and endogenous NH4+ is involved in the synthesis of aspartate and glutamate in nerve terminals. Accumulation of glutamate was stimulated by aminooxyacetate and inhibited by haloperidol which indicates that NH4+ is bound in the reaction catalysed by glutamate dehydrogenase. Endogenous oxaloacetate derived from pyruvate metabolism was the substrate for synthesis of aspartate. Additive inhibition of aspartate accumulation by fluorocitrate and (-) hydroxyacetate shows that, in addition to the tricarboxylic acid cycle, the reaction catalysed by ATP-citrate lyase serves in the synaptosomes as another source of oxaloacetate.  相似文献   

17.
The inhibition of protein synthesis by ethionine reported previously was found to be apparent, and ethionine inhibited only amino acid uptake like other usual amino acids. Even under such strong inhibition of the uptake, the syntheses of protein and DNA remained almost undiminished. The uptake of amino acid mixture by sea urchin embryos in the early cleavage stage was found to be carried out by active transport, since it was temperature-sensitive and was inhibited by 2,4-dinitrophenol. The uptake of an amino acid mixture or of single amino acids, e.g., valine, leucine and phenylalanine, was inhibited nonspecifically by an excess amount of other single amino acids added exogenously. Reflecting the inhibition of amino acid uptake, in vivo incorporation of amino acids into the protein fraction was apparently inhibited by excess amounts of other amino acids. As far as tested, the inhibition seems to be nonspecific and competitive for all amino acid species. The uptakes of leucine and phenylalanine were inhibited mutually by competition, with almost the same Km and Ki.  相似文献   

18.
Mutations in ARO1 and ARO2 genes coding for enzymes involved in the common part of the aromatic amino acid pathway completely block the sporulation of Saccharomyces cerevisiae when in a homozygous state, whereas mutations in all the other genes of the same pathway do not. This effect is not due to the lack of any intermediate metabolite but rather to the accumulation of a metabolite preceding chorismic acid. Shikimic acid or one of its precursors was identified as the possible inhibitor. The presence of the three aromatic amino acids in the sporulation medium restores the ability to undergo meiosis. This seems not to be due to a feedback inhibition of the first enzymes of the pathway but rather to a competition between aromatic amino acids and the inhibitor on a site specific for the meiotic process. The inhibition of sporulation seems to occur at a very early step in meiosis, as indicated by the lack of premeiotic DNA synthesis in aro1 and aro2 mutants.  相似文献   

19.
One-day-old rats were exposed to a gas mixture of 15% CO2-21% O2-64% N2 for a 30-min period. Monoamine synthesis in whole brain was measured during, and at various intervals after, hypercapnia by estimating the accumulation of dihydroxyphenylalanine (DOPA) and 5-hydroxytryptophan (5-HTP) after inhibition of aromatic L-amino-acid decarboxylase with NSD 1015. Endogenous concentrations of tyrosine, dopamine (DA), noradrenaline (NA), tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were measured at the same intervals. Exposure to CO2 induced an increased synthesis of catecholamines and 5-HT. Further, an increase in DA concentration was seen during hypercapnia, while NA and 5-HT were unchanged. After the CO2 exposure the increased in vivo synthesis rates of catecholamines and 5-HT were rapidly normalized, as was the endogenous DA concentration. A slight increase in 5-HT and 5-HIAA concentrations was seen immediately after CO2 exposure. These results indicate that in neonatal animals, hypercapnia induces changes in central monoamine neurons, primarily an increased synthesis. These alterations may be relevant to some physiological changes seen during CO2 exposure, such as the alteration in central respiratory performance.  相似文献   

20.
Abstract: The release of preloaded [14C]neuroactive amino acids (glutamic acid, proline, γ-aminobutyric acid) from rat brain synaptosomes can occur via a time-dependent, Ca2+ -independent process. This Ca2+-independent efflux is increased by compounds that activate Na+ channels (veratridine, scorpion venoms), by the ionophore gramicidin D, and by low concentrations of unsaturated fatty acids (oleic acid and arachidonic acid). Saturated fatty acids have no effect on the efflux process. Neither saturated nor unsaturated fatty acids have an effect on the release of [14C]leucine, an amino acid not known to possess neurotransmitter properties. The increase in the efflux of neuroactive amino acids by oleic and arachidonic acids can also be demonstrated using synaptosomal membrane vesicles. Under conditions in which unsaturated free fatty acids enhance amino acid efflux, no effect on 22Na+ permeability is observed. Since Na+ permeability is not altered by fatty acids, the synaptosomes are not depolarized in their presence and, thus, the Na+ gradient can be assumed to be undisturbed. We conclude that unsaturated fatty acids represent a potentially important class of endogenous modulators of neuroactive amino acid transport in nerve endings and further postulate that their action is the result of an uncoupling of amino acid transport from the synaptosomal Na+ gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号