首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two major glycolipids accumulating in a human primary liver adenocarcinoma, but absent in normal liver, were characterized as lacto-N-fucopentaosyl(III)ceramide and difucosyllacto-N-nor-hexaosylceramide, (Galβ1→4[Fucα1→3]GlcNAcβ1→3Galβ1→4[Fucα1→3]GlcNAcβ1→3Galβ1→4Glcβ1→1Cer), a new type of glycolipid with Lex-determinant. Comparison of glycolipids bearing Lex-determinant in various cases of human colonic adenocarcinoma, in adjacent normal mucosa tissue, and in erythrocytes reveals a possibility that glycolipids accumulating in human adenocarcinoma, but not in normal tissue, have a common structural unit as identified below:
  相似文献   

3.
The capsular polysaccharide from Klebsiella K44 has been investigated by the techniques of methylation, base-catalyzed elimination, Smith degradation, and partial hydrolysis. The last-named yielded an oligosaccharide corresponding to one repeating unit. The anomeric configutations of the sugar residueswere determined by 1H- and 13C-n.m.r. spectroscopy. The polysaccharide has a fractional acetyl content and is the first in this series to be based on a linear, pentasaccharide repeating unit. →3)-β-d-Glcp-(1→4)-αd-Glcp-(1→4)-β-d-GlcpA-(1→2)α-l-Rhap-(1→3)-α-l-Rhap-(1→  相似文献   

4.
5.
6.
7.
8.
An analysis of the geometries of the hydrogen bonds observed by neutron diffraction in thirt-two crystal structures of amino acids shows the following results. Of the 168 hydrogen bonds in the data set, 64 involve the zwitterion groups 
and CO2. Another 18 are from
to sulphate or carbonyl oxygens. The majority, 46, of these
H … O bonds are three-centered (bifurcated). Nine are four-centered (trifurcated). The geometry in which the three-centered hydrogen bond involves both oxygens of the same carboxylate group is not especially favoured. When it does occur, one hydrogen bond is generally shorter and the other longer, than when the bonding involves oxygens on different carboxylate groups. The shortest hydrogen bonds are the OH … O C, from a carboxylic acid hydroxyl to a carboxylate oxygen, and NH … OC when the nitrogen is the ring atom in histidine or proline. Carboxylate groups, on average, accept six hydrogen bonds, with no examples of less than four bonds. The reason for the large number of three-centered
H … OC bonds is therefore a proton deficiency arising from the disparity between the tripled donor property of the
groups and the sextuple, on average, acceptor property of the carboxylate groups. There is good geometrical evidence for the existence of H … O and H … Cl? hydrogen bonds, especially involving the hydrogen atoms on α-atoms.  相似文献   

9.
Steric factors involved in the action of glycosidases and galactose oxidase   总被引:1,自引:0,他引:1  
α-(1→2)-L=-Fucosidase, β-D=-galactosidase and galactose oxidase are sterically hindered by certain types of branching in the oligosaccharide chains. 1) β-D=-Galactosidase will not cleave galactose when the penultimate sugar carries a sialic acid residue as in I. 2) Galactose Oxidase will not oxidize the galactose residue in trisaccharide I but will in II. Moreover, neither galactose nor N-acetylgalactosamine, glycosidically bound as in III, is susceptible to oxidation with galactose oxidase until the α-(1→2) linkage between them is cleaved by α-N-acetylgalactosaminidase. 3) α-(1→2)-L=-Fucosidase action is inhibited by α-(1→3)-N-acetylgalactosaminyl or galactosyl residue, as in III and IV. Removal of the terminal sugars makes the fucosyl residue susceptible to fucosidase action.
  相似文献   

10.
11.
Partial, acid hydrolysis of the extracellular polysaccharide from Xanthomonas campestris gave products that were identified as cellobiose, 2-O-(β-d-glucopyranosyluronic acid)-d-mannose, O(β-d-glucopyranosyluronic acid)-(1→2)-O-α-d-mannopyranosyl-(1→3)-d-glucose, O-(β-d-glucopyranosyluronic acid)-(1→2)-O-α-d-mannopyranosyl-(1→3)-[O-β-d-glucopyranosyl-(1→4)]-d-glucose, and O-(β-d-glucopyranosyluronic acid)-(1→2)-O-α-d-mannopyranosyl-(1→3)-[O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(1→4)-d-glucose. This and other evidence supports the following polysaccharide structure (1) which has been proposed independently by Jansson, Kenne, and Lindberg:
  相似文献   

12.
13.
14.
15.
16.
17.
18.
Marine sponges are ancient and simple multicellular filter-feeding invertebrates attached to solid substrates in benthic habitats and host a variety of fungi both inside and on their surface because of its unique ingestion and digest system. Investigation on marine sponge-associated fungi mainly focused on the small molecular metabolites, yet little attention had been paid to the extracellular polysaccharides. In this study, a homogeneous extracellular polysaccharide AS2-1 was obtained from the fermented broth of the marine sponge endogenous fungus Alternaria sp. SP-32 using ethanol precipitation, anion-exchange, and size-exclusion chromatography. Results of chemical and spectroscopic analyses showed that AS2-1 was composed of mannose, glucose, and galactose with a molar ratio of 1.00:0.67:0.35, and its molecular weight was 27.4 kDa. AS2-1 consists of a mannan core and a galactoglucan chain. The mannan core is composed of (1→6)-α-Manp substituted at C-2 by (1→2)-α-Manp with different degrees of polymerization. The galactoglucan chain consists of (1→6)-α-Glcp residues with (1→6)-β-Galf residues attached to the last glucopyranose residue at C-6. (1→6)-β-Galf residues have additional branches at C-2 consisting of disaccharide units of (1→2)-β-Galf and (1→2)-α-Glcp residues. The glucopyranose residue of the galactoglucan chain is linked to the mannan core. AS2-1 possessed a high antioxidant activity as evaluated by scavenging of 1,1-diphenyl-2-picrylhydrazyl and hydroxyl radicals in vitro. AS2-1 was also evaluated for cytotoxic activity on Hela, HL-60, and K562 cell lines by the MTT and SRB methods. The investigation demonstrated that AS2-1 was a novel extracellular polysaccharide with different characterization from extracellular polysaccharides produced by other marine microorganisms.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号