首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The membrane composition and lipid physical properties have been systematically investigated as a function of fatty acid composition for a series of Acholeplasma laidlawii B membrane preparations made homogeneous in various fatty acids by growing cells on single fatty acids and avidin, a potent fatty acid synthetic inhibitor. The membrane protein molecular weight distribution is essentially constant as a function of fatty acid composition, but the lipid/protein ratio varies over a 2-fold range when different fatty acid growth supplements are used. The membrane lipid head-group composition varies somewhat under these conditions, particularly in the ratio of the two major neutral glycolipids. Differential thermal analytical investigations of the thermotropic phase transitions of various combinations of membrane components suggest that these compositional changes are unlikely to result in qualitative changes in the nature of lipid-protein or lipid-lipid interactions, although lesser changes of a quantitative nature probably do occur. The total lipids of membranes made homogeneous in their lipid fatty acyl chain composition exhibit sharper than normal gel-to-liquid-crystalline phase transitions of which midpoint temperatures correlate very well with the phase transition temperatures of synthetic hydrated phosphatidylcholines with like acyl chains. Our results indicate that using avidin and suitable fatty acids to grow A. laidlawii B, it is possible to manipulate the position and the sharpness of the membrane lipid phase transition widely and independently without causing major modifications in other aspects of the membrane composition. This fact makes the fatty acid-homogeneous A. laidlawii B membrane a very useful biological membrane preparation in which to study lipid physical properties and their functional consequences.  相似文献   

2.
Acholeplasma laidlawii cells were grown in cholesterol-enriched medium and exposed continuously to either air (control), 4.0 vol.% halothane in air at 1 atm pressure (4% atm halothane), or 80% cyclopropane in oxygen for 24 h at 37°C. Cells grown in the presence of 4% atm halothane or 80% cyclopropane had approximately twice as much membrane cholesterol content/mg protein as the control cells. Cells grown in an anesthetic environment also tended to have a higher membrane cholesterol/phospholipid molar ratio compared to control cells. Membranes isolated from halothane-exposed cells grown in a cholesterol-enriched medium were more ordered at 37°C (measurements were made with no anesthetic present) than membranes from control cells grown in an identically enriched medium. This difference in membrane physical state between control and anesthetic-exposed cells decreased as the temperature decreased, and disappeared at approx. 23°C. Continuous exposure of A. laidlawii to 4% atm halothane or 80% cyclopropane for 24 h did not markedly affect membrane fatty acid composition, either in cells grown on an unsupplemented medium or in cells grown in a medium enriched in myristic, palmitic or stearic acids. These results further support the hypothesis that an increased membrane cholesterol content may play a role in the tolerance or dependence that develops after chronic exposure to anesthetic agents.  相似文献   

3.
The dielectric dispersion in the MHz range of the zwitterionic dipolar phosphocholine head groups has been measured from 0–70°C for various mixtures of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol. The abrupt change in the derived relaxation frequency f2 observed for pure DPPC at the gel-to-liquid crystalline phase transition at 42°C reduces to a more gradual increase of frequency with temperature as the cholesterol content is increased. In general the presence of cholesterol increases the DPPC head group mobility due to its spacing effect. Below 42°C no sudden changes in f2 are found at 20 or 33 mol% cholesterol, where phase boundaries have been suggested from other methods. Above 42°C, however, a decrease in f2 at cholesterol contents up to 20–30 mol% is found. This is thought to be partly due to an additional restricting effect of the cholesterol on the number of hydrocarbon chain conformations and consequently on the area occupied by the DPPC molecules.  相似文献   

4.
The increase in passive permeability of bilayer membranes near the phase transition temperature is usually explained as caused by either the increase in the amount of ‘boundary lipid’ present in the membrane, or by the increase in lateral compressibility of the membrane. Since both the amount of ‘boundary lipid’ and the lateral compressibility show a similar anomaly near the transition temperature, it is difficult to distinguish experimentally between the two proposed mechanisms.We have examined some details of both of the proposed pictures. The fluid-solid boundary energy, neglected in previous work, has been computed as a function of the domain size. For a single component uncharged lipid bilayer, the results rule out the existence of even loosely defined solid domains in a fluid phase, or vice versa. Thermodynamic fluctuations, which are responsible for anomalous behaviour near the phase transition temperature, are not intense enough to approximate the formation of a domain of the opposite phase.Turning next to lateral compressibility of bilayer membranes we have considered two-component mixtures in the phase separation region. We present the first calculation of lateral compressibility for such systems. The behaviour shows interesting anomalies, which should correlate with existing and future data on transport across membranes.  相似文献   

5.
The interaction between amphotericin B and egg yolk phosphatidylcholine, dimyristoyl (DMPC) and dipalmitoyl phosphatidylcholine (DPPC) phospholipid bilayer vesicles has been monitored by the circular dichroism (CD) spectra of amphotericin B at a 1 · 10?5 M concentration. This method has revealed that amphotericin B may be present in a number of different forms depending on the time elapsed after the mixing, the cholesterol content of the vesicles and the vesicles' physical state. Some striking features of these CD detected species are the following: with egg yolk phosphatidylcholine and a molar cholesterol percentage lower than 25, at 25°C several forms are coexistent, their amount is time-dependent; with dipalmitoyl or dimyristoyl phosphatidylcholines without cholesterol or with a cholesterol molar percentage lower than 25, in the gel state, a form different from the former appears very rapidly; with egg yolk phosphatidylcholine, DMPC and DPPC at a molar cholesterol percentage between 25 and 50 a new form is monitored, identical in the three cases and observed in the liquid crystalline state as well as in the gel state. In the case of the three phospholipids without cholesterol a definite interaction with the antibiotic is observed but with different characteristics according to the nature of lipid.With amphotericin B ‘Fungizone’ the same species are monitored but their appearance is much slower.Two explanations are proposed for the origin of the discrepancies between CD and electronic absorption.  相似文献   

6.
Steady-state fluorescence polarization measurements of 1,6-diphenyl-1,3,5-hexatriene in microsomal lipids from Tetrahymena pyriformis cells grown at 39 or 15°C revealed discrete slope discontinuities in plots of polarization vs. temperature. Two well-defined ‘break points’ were present in the 0–40°C temperature range examined and their precise location was dependent upon the growth temperature of the cells. By mixing phospholipids from cells grown at different temperatures, the break points at 17.5 and 32°C in 39°C-lipid multilayer preparations were shown to correlate with the breaks at 12 and 27°C, respectively, in similar preparations from 15°C-grown cells. The discrete break points were also present, but at slightly different characteristic temperatures, in a phosphatidylcholine fraction and a phosphatidylethanolamine plus 2-aminoethylphosphonolipid fraction purified from the phospholipids and in total microsomal lipids (phospholipids plus the sterol-like triterpenoid, tetrahymanol). However, catalytic hydrogenation of the phospholipid fatty acids or mixing the non-hydrogenated phospholipids with increasing proportions of synthetic dipalmitoyl phosphatidylcholine eliminated the break points. We interpret this discontinuous thermotropic response in microsomal lipids as signalling a lipid phase separation of importance in regulating physiological events.  相似文献   

7.
The low level of endogenous fatty acid synthesis in Acholeplasma laidlawii A strain EF22 was found to be caused by a deficiency of pantetheine in the lipid-depleted growth medium. By supplementing the oleic acid-containing medium with increasing concentrations of pantetheine, saturated fatty acid synthesis was stimulated (having an apparent Km of 5 μM for pantetheine) and the incorporation of endogenously synthesized fatty acids in membrane lipids increased markedly. Furthermore, carotenoid biosynthesis was stimulated. Exogenous palmitic acid was found to inhibit partially the endogenous fatty acid synthesis. A gradual stimulation of fatty acid synthesis was accompanied by a linear increase in the molar proportion between the two dominating membrane glucolipids, monoglucosyldiacylglycerol and diglucosyldiacylglycerol. The total amount of charged membrane lipids decreased upon increasing the degree of fatty acid saturation. These regulations are discussed in terms of membrane stability, and influence of membrane molecular ordering and surface charge density on lipid polar head group synthesis.  相似文献   

8.
The membrane (Na+ + Mg2+)-ATPase of Acholeplasma laidlawii B has been solubilized with a Brij-58/sodium deoxycholate mixture and purified by a combination of gel filtration and ion-exchange chromatography. The purified, partially delipidated ATPase has a specific activity of 195 μmol Pi/mg protein per h, which could be enhanced by 25% upon the addition of exogenous phospholipids. The kinetic properties of the purified enzyme are similar to those of the native membrane-bound enzyme, suggesting that it has not been substantially altered during the purification procedure. The enzyme is an assembly of five polypeptide species and its kinetic properties suggest that it is dissimilar to other known ATPases.  相似文献   

9.
X-ray diffraction studies were made on the multilamellar systems produced by incubation of phospholipid bilayers and the membrane protein, cytochrome b5, or non-membrane proteins (albumin, ovalbumin and β-lactoglobulin A) at pH 8.1 in aqueous 5 mM CaCl2 solutions.Detergent-extracted cytochrome b5 (soluble aggregate) forms two types of lamellar phase with dipalmitoyl phosphatidylcholine bilayers, depending upon the incubation temperature. One type, which has a repeat distance of 114Å, is formed above 34°C, where the binding of cytochrome b5 to the bilayers is hydrophobic. The other type, with a repeat distance of 153 Å, is formed below 34°C, where the binding is electrostatic. It is also suggested that cytochrome b5 is monomeric in the former phase but remains aggregated in the latter phase.When dimyristoyl phosphatidylcholine is used, the boundary temperature for the two types shifts to 12°C. These boundary temperatures coincide with the thermal pretransition points of hydrated dipalmitoyl phosphatidylcholine and dimyristoyl phosphatidylcholine, respectively.Trypsin-treated cytochrome b5 (monomeric) and the three non-membrane proteins exhibit only binding of the electrostatic type to the bilayers, independently of the incubation temperature. The observed repeat distances suggest that in these cases two layers of protein molecules are incorporated between the bilayers.  相似文献   

10.
Erythrocytes of most patients with essential hypertension are distinguished by a typical pattern of temperature-dependence of Li efflux. In the present study we have attempted to characterize this unique temperature response. Measurements of Li efflux into Na medium and Lii-Nao countertransport were conducted simultaneously at finely spaced temperature intervals with increments of 1 to 2°C in the range of 10–40°C. The Arrhenius plots for the efflux in Na medium and for Lii-Nao countertransport in erythrocytes of both normotensives and hypertensives were biphasic with slopes representing apparent energies of activation of about 28 and 8 kcal/mol below and above the ‘break’, respectively. However, the ‘break’ in the Arrhenius plot appeared at distinctly different temperatures: 30°C for normotensives and 20°C for hypertensives. The Li efflux was resolved into N-ethylmaleimide-sensitive and -insensitive components. The sensitive component exhibited a typical biphasic temperature response, with the characteristic ‘break’: at 30°C for normotensives and at 20°C for hypertensives. In contrast, the N-ethylmaleimide-insensitive component was alike in normotensives and hypertensives. It is concluded that: (a) the unique temperature dependence of Li efflux in erythrocytes of hypertensives results from a localized modification in the membrane; (b) the N-ethylmaleimide-sensitive component represents a protein moiety which distinguishes between the erythrocyte membrane of normotensives and hypertensives; (c) the expression of the temperature dependence as judged by the sharp transition in slope (within 1 to 2°C), apparently reflects the cooperative involvement of membrane lipids, associated with the Li efflux system.  相似文献   

11.
Incubations of rat liver inner mitochondrial membranes with liposomes prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol resulted in a considerable enrichment of the cholesterol composition of these membranes. This enrichment is not accompanied by an alteration in the membrane phospholipid content or fatty acid composition. The exogenous cholesterol appears to be integrated into the membrane structure because it has effects consistent with the known properties of this sterol in other natural and artificial membrane systems.Differential scanning calorimetry on both intact membranes and extracted lipids showed that as the ratio of cholesterol to phospholipid was increased, the endotherm corresponding to the lipid phase transition was reduced. Freeze-fracture electron microscopy of the native membranes showed that intramembranous particles are randomly distributed above the phase transition temperature. Below this temperature large smooth areas, believed to correspond to lipid in the gel state from which proteins have been excluded, can be observed. In the presence of high concentrations of cholesterol the fracture faces observed below the lipid transition temperature show no regions of phase segregation, an observation consistent with previous studies using pure lipids where cholesterol was observed to prevent the lipid undergoing a cooperative phase transition.The results are discussed in terms of the observed low concentrations of cholesteorl in normal liver inner mitochondrial membranes and the distribution of cholesterol within the liver cells.  相似文献   

12.
13.
Fluorescence anisotropy and average fluorescence lifetime of diphenylhexatriene were measured in artificial lipid membrane vesicles. Within the temperature range investigated (15–52°C) both parameters correlate and can be used interchangeably to measure membrane fluidity. Fluorescence anisotropy of DPH in membrane vesicles of cilia from the protozoan Paramecium tetraurelia decreased slightly from 5 to 37°C, yet, no phase transition was observed. An estimated flow activation energy of approx. 2 kcal/mol indicated that the ciliary membrane is very rigid and not readily susceptible to environmental stimuli. The ciliary membrane contains two domains of different membrane fluidity as indicated by two distinct fluorescence lifetimes of diphenylhexatriene of 7.9 and 12.4 ns, respectively. Ca2+ flux into ciliary membrane vesicles of Paramecium as measured with the Ca2+ indicator dye arsenazo III showed a nonlinear temperature dependency from 5 to 35°C with a minimum around 15°C and increasing flux rates at higher and lower temperatures. The fraction of vesicles permeable for Ca2+ remained unaffected by temperature. The differences in temperature dependency of Ca2+ conductance and membrane fluidity indicate that the Ca2+ permeability of the ciliary membrane is a membrane property which is not directly affected by the fluidity of its lipid environment.  相似文献   

14.
We have investigated by 2H-NMR the effects of the incorporation of cholesterol on the orientational order of unsaturated lipid acyl chains in the membranes of Acholeplasma laidlawii B. This is the only 2-NMR study to date of the influence of cholesterol in a biological membrane using specifically labelled fatty acids. We observed the characteristics condensing effect of cholesterol on the lipid acyl chain order in the liquid crystalline phase. In terms of the percentage increase in the quadrupolar splittings, the presence of cholesterol has its greatest effect on the methyl end of the labelled oleoyl chains, with a maximum at the C-14 segment. In absolute terms, the perturbation is greatest in the carboxyl end of the chains. The temperature dependence of the 2H spectra for the cholesterol-containing membranes is very similar to that for the cholesterol-free membranes. The broad phase transition of the membrane lipids, which is characteristic for the samples lacking cholesterol, is apparently little affected by the presence of up to 27 mol% cholesterol. In addition, the temperature of onset of the phase transition is not significantly depressed by the presence of cholesterol.  相似文献   

15.
Taka-Aki Ono  Norio Murata 《BBA》1979,545(1):69-76
The photosynthetic electron transport and phosphorylation reactions were measured in the room temperature region in the thylakoid membranes prepared from the blue-green alga, Anacystis nidulans. The Arrhenius plot of the Hill reaction with 2,6-dichlorophenolindophenol showed a distinct break of straight lines at 21°C in the membranes from cells grown at 38°C, and at 12°C in those from cells grown at 28°C. The Arrhenius plot of the Hill reaction with ferricyanide showed a break at 13°C in the membranes from cells grown at 38°C, and at 7°C in those from cells grown at 28°C. On the other hand, the Arrhenius plot of the System I reaction with methylviologen as an electron acceptor and 2,6-dichlorophenolindophenol and ascorbate as an electron donor system was composed of a straight line in the membranes from cells grown at 28°C as well as at 38°C. The Arrhenius plot of the System II reaction measured by the ferricyanide reduction mediated by silicotungstate in the presence of 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea also showed a break at 11°C in the membranes from cells grown at 38°C.The Arrhenius plot of the phosphorylation mediated by N-methylphenazonium methylsulfate showed a break at 21°C in the membranes from cells grown at 38°C and at 12°C in those from cells grown at 28°C. The Arrhenius plot of the phosphorylation mediated by the System I reaction showed a break at 24°C in the membranes from cells grown at 38°C.The characteristic features in the Arrhenius plots of the photosynthetic electron transport and phosphorylation reactions are discussed in terms of the transition of physical phase of the thylakoid membrane lipids.  相似文献   

16.
Sodium-dependent d-glucose uptake into proteoliposomes reconstituted from dimyristoylphosphatidylcholine (DMPC) and hog kidney brush border membrane extract is strongly affected by temperature and the physical state of the membranes. This dependence is defined by a nonlinear Arrhenius plot with a break point at 23°C, a temperature not significantly different from the phase transition temperature of the pure lipid (24°C). The transport process is characterized by different activation energies: 35.1 kcal/mol below and 5.5 kcal/mol above the transition temperature. The shift in the break point for the d-glucose transport activity from 15°C, in the brush border membranes, to 23°C in the reconstituted system leads us to conclude that the lipids surrounding the sodium/d-glucose cotransport system can exchange readily with the bulk lipid used for reconstitution. The results thus provide no evidence for the presence of an annulus of specific lipids surrounding the transport system.  相似文献   

17.
An aqueous dispersion of fully hydrated bovine sphingomyelin was studied using 14N-NMR spectroscopy. Spectra were obtained as a function of temperature over the range 15–80°C, in both the liquid crystal and gel phases. In the liquid crystal phase, powder pattern lineshapes were obtained, whose quadrupolar splitting slowly decreases with increasing temperature. The spectra are increasingly broadened as the temperature is lowered through the phase transition into the gel phase. The linewidths and the second moments of these spectra indicate that the onset of a broad phase transition occurs at approx. 35°C, in agreement with previous calorimetric and 31P-NMR measurements. There is no evidence from the lineshapes for an hexagonal phase in this system, and this conclusion is supported by X-ray diffraction measurements carried out on aqueous dispersions of sphingomyelin in both phases. Assuming that the static nitrogen quadrupole coupling constant is the same for both sphingomyelin and dipalmitoyl-l-α-phosphatidylcholine (DPPC), the decrease observed in the quadrupolar splitting of sphingomyelin compared to that of DPPC indicates that the orientational order of the choline headgroup in liquid crystalline sphingomyelin is not the same as that of its counterpart in DPPC. Preliminary relaxation time measurements of T1 and T2 are presented which suggest that there are also dynamic differences between sphingomyelin and DPPC in the choline headgroup.  相似文献   

18.
The temperatures of the lipid phase transition at which the solid phase disappears were determined by using the X-ray diffraction method in thylakoid membranes of the blue-green alga, Anacystis nidulans. The temperatures were determined as 26 and 16°C for cells grown at 38 and 28°C, respectively.  相似文献   

19.
Previous work has shown that cholesterol levels are modulated in plasma membranes from some but not all tissues of poikilotherms over the course of temperature change. To gain a better understanding of tissue and membrane domain-specific cholesterol function during thermal adaptation we examined effects of cholesterol on membrane physical properties and (Na+,K+)-ATPase in native and cholesterol-enriched basolateral membranes from kidney and intestine of thermally acclimated trout (Oncorhynchus mykiss). Membrane order (as indicated by fluorescence depolarization studies) is increased, whereas its thermal sensitivity is decreased by elevated cholesterol levels in mem branes with relatively low endogenous amounts of cholesterol (intestinal membranes and renal membranes from cold-acclimated fish). Thermal sensitivities of membrane order in kidney are 1.5-fold higher in native compared with cholesterol-enriched basolateral membranes. For renal plasma membranes, (Na+,K+)- ATPase activity is lowest near the transition between native and surpraphysiological cholesterol levels. Endogenous cholesterol levels (relative to phospholipid contents) in intestinal basolateral membranes from cold-acclimated fish vary more than 1.5-fold; membranes with cholesterol/phospholipid molar ratios of 0.3 have activities of (Na+,K+)-ATPase that are twofold lower than native membranes having a ratio of 0.2. These results suggests that maintenance of cholesterol levels in intestinal basolateral membranes during thermal acclimation may ensure sufficient activity of (Na+,K+)-ATPase. Membrane function in kidney, with its high native cholesterol content, is less likely to be affected by temperature change. Accepted: 21 January 1997  相似文献   

20.
Dielectric measurements on planar egg phosphatidylcholine bilayers formed from n-hexadecane solutions indicate that these bilayers contain very low equilibrium concentrations of alkane. In 100 mM KCl the capacitance of the hydrophobic region was found to be 7.0 ±0.2 mF/m2. The addition of cholesterol (at 2:1 mole ratio) was found to affect only marginally the capacitance of the hydrophobic region of such bilayers. Precise measurements of the frequency dependence of the bilayer impedance at very low frequencies now allow the resolution of several electrically distinct substructural regions within the bilayer. Examination of the effects of cholesterol inclusion upon the electrical parameters of these substructural regions indicate that cholesterol spans the acetyl region (i.e. the region containing the glycerol bridge of the phosphatidylcholine molecules in the bilayer) with the hydroxyl group of the cholesterol molecules located inbetween the phosphate group and the glycerol oxygens of the phosphatidylcholine molecules. The capacitance of the hydrophobic region of both phosphatidylcholine and phosphatidylcholine/cholesterol bilayers formed from n-hexadecane solutions was found to decrease slightly as the external KCl concentration was decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号