首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Tissue & cell》2016,48(5):417-424
The CD95-mediated apoptotic pathway is the best characterized of the death receptor-mediated apoptotic pathways. The present study characterized localization and expression of proteins involved in CD95-mediated apoptosis during rat renal development. Kidneys were obtained from embryonic (E) 18 and 20-day-old fetuses and postnatal (P) 1-, 3-, 5-, 7-, 14-, and 21-day-old pups. Immunohistochemical characterization revealed that CD95, FasL and cleaved caspase-3 were strongly expressed in proximal tubules and weakly expressed in distal tubules, but that expression of caspase-8 in distal tubules was stronger than that in proximal tubules. Results from terminal deoxynucleotidyl transferase dUTP nick end labeling assays showed that levels of apoptosis in proximal tubules slowly increased after E18, while those of distal tubules slowly decreased after P5. Western blotting demonstrated that expression of CD95, FasL and FADD was very weak during embryonic development, but rapidly increased at P14. Expression of cleaved caspase-3 was maintained at high levels after P1, while caspase-8 expression gradually reached a peak at P7. Results from this study reveal that the CD95-mediated apoptotic pathway is a key driver of apoptosis in proximal tubules during late postnatal kidney development in rats and suggest that apoptosis in distal tubules is mediated by a different apoptotic pathway.  相似文献   

2.
Summary Kidneys of pigs with various degrees of induced chronic obstructive nephropathy were studied by light- and electron microscopy to assess the structural changes of proximal convoluted tubules with increasing degrees of atrophy. A particular aim was to evaluate the quantitative relationship between proximal tubular and interstitial changes in early tubular atrophy. The kidneys were subjected to varying degrees of ureteral obstruction and were fixed by in vivo vascular perfusion. Quantitative (morphometric) analyses were carried out on montages of electron micrographs representing randomly selected cortical areas and cross sections of individual proximal convoluted tubules. The results demonstrated that ureteral obstruction was followed by significant reductions in proximal tubular epithelium, in volume of proximal tubular mitochondria and in surface area of proximal tubular basolateral membranes. These changes were present even in the absence of any demonstrable increase in cortical interstitium or alterations in the relationships between proximal tubules and peritubular capillaries. With increase in the volume of cortical interstitium the proximal tubules were further simplified in ultra-structure with a reduced number of interdigitating lateral cell processes. Concomitantly there were significant quantitative changes in the spatial associations between tubules and capillaries due to increase in tubulo-capillary distances. The present study shows that ultrastructural changes in proximal tubules during early atrophy precede the volume increase in cortical interstitium associated with chronic obstructive nephropathy. It is suggested that the early tubular changes are due to decreased functional loads, whereas the further progression of tubular atrophy may be a result of impaired nourishment of the tubular cells due to increased interstitial tissue and altered relationships between tubules and capillaries.This work was supported by grant no 12-0727 from the Danish Medical Research Council  相似文献   

3.
Summary Morphological examination of kidney biopsies from patients with glomerulonephritis and hematuria has revealed the presence of erythrocytes within epithelial cells of the proximal tubule. This observation suggested that the proximal tubule might be capable of phagocytizing morphologically intact erythrocytes. To examine this possibility small quantities of heparinized autologous blood were injected into surface convolutions of proximal tubules of the rat kidney using standard micropuncture techniques. At time intervals ranging from 10 min to 120 h after injection, the kidneys were preserved for light and transmission electron microscopy by drip-fixation with a half-strength Karnovsky's glutaraldehyde-formaldehyde fixative.During the initial 6 h there was a flattening of the brush border and accumulation of electron-dense material representing hemoglobin in apical vacuoles and in lysosome-like structures. From 6 to 15 h after micropuncture, there was progressive loss of the brush border and the simultaneous formation of pseudopodia-like evaginations that extended from the apical plasma membrane and surrounded the individual erythrocytes. By 18 and 24 h, erythrocytes were observed in the proximal tubule cells. At later time intervals, edema, lymphocytic infiltration, and fibrosis were observed in the interstitium. In addition, crystalline structures were present in the lumen and the cells of both proximal and distal tubules. These findings suggest that in addition to their well-established ability to pinocytize hemoglobin and other proteins, the cells of the proximal tubule are capable of phagocytizing morphologically intact autologous erythrocytes. It is possible that phagocytosis by the proximal tubule cells may play a role in the disposal of erythrocytes from the tubular fluid in hematuric conditions.  相似文献   

4.
Summary The acidification kinetics of artificial solutions containing buffers of different permeancy were studied in rat proximal tubules by means of stationary microperfusion techniques. Luminal pH changes were measured by antimony microelectrodes and used to calculate net rates of acidification and the approach to steady-state pH levels. For most buffer species, tracer efflux out of the lumen was compared with changes in buffer concentration as derived from calculations based on the Henderson Hasselbalch equation. Steady-state luminal pH was similar for most buffer systems studied. However, secretory hydrogen ion fluxes into the lumen were significantly higher for permeant than for less permeant buffers. The most likely explanation is that permeant buffers behave as open systems maintaining constant low diffusible acid levels in the lumen, whereas impermeant buffers behave as closed systems in which nonionized acid levels are maintained at higher levels. A behavior consistent with this thesis was directly demonstrated for glycodiazine and, to a lesser degree, for DMO. In contrast, phosphate and creatinine behave like buffers in a closed cystem. Characteristics of proximal tubular acidification, of buffer reabsorption, and the effect thereupon of carbonic anhydrase inhibitors are satisfactorily explained by an essential role of (1) hydrogen ion secretion, (2) pK differences, and (3) different permeance of the non-ionized buffer species. However, specific transport mechanisms may, in addition, also contribute to differences in transepithelial buffer movement.  相似文献   

5.
Aprotinin (Ap), a basic polypeptide with a molecular weight of 6500, is filtered at the glomerular membrane without steric restriction and is completely absorbed by the proximal tubule cells. Here Ap is broken down to amino acids, but no breakdown products enter the peritubular circulation during the first 20 min following an intravenous injection. These properties have recently been exploited for measurement of local glomerular filtration rate, based on the assumption that the proximal tubular uptake site is located at the level of the filtering glomerulus. To evaluate that assumption we have now made serial autoradiographs of the rat kidney 20 min after intravenous injection of 2-750 microg of 125I-Aprotinin. With all doses the percent 125I-containing proximal tubular transections were about 50 in the outer and middle cortex and 35 in the inner third. We interpret these numbers to mean that all filtered Ap is taken up in the first two thirds of the proximal convoluted tubular length and does not reach the pars recta. Since the proximal tubule on average is located more superficial than its glomerulus, measurement of local Ap uptake will tend to overestimate glomerular filtration rate in outer layers of the cortex. Quantitative estimate of this "displacement" will be presented in a companion article.  相似文献   

6.
Recently, we cloned two Na+-coupled lactate transporters from mouse kidney, a high-affinity transporter (SMCT1 or slc5a8) and a low-affinity transporter (SMCT2 or slc5a12). Here we report on the cloning and functional characterization of human SMCT2 (SLC5A12) and compare the immunolocalization patterns of slc5a12 and slc5a8 in mouse kidney. The human SMCT2 cDNA codes for a protein consisting of 618 amino acids. When expressed in mammalian cells or Xenopus oocytes, human SMCT2 mediates Na+-coupled transport of lactate, pyruvate and nicotinate. The affinities of the transporter for these substrates are lower than those reported for human SMCT1. Several non-steroidal anti-inflammatory drugs inhibit human SMCT2-mediated nicotinate transport, suggesting that NSAIDs interact with the transporter as they do with human SMCT1. Immunofluorescence microscopy of mouse kidney sections with an antibody specific for SMCT2 shows that the transporter is expressed predominantly in the cortex. Similar studies with an anti-SMCT1 antibody demonstrate that SMCT1 is also expressed mostly in the cortex. Dual-labeling of SMCT1 and SMCT2 with 4F2hc (CD98), a marker for basolateral membrane of proximal tubular cells in the S1 and S2 segments of the nephron, shows that both SMCT1 and SMCT2 are expressed in the apical membrane of the tubular cells. These studies also show that while SMCT2 is broadly expressed along the entire length of the proximal tubule (S1/S2/S3 segments), the expression of SMCT1 is mostly limited to the S3 segment. These studies suggest that the low-affinity transporter SMCT2 initiates lactate absorption in the early parts of the proximal tubule followed by the participation of the high-affinity transporter SMCT1 in the latter parts of the proximal tubule.  相似文献   

7.
Summary Following perfusion fixation of the rat kidney with glutaraldehyde the proximal tubule cells display small apical vacuoles, large apical vacuoles, and apical vacuoles in which a part of the limiting membrane is invaginated into the vacuole. These invaginated apical vacuoles occur more frequently in proximal convoluted tubules than in proximal straight tubules. One tubular cell may contain apical vacuoles of different sizes and stages of invagination, ranging from larger vacuoles with a wide lumen and a small area of invaginated membrane to smaller elements with no apparent lumen and a large area of invaginated membrane. Invaginated apical vacuoles lie either singly in the cytoplasm or close to the membranes of other apical vacuoles, but never in contact with the cell membrane or the membranes of lysosomes, endoplasmic reticulum, Golgi apparatus, mitochondria and peroxisomes.These findings suggest that the invaginated apical vacuoles are not fixation artifacts, but rather develop in living state in cells of the proximal tubule from spherical endocytotic elements.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

8.
Summary The pars descendens (pars recta) of the proximal tubule in the male rat kidney, consisting of the terminal part of the second proximal segment (P2) and of the third proximal segment (P3), was studied with the electron microscope. A technique of tissue orientation and trimming was used which permitted precise topographic definition of the tubules studied in the electron microscope. The terminal descending part of the P2 showed some minor differences from the convoluted part of this segment, and ultrastructure also changed along the course of the P3. In the beginning of the latter segment numerous, shallow interdigitations were observed between adjacent cells; along the course of the segment they decreased in number or disappeared. In the initial part of the P3 mitochondria were more abundant than in the terminal portion of the segment and at least as numerous as in the straight part of the P2. Also, the dense, acid phosphatase-positive cytoplasmic bodies decreased somewhat in size along the course of the P3. The smooth surfaced endoplasmic reticulum reached a higher development in the P3 than anywhere else in the proximal tubules.Investigation supported by grants from: Fonden til Lægevidenskabens Fremme and the Danish Medical Research Council. — The authors are indebted to Mrs. J. Barslund and Mrs. M. Jacobsen for excellent technical assistance.  相似文献   

9.
Nephropathic cystinosis is an autosomal recessive disorder caused by mutations in the CTNS gene [1], which encodes for a transporter (cystinosin) responsible for cystine efflux from lysosomes. In cystinotic renal proximal tubules (RPTs), the defect in cystinosin function results in reduced reabsorption of solutes by apical Na+/solute cotransport systems, including the Na+/phosphate (Pi) cotransport system [2]. However the underlying molecular mechanisms are unknown, given the lack of an appropriate cellular model. To obtain such a model system, we have knocked down cystinosin with siRNA in primary RPT cell cultures. An 80% reduction in cystinosin strongly inhibited Na+ dependent Pi uptake (70%). Although this finding could be explained by a direct effect on transporters as well as by altered energetics (the ATP level dropped by 52%), our results demonstrate a lack of involvement of Na, K-ATPase, and a reduction in the number of NaPi2a transporters.  相似文献   

10.
11.
Characterization of the phosphate transport system across the basolateral membrane of renal proximal tubule has been attempted using isolated proximal tubule cells prepared from chicks. The Pi efflux system is independent of Na+ ions and is not influenced by the nature of the chief anion present in the bathing medium. Pi efflux is not sensitive to DIDS and it is concluded that a generalized anion transporter of band III type is not the chief agent for facilitating Pi exit from the cell across the basolateral membrane. Inhibition of efflux by vanadate is evidence for a specific carrier protein in the membrane. The carrier probably possesses thiol group(s) that are essential for activity. The carrier may effect electroneutral transport of Pi possibly in exchange for OH- ions. The activity of the transport process is not stimulated by depleting the cells of phosphate or inhibited by rearing the chicks on a vitamin D-deficient diet. The system is unlikely to be of great importance for the expression of various regulatory mechanisms that act on the kidney to control the excretion of Pi. The activity declines as the chicks mature however.  相似文献   

12.
Pi depletion of proximal tubule cells isolated from mouse kidney results in a decrease in the cell content of fructose-2,6-bisphosphate and an increase in the rate of gluconeogenesis from pyruvate, malate and succinate. Gluconeogenesis from glycerol is unaffected by Pi depletion. Introduction of fructose-2,6-bisphosphate into the cytosol of ATP-permeabilized cells is accompanied by a fall in gluconeogenesis. The presence of external Ca2+ stimulates gluconeogenesis. When cytosolic Ca2+ is raised to 1.8 microM by permeabilization, the resealed cells still require 2.5 mM Ca2+ in the bathing medium in order to perform gluconeogenesis at the maximum rate. Cells permeabilized in the presence of cAMP show a decreased rate of glucose production. Phorbol ester stimulates gluconeogenesis provided that the phorbol treatment is performed in the absence of Ca2+ ions. It is suggested that Pi depletion may stimulate pyruvate carboxylase activity and facilitate the entry of certain gluconeogenic substrates into mitochondria. It is also proposed that important aspects of the control of renal gluconeogenesis by parathyroid hormone are mediated by protein kinase C.  相似文献   

13.
Saccharomyces cerevisiae uses glucose preferentially to any other carbon source and this preferential use is ensured by control mechanisms triggered by glucose. The consensus is that inactivation of sugar transporters other than glucose transporters is one of these mechanisms. This inactivation is called catabolite inactivation because of its apparent analogy with the catabolite inactivation of gluconeogenic enzymes. Recently, doubt has been cast on the role of the inactivation of the sugar transporters in controlling the use of glucose because this inactivation neither is specifically triggered by glucose nor specifically affects non-glucose sugar transporters. Based on the fact that this inactivation has been almost exclusively investigated using nitrogen-starved cells, it has been proposed that it might be due to the stimulation of the protein turnover that follows nitrogen starvation. The results obtained in this work support this possibility since they show that the presence of a nitrogen source in the medium strongly inhibited the inactivation. It is concluded that, in growing yeast cells, the contribution of the inactivation by glucose of the non-glucose sugar transporters to the preferential use of glucose is much lower than generally believed.  相似文献   

14.
The properties of carnitine transport were studied in rat kidney cortex slices. Tissue: medium concentration gradients of 7.9 for L-[methyl-14C]carnitine were attained after 60-min incubation at 37°C in 40 μM substrate. L- and D-carnitine uptake showed saturability. The concentration curves appeared to consist of (1) a high-affinity component, and (2) a lower affinity site. When corrected for the latter components, the estimated Km for L-carnitine was 90 μM and V = 22nmol/min per ml intracellular fluid; for D-carnitine, Km = 166 μM and V = 15 nmol/min per ml intracellular fluid. The system was stereospecific for L-carnitine. The uptake of L-carnitine was inhibited by (1) D-carnitine, γ-butyrobetaine, and (2) acetyl-L-carnitine. γ-Butyrobetaine and acetyl-L-carnitine were competitive inhibitors of L-carnitine uptake. Carnitine transport was not significantly reduced by choline, betaine, lysine or γ-aminobutyric acid. Carnitine uptake was inhibited by 2,4-dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, N2 atmosphere, KCN, N-ethylmaleimide, low temperature (4°C) and ouabain. Complete replacement of Na+ in the medium by Li+ reduced L- and D-carnitine uptake by 75 and 60%, respectively. Complete replacement of K+ or Ca2+ in the medium also significantly reduces carnitine uptake. Two roles for the carnitine transport system in kidney are proposed: (1) a renal tubule reabsorption system for the steady-state maintenance of plasma carnitine; and (2) maintenance of normal carnitine levels in kidney cells, which is required for fatty acid oxidation.  相似文献   

15.
The transepithelial shunt pathway of newt proximal tubule was examined with glass micro-electrode and electron microscopic methods. The input resistance of the peritubular (basal) membrane and tubular wall were found to be 4.2 ± 0.1 · 106 (mean ± S.E., n = 16) and 11.4 ± 0.2 · 104 (n = 11), respectively. The input resistance of the peritubular membrane was approximately 40-times larger than that of the tubular wall. When the kidneys were perfused in a lanthanum solution, the lanthanum ions were then observed in the junctional complexes and in the intercellular spaces on both the basal and apical sides. The results indicate that the electrical shunt pathway corresponds to the apical junctional complexes and the intercellular spaces, and that the tight junctions are not truly ‘tight’ for the transepithelial movement of small ions in the proximal tubule of the newt kidney.  相似文献   

16.
Summary The morphology of tight junctions of the renal proximal tubule was studied comparing the pars convoluta and pars recta of rat, golden hamster, rabbit, cat, dog and tupaia. Though some interspecies variations were observed, the convoluted portions of the proximal tubules revealed quite uniformly very leaky tight junctions with mainly 1–2 strands.Along the whole proximal tubule of the rabbit kidney including the pars recta only minor differences of the zonulae occludentes were found. By contrast, the tight junctions of the pars recta in other species were much more elaborate, especially in cat and tupaia, having up to 6 strands and an overall depth of more than 150 nm. The implications of these findings are discussed with special regard to the functional differences between the pars convoluta and pars recta of the proximal tubule.This work was supported by the Deutsche Forschungsgemeinschaft  相似文献   

17.
The proximal convoluted tubule is the primary site of renal fluid, electrolyte, and nutrient reabsorption, processes that consume large amounts of adenosine‐5′‐triphosphate. Previous proteomic studies have profiled the adaptions that occur in this segment of the nephron in response to the onset of metabolic acidosis. To extend this analysis, a proteomic workflow was developed to characterize the proteome of the mitochondrial inner membrane of the rat renal proximal convoluted tubule. Separation by LC coupled with analysis by MS/MS (LC‐MS/MS) confidently identified 206 proteins in the combined samples. Further proteomic analysis identified 14 peptides that contain an N‐?‐acetyl‐lysine, seven of which are novel sites. This study provides the first proteomic profile of the mitochondrial inner membrane proteome of this segment of the rat renal nephron. The MS data have been deposited in the ProteomeXchange with the identifier PXD000121.  相似文献   

18.
Nucleotide sugar transporters have long been assumed to be antiporters that exclusively use nucleoside monophosphates as antiport substrates. Here we present evidence indicating that two other types of nucleotide sugar transporters exist that differ in their antiport substrate specificity. Biochemical studies using microsomes derived from Saccharomyces cerevisiae cells expressing either human (h) UGTrel7 or the Drosophila (d) FRC (Fringe connection) transporter revealed that (i) efflux of preloaded UDP-glucuronic acid from the yeast microsomes expressing hUGTrel7 was strongly enhanced by UDP-GlcNAc added in the external medium, but not by UMP or UDP, suggesting that hUGTrel7 may be described as a UDP-sugar/UDP-sugar antiporter, and (ii) addition of UDP-sugars, UDP, or UMP in the external medium stimulated the efflux of preloaded UDP-GlcNAc from the yeast microsomes expressing dFRC to a comparable extent, suggesting that UDP, as well as UMP, may serve as an antiport substrate of dFRC. Antiport of UDP-sugars with these specific substrates was reproduced and definitively confirmed using proteoliposomes reconstituted from solubilized and purified transporters. Possible physiological implications of these observations are discussed.  相似文献   

19.
The effect of dibutyryl cyclic AMP on the transport of α-methyl-d-glucoside and α-aminoisobutyric acid in separated tubules and purified brush border membranes from rabbit kidney was investigated using a rapid filtration procedure. Dibutyryl cyclic AMP stimulated the uptake of α-methyl-d-glucoside and α-aminoisobutyric acid by separated renal tubules in agreement with prior studies utilizing renal slices (Rea, C. and Segal, S. (1973) Biochim. Biophys. Acta 311, 615–624; Weiss, I.W., Morgan, K. and Phang, J.M. (1972) J. Biol. Chem. 247, 760–764). However, in contrast to previous reports, no preincubation of the tissue with dibutyryl cyclic AMP was required for stimulation of transport to be manifest. Dibutyryl cyclic AMP stimulated oxygen consumption by separated tubules suggesting that stimulation of transport may occur by a linkage with renal oxidative metabolism. Dibutyryl cyclic AMP increased the uptake of α-aminoisobutyric acid into purified renal brush border membranes. However the uptakes of α-methyl-d-glucoside, proline, leucine and phosphate into brush border membranes were significantly inhibited.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号