首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of spermidine to a cell-free protein synthesizing system from wheat germ programmed with total brome mosaic virus (BMV) RNA resulted in a several-fold stimulation of amino acid incorporation. Increasing the spermidine concentration in the system led to inhibition of the overall protein synthesis, but the production of longer polypeptides was inhibited much more than that of the coat protein (shorter product). Analysis of the products synthesized under direction of BMV RNA 3 (longer product) and RNA 4 (coat protein) revealed that optimal translation of RNA 3 occurred at a much lower concentration of spermidine than that of RNA 4. Binding experiments with radioactive spermidine and BMV RNAs showed that the saturation of spermidine binding is achieved at a lower concentration of spermidine for RNA 3 than for RNA 4, which may suggest that the structure of RNA 4 is more compact than that of RNA 3. Taking into account the binding obtained at a spermidine concentration corresponding to optimal conditions of protein synthesis, it may be concluded that the optimum translation of these two mRNAs occurs when there is a similar level of RNA charge neutralisation, which implies a similar level of RNA structure stabilisation.  相似文献   

2.
3.
Yeast genetics has proven fruitful in the identification of key players that are involved in translational initiation. However, the exact roles of many translation initiation factors in translation initiation remain unknown. This has been due to lack of a suitablein vitrotranslation system in which the mode of action of certain translation factors can be studied. This report describes the preparation of cell-freeSaccharomyces cerevisiaelysates that can mediate the translation of exogenously added mRNAs. Optimal translation required the absence of viral L-A RNA in the lysate and the presence of both a 5′ cap and a 3′ poly(A) tail on the mRNAs. A cooperative effect of cap and poly(A) tail on translation initiation was observed, a property that has been found to operate in intact yeast cells as well. In addition, the yeast lysates mediated translational initiation through several viral internal ribosome entry sites, demonstrating that the yeast translation apparatus can perform internal initiation. Thus, these lysates may be useful in the biochemical analysis of cap-dependent and cap-independent translation events.  相似文献   

4.
The recognition and rapid degradation of mRNAs with premature translation termination codons by the nonsense-mediated pathway of mRNA decay is an important RNA quality control system in eukaryotes. In mammals, the efficient recognition of these mRNAs is dependent upon exon junction complex proteins deposited on the RNA during pre-mRNA splicing. In yeast, splicing does not play a role in recognition of mRNAs that terminate translation prematurely, raising the possibility that proteins deposited during alternative pre-mRNA processing events such as 3' end formation might contribute to the distinction between normal and premature translation termination. We have utilized mRNAs with a 3' poly(A) tail generated by ribozyme cleavage to demonstrate that the normal process of 3' end cleavage and polyadenylation is not required for mRNA stability or the detection of a premature stop codon. Thus, in yeast, the distinction between normal and premature translation termination events is independent of both splicing and conventional 3' end formation.  相似文献   

5.
6.
7.
Base-pairing of messenger RNA to ribosomal RNA is a mechanism of translation initiation in prokaryotes. Although analogous base-pairing has been suggested to affect the translation of various eukaryotic mRNAs, direct evidence has been lacking. To test such base-pairing, we developed a yeast system that uses ribosomes containing a mouse-yeast hybrid 18S rRNA. Using this system, we demonstrate that a 9-nucleotide element found in the mouse Gtx homeodomain mRNA facilitates translation initiation by base-pairing to 18S rRNA. Various point mutations in the Gtx element and in either the hybrid or wild-type yeast 18S rRNAs confirmed the requirement for an intact complementary match. The presence of the Gtx element in various mRNAs suggests that this element affects the translation of groups of mRNAs. We discuss the possibility that other mRNA elements affect translation by base-pairing to different sites in the 18S rRNA.  相似文献   

8.
The mammalian GTP-binding protein GSPT, whose carboxyl-terminal sequence is homologous to the eukaryotic elongation factor EF1alpha, binds to the polypeptide chain releasing factor eRF1 to function as eRF3 in the translation termination. The amino-terminal domain of GSPT was, however, not required for the binding. Search for other GSPT-binding proteins in yeast two-hybrid screening system resulted in the identification of a cDNA encoding polyadenylate-binding protein (PABP), whose amino terminus is associating with the poly(A) tail of mRNAs presumably for their stabilization. The interaction appeared to be mediated through the carboxyl-terminal domain of PABP and the amino-terminal region of GSPT. Interestingly, multimerization of PABP with poly(A), which is ascribed to the action of its carboxyl-terminal domain, was completely inhibited by the interaction with the amino-terminal domain of GSPT. These results indicate that GSPT/eRF3 may play important roles not only in the termination of protein synthesis but also in the regulation of mRNA stability. Thus, the present study is the first report showing that GSPT/eRF3 carries the translation termination signal to 3'-poly(A) tail ubiquitously present in eukaryotic mRNAs.  相似文献   

9.
Niepel M  Ling J  Gallie DR 《FEBS letters》1999,462(1-2):79-84
The 5'-cap structure and poly(A) tail of eukaryotic mRNAs cooperate to promote translation initiation but whether this functional interaction benefits certain classes of mRNAs has not been investigated. In this study, we investigate whether a structured 5'-leader or 3'-untranslated region (UTR) affects the cap/poly(A) tail interaction. A structured leader reduced the degree to which the 5'-cap promoted translation in plant cells and inhibited translation from capped and uncapped mRNAs equally in yeast. Secondary structure within the 3'-UTR reduced translational efficiency when adjacent to the stop codon but had little effect on the cap/poly(A) tail synergy. The functional interaction between the cap and poly(A) tail was as important for an mRNA with a structured leader or 3'-UTR as it was for an unstructured mRNA in either species, suggesting that these structures can reduce translation without affecting the functional interaction between the cap and poly(A) tail. However, the loss of Xrn1p, the major 5'-->3' exoribonuclease in yeast, abolished cap-dependent translation and the functional interaction between the cap and poly(A) tail, suggesting that the cap/poly(A) tail synergy is of particular importance under conditions of active RNA turnover.  相似文献   

10.
S Fabijanski  M Pellegrini 《Gene》1982,18(3):267-276
A Drosophila genomic DNA library in the vector Charon 4 was screened using cDNA derived from the small (6S-12S) poly(A)+ mRNA of 2-6-h-old Drosophila embryos. This fraction of mRNA is enriched for ribosomal protein-coding sequences. The selected recombinants were hybridized to total mRNA under conditions which allowed for isolation of homologous mRNAs. The mRNA from these RNA/DNA hybrids was eluted and translated in vitro. The translation products were analyzed by one- and two-dimensional electrophoresis with authentic ribosomal proteins as standards. One cloned DNA segment was found to contain a ribosomal protein gene, and a sequence which hybridizes strongly to at least 5 other ribosomal protein mRNAs.  相似文献   

11.
12.
Iron regulatory protein 1 (IRP-1) binding to an iron-responsive element (IRE) located close to the cap structure of mRNAs represses translation by precluding the recruitment of the small ribosomal subunit to these mRNAs. This mechanism is position dependent; reporter mRNAs bearing IREs located further downstream exhibit diminished translational control in transfected mammalian cells. To investigate the underlying mechanism, we have recapitulated this position effect in a rabbit reticulocyte cell-free translation system. We show that the recruitment of the 43S preinitiation complex to the mRNA is unaffected when IRP-1 is bound to a cap-distal IRE. Following 43S complex recruitment, the translation initiation apparatus appears to stall, before linearly progressing to the initiation codon. The slow passive dissociation rate of IRP-1 from the cap-distal IRE suggests that the mammalian translation apparatus plays an active role in overcoming the cap-distal IRE–IRP-1 complex. In contrast, cap-distal IRE–IRP-1 complexes efficiently repress translation in wheat germ and yeast translation extracts. Since inhibition occurs subsequent to 43S complex recruitment, an efficient arrest of productive scanning may represent a second mechanism by which RNA-protein interactions within the 5′ untranslated region of an mRNA can regulate translation. In contrast to initiating ribosomes, elongating ribosomes from mammal, plant, and yeast cells are unaffected by IRE–IRP-1 complexes positioned within the open reading frame. These data shed light on a characteristic aspect of the IRE-IRP regulatory system and uncover properties of the initiation and elongation translation apparatus of eukaryotic cells.  相似文献   

13.
14.
Uncapped messenger RNAs (mRNAs) encoding calf preprochymosin, chicken prelysozyme, or Escherichia coli beta-glucuronidase (GUS) were synthesized in vitro, with or without a 5'-terminal 67-nucleotide sequence (omega') derived from the untranslated 5'-leader (omega) of tobacco mosaic virus (TMV) RNA. Messenger RNAs were translated in vitro, in messenger-dependent systems derived from rabbit reticulocytes (MDL), wheat-germ (WG) or E. coli (EC). The omega' sequence enhanced expression of each mRNA in almost every translation system. While MDL was the least responsive to omega', this sequence proved particularly efficient in permitting translation of the eukaryotic mRNAs in EC, despite the absence of a consensus Shine-Dalgarno sequence in either the mRNAs or omega'. The local context of the initiation codon (AUG) in two GUS mRNA constructs did not influence the relative enhancement caused by the omega' sequence. These findings extend the utility of omega' as a general enhancer of translation for both prokaryotic and eukaryotic mRNAs in either 80S- or 70S-ribosome-based systems.  相似文献   

15.

Background  

The eukaryotic translation initiation factor 3 (eIF3) has multiple roles during the initiation of translation of cytoplasmic mRNAs. How individual subunits of eIF3 contribute to the translation of specific mRNAs remains poorly understood, however. This is true in particular for those subunits that are not conserved in budding yeast, such as eIF3h.  相似文献   

16.
We have partially purified the messenger RNAs for yeast arginyl-, aspartyl-, valyl-, alpha and beta subunits of phenylalanyl-tRNA synthetases in order to study their biosynthesis and ultimately, to isolate their genes. Sucrose gradient fractionation of poly U-Sepharose selected mRNAs resulted in a ten fold enrichment of the in vitro translation activity of these mRNAs. The translation products of messenger RNAs for arginyl- and valyl-tRNA synthetases have the same molecular weight as the purified enzymes; translation of aspartyl-tRNA synthetase messenger RNA yielded a 68 kD molecular weight polypeptide (while the purified cristallisable enzyme appears as a 64-66 kD doublet, which, as we showed is a proteolysis product). The translation of the mRNAs for alpha and beta phenylalanyl-tRNA synthetase gave polypeptides having the same molecular weight as those obtained from the purified enzyme, but the major translation products are slightly heavier, indicating that they may be translated as precursors. As estimated from centrifugation experiments mRNAs of arginyl-, aspartyl-, alpha and beta subunits of phenylalanyl-tRNA synthetase were 1700-2000 nucleotides long, indicating that alpha and beta are translated from two different mRNAs.  相似文献   

17.
18.
The nucleotide sequence of the translation initiation regions of 96 Saccharomyces cerevisiae mRNAs was compiled and compared. The entire 5' untranslated sequence of most mRNAs is very rich in A-residues. G-residues are underrepresented in the untranslated region. The AUG startcodon context appeared to be distinctly different from that of animal mRNAs, although an A-residue at -3 also occurs very frequently (81 percent) in yeast mRNAs. The prevailing codon 3' adjacent to the AUG is the UCU serine codon. All these features are more extreme in the highly expressed genes. Fifty percent of all highly expressed genes use the UCU serine codon as second triplet. In this group G-residues are completely absent in the 7 bases preceding the startcodon and an A-residue occurs at position -1 and -3 at a frequency of 89 percent and 100 percent, respectively. The abundance of A-residues throughout the leader suggests that unstructured mRNA is required for efficient translation initiation in yeast. The consensus sequence for the AUG context in highly expressed genes can be summarized as follows: (Sequence: see text).  相似文献   

19.
p27(BBP/eIF6) is an evolutionarily conserved protein that was originally identified as p27(BBP), an interactor of the cytoplasmic domain of integrin beta4 and, independently, as the putative translation initiation factor eIF6. To establish the in vivo function of p27(BBP/eIF6), its topographical distribution was investigated in mammalian cells and the effects of disrupting the corresponding gene was studied in the budding yeast, Saccharomyces cerevisiae. In epithelial cells containing beta4 integrin, p27(BBP/eIF6) is present in the cytoplasm and enriched at hemidesmosomes with a pattern similar to that of beta4 integrin. Surprisingly, in the absence and in the presence of the beta4 integrin subunit, p27(BBP/eIF6) is in the nucleolus and associated with the nuclear matrix. Deletion of the IIH S. cerevisiae gene, encoding the yeast p27(BBP/eIF6) homologue, is lethal, and depletion of the corresponding gene product is associated with a dramatic decrease of the level of free ribosomal 60S subunit. Furthermore, human p27(BBP/eIF6) can rescue the lethal effect of the iihDelta yeast mutation. The data obtained in vivo suggest an evolutionarily conserved function of p27(BBP/eIF6) in ribosome biogenesis or assembly rather than in translation. A further function related to the beta4 integrin subunit may have evolved specifically in higher eukaryotic cells.  相似文献   

20.
Studies have indicated that cauliflower mosaic virus (CaMV) gene expression is mediated by the translation of polycistronic 35S pregenomic RNA, but the involvement of some minor subgenomic RNA species is also suspected. We examined the involvement of the 35S promoter in the expression of CaMV open reading frames (ORFs) I and IV using both 35S RNA-driven and promoter-less ORF I- and ORF IV-β-glucuronidase (GUS) fusion constructs. In addition to the 35S promoter-dependent expression of both ORF I- and IV-GUS fusions, we detected the 35S promoter-independent expression of both fusion genes via subgenomic mRNAs, which were detected by Northern blotting in the protoplasts transfected with the 35S promoter-driven constructs as well as in those transfected with the promoter-less constructs. These results suggest the involvement of subgenomic RNAs in the expression of CaMV ORFs I and IV, and the operation of a dual strategy in the expression of two viral genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号