首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Binding of a fluorescent allosteric effector, beta-naphthyl triphosphate (beta-NapP3), to human adult hemoglobin (HbA) at various levels of oxygen saturation were investigated by simultaneous measurements of fluorescence, absorbance and oxygen partial pressure. Amounts of beta-NapP3 bound to HbA were easily estimated from the fluorescence intensities of HbA solutions, because it was previously proved that the fluorescence of beta-NapP3 bound to HbA is completely quenched. Exchange reactions of the above fluorescent allosteric effector with 2,3-bisphosphoglycerate (DPG) were also examined at various levels of oxygen saturation. It was found that beta-NapP3 binds to deoxyHbA tetramer in the molar ratio of 2:1, and that one of the two beta-NapP3 competes with DPG. It was also found that beta-NapP3 binds to completely oxygenated HbA tetramer in the molar ratio of 1:1, and that the bound beta-NapP3 was not released by adding DPG. The binding affinity of beta-NapP3 for the noncompetitive site of completely oxygenated HbA, to which DPG does not bind, was smaller than that for the noncompetitive site of deoxyHbA, to which DPG also does not bind. Furthermore, the correlations between oxygen bindings by HbA and the bindings of beta-NapP3 to HbA in the intermediate stages of deoxygenation were investigated. It was revealed that HbA as a tetramer exists in three conformational states rather than simple two states as Monod, Wyman, and Changeux had proposed.  相似文献   

2.
Replication of ultraviolet-irradiated simian virus 40 in monkey kidney cells   总被引:14,自引:0,他引:14  
This paper extends the concepts of linkage and control, previously studied in single phase allosteric and polysteric systems, to multiple phase (polyphasic) systems. In particular, a study has been made of the dependence of the solubility of sickle cell hemoglobin on oxygen partial pressure. Phase diagrams are obtained from observations of birefringence changes of hemoglobin solutions in a thin film optical cell. The effects of temperature and pH are found to be correlated largely with oxygen binding curves for non-gelling solutions. This suggests only small enthalpy and proton release changes for the gelation process. Variable time delays for the onset of birefringence were observed for partial deoxygenation of a fully oxygenated sample. The reciprocal of the time delay depends on a high power of the supersaturation ratio. The nucleation kinetics are, thereby, similar to those found in fully deoxygenated solutions in temperature-jump studies. Oxygen binding curves for non-gelling solutions of sickle cell hemoglobin were used in conjunction with the phase diagram results to evaluate oxygen binding curves for the polymer gel. Account was taken of the water content of the gel and of the large non-ideality of the solution. Analysis of the phase diagram data based on polyphasic linkage relationships suggests that some reversible oxygen-binding by the gel is present. The difference in oxygen binding between solution and gel obtained in this way is similar to that found by Hofrichter (1979) for carbon monoxide.  相似文献   

3.
We examined for the first time the hemoglobin components of the blood of the Australian lungfish, Neoceratodus forsteri and their functional responses to pH and the allosteric modulators adenosine triphosphate (ATP), guanosine triphosphate (GTP), 2,3-bisphosphoglyceric acid (BPG) and inositol hexaphosphate (IHP) at 25 degrees C. Lysates prepared from stripped, unfractionated hemolysate produced sigmoidal oxygen equilibrium curves with high oxygen affinity (oxygen partial pressure required for 50% hemoglobin saturation, p(50)=5.3 mmHg) and a Hill coefficient of 1.9 at pH 7.5. p(50) was 8.3 and 4.5 mmHg at pH 6 and 8, respectively, which corresponded to a modest Bohr coefficient (Delta log p(50)/Delta pH) of -0.13. GTP increased the pH sensitivity of oxygen binding more than ATP, such that the Bohr coefficient was -0.77 in the presence of 2 mmol L(-1) GTP. GTP was the most potent regulator of hemoglobin affinity, with concentrations of 5 mmol L(-1) causing an increase in p(50) from 5 to 19 mm Hg at pH 7.5, while the order of potency of the other phosphates was IHP>ATP>BPG. Three hemoglobin isoforms were present and each contained both alpha and beta chains with distinct molecular weights. Oxygen affinity and pH-dependence of isoforms I and II were essentially identical, while isoform III had a lower affinity and increased pH-dependence. The functional properties of the hemoglobin system of Neoceratodus appeared consistent with an active aquatic breather adapted for periodic hypoxic episodes.  相似文献   

4.
The contribution of heterotropic effectors to hemoglobin allostery is still not completely understood. With the recently proposed global allostery model, this question acquires crucial significance, because it relates tertiary conformational changes to effector binding in both the R- and T-states. In this context, an important question is how far the induced conformational changes propagate from the binding site(s) of the allosteric effectors. We present a study in which we monitored the interdimeric interface when the effectors such as Cl-, 2,3-diphosphoglycerate, inositol hexaphosphate, and bezafibrate were bound. We studied oxy-Hb and a hybrid form (alphaFeO2)2-(betaZn)2 as the T-state analogue by monitoring heme absorption and Trp intrinsic fluorescence under hydrostatic pressure. We observed a pressure-dependent change in the intrinsic fluorescence, which we attribute to a pressure-induced tetramer to dimer transition with characteristic pressures in the 70-200-megapascal range. The transition is sensitive to the binding of allosteric effectors. We fitted the data with a simple model for the tetramer-dimer transition and determined the dissociation constants at atmospheric pressure. In the R-state, we observed a stabilizing effect by the allosteric effectors, although in the T-analogue a stronger destabilizing effect was seen. The order of efficiency was the same in both states, but with the opposite trend as inositol hexaphosphate > 2,3-diphosphoglycerate > Cl-. We detected intrinsic fluorescence from bound bezafibrate that introduced uncertainty in the comparison with other effectors. The results support the global allostery model by showing that conformational changes propagate from the effector binding site to the interdimeric interfaces in both quaternary states.  相似文献   

5.
The binding of various alkanes by proteins was recognized years ago. We have studied the effect of butene (C4H8), a short-chain aliphatic hydrocarbon, on the functional properties of human adult hemoglobin. Under 1 atm pressure (100 kPa) butene decreased the affinity of hemoglobin (Hb) for oxygen (p50) by 45% without altering the cooperativity of ligand binding. This effect was independent of pH (from 7.0 to 8.0) and of ionic strength. The changes in the affinity of hemoglobin for oxygen were dependent upon the partial pressure of butene and evoked a saturating mechanism of the binding site(s). Mathematical simulation of the curve relating p50 to the concentration of dissolved butene allowed us to calculate the apparent association constants for one single binding site KHb = 10.4 mmol-1 and KHbO2 = 1.53 mmol-1 to Hb and HbO2 respectively. The larger binding of butene by Hb was confirmed by a 25% decrease in K1, the first association constant of oxygen to the tetrameric hemoglobin. It is concluded that butene is an allosteric effector of human Hb which acts most likely through hydrophobic interactions. It is postulated that the oxygen-linked binding site may be located at the alpha 1 beta 2 interface.  相似文献   

6.
Oxygen binding to sickle cell hemoglobin.   总被引:1,自引:0,他引:1  
The extent of oxygen binding and light scattering of concentrated solutions of hemoglobin S have been determined as a function of oxygen partial pressure using a thin film optical cell. Nearly reversible oxygen binding is observed as witnessed by the small hysteresis found between slow deoxygenation and reoxygenation runs. High co-operativity is noted from unusually large concentration-dependent Hill coefficients when aggregated hemoglobin S is present. The application of linkage theory with the inclusion of non-ideal solution properties permits a test of various simple models for oxygen binding to both the monomer (α2β2s) and polymer (aggregated) phase. It is concluded that oxygen binding to the polymer is either negligible or small under present experimental conditions. Phase diagrams of the solution concentration in equilibrium with polymer phase as a function of oxygen partial pressure are derived using best fit values of polymer parameters.  相似文献   

7.
In solution, the oxygen affinity of hemoglobin in the T quaternary structure is decreased in the presence of allosteric effectors such as protons and organic phosphates. To explain these effects, as well as the absence of the Bohr effect and the lower oxygen affinity of T-state hemoglobin in the crystal compared to solution, Rivetti C et al. (1993a, Biochemistry 32:2888-2906) suggested that there are high- and low-affinity subunit conformations of T, associated with broken and unbroken intersubunit salt bridges. In this model, the crystal of T-state hemoglobin has the lowest possible oxygen affinity because the salt bridges remain intact upon oxygenation. Binding of allosteric effectors in the crystal should therefore not influence the oxygen affinity. To test this hypothesis, we used polarized absorption spectroscopy to measure oxygen binding curves of single crystals of hemoglobin in the T quaternary structure in the presence of the "strong" allosteric effectors, inositol hexaphosphate and bezafibrate. In solution, these effectors reduce the oxygen affinity of the T state by 10-30-fold. We find no change in affinity (< 10%) of the crystal. The crystal binding curve, moreover, is noncooperative, which is consistent with the essential feature of the two-state allosteric model of Monod J, Wyman J, and Changeux JP (1965, J Mol Biol 12:88-118) that cooperative binding requires a change in quaternary structure. Noncooperative binding by the crystal is not caused by cooperative interactions being masked by fortuitous compensation from a difference in the affinity of the alpha and beta subunits. This was shown by calculating the separate alpha and beta subunit binding curves from the two sets of polarized optical spectra using geometric factors from the X-ray structures of deoxygenated and fully oxygenated T-state molecules determined by Paoli M et al. (1996, J Mol Biol 256:775-792).  相似文献   

8.
To understand the interplay between tertiary and quaternary transitions associated with hemoglobin function and regulation, oxygen binding curves were obtained for hemoglobin A fixed in the T quaternary state by encapsulation in wet porous silica gels. At pH 7.0 and 15 degrees C, the oxygen pressure at half saturation (p50) was measured to be 12.4 +/- 0.2 and 139 +/- 4 torr for hemoglobin gels prepared in the absence and presence of the strong allosteric effectors inositol hexaphosphate and bezafibrate, respectively. Both values are in excellent agreement with those found for the binding of the first oxygen to hemoglobin in solution under similar experimental conditions. The corresponding Hill coefficients of hemoglobin gels were 0.94 +/- 0.02 and 0.93 +/- 0.03, indicating, in the frame of the Monod, Wyman, and Changeux model, that high and low oxygen-affinity tertiary T-state conformations have been isolated in a pure form. The values, slightly lower than unity, reflect the different oxygen affinity of alpha- and beta-hemes. Significantly, hemoglobin encapsulated in the presence of the weak effector phosphate led to gels that show intermediate oxygen affinity and Hill coefficients of 0.7 to 0.8. The heterogeneous oxygen binding results from the presence of a mixture of the high and low oxygen-affinity T states. The Bohr effect was measured for hemoglobin gels containing the pure conformations and found to be more pronounced for the high-affinity T state and almost absent for the low-affinity T state. These findings indicate that the functional properties of the T quaternary state result from the contribution of two distinct, interconverting conformations, characterized by a 10-fold difference in oxygen affinity and a different extent of tertiary Bohr effect. The very small degree of T-state cooperativity observed in solution and in the crystalline state might arise from a ligand-induced perturbation of the distribution between the high- and low-affinity T-state conformations.  相似文献   

9.
Ultraviolet difference spectra of fully oxygenated hemoglobin vs. successively deoxygenated or reoxygenated hemoglobin were determined in the absence and presence of organic phosphates. Magnitude of fine structure in the difference spectrum around 290 nm, which is considered to be a partial reflection of oxygenation-induced changes in quaternary conformation of hemoglobin, was not linearly related to fractional oxygen saturation of hemoglobin of the reference cell. The non-linear feature was influenced by the organic phosphates as predicted by the allosteric model of Monod et al. The present study suggests that the ultraviolet oxy vs. deoxy difference spectrum measurements provide a useful way to examine the validity of the model.  相似文献   

10.
A procedure commonly used to transform native adult human hemoglobin (Hb) into a physiological oxygen carrier consists of a pyridoxylation of the protein to lower its oxygen affinity, followed by its polymerization in the presence of glutaraldehyde, with or without further reduction, to increase its circulating half-life. This series of reactions yields derivatives presenting a great molecular heterogeneity that have to be fractionated for use in vivo. Hemoglobin derivatives with low oxygen affinity and a narrow distribution of molecular weights were obtained by linking a dextran polyaldehydic derivative to deoxyhemoglobin at pH 8. From oxygen-binding measurements carried out in the presence of inositolhexaphosphate, a strong effector of hemoglobin, it appeared that the allosteric site of hemoglobin was blocked, probably by crosslinking bonds, which stabilizes its deoxy structure. On the other hand, when the reaction was performed in the presence of inositolhexaphosphate, the resulting conjugates exhibited an oxygen affinity identical to that of unmodified hemoglobin. After treatment with NaBH4, the polymer-hemoglobin derivatives were stable and possessed a reversible oxygen-carrying capacity similar to that of blood. The conjugates prepared from oxyhemoglobin all possessed a lower P50 than native hemoglobin whatever the reaction conditions.  相似文献   

11.
Bezafibrate, an antilipidemic drug, is known as a potent allosteric effector of hemoglobin. The previously proposed mechanism for the allosteric potency of this drug was that it stabilizes and constrains the T-state of hemoglobin by specifically binding to the large central cavity of the T-state. Here we report a new allosteric binding site of fully liganded R-state hemoglobin for this drug. The high resolution crystal structure of horse carbonmonoxyhemoglobin in complex with bezafibrate reveals that the bezafibrate molecule lies near the surface of the E-helix of each alpha subunit and the complex maintains the quaternary structure of the R-state. Binding is caused by the close fit of bezafibrate into the binding pocket, which is composed of some hydrophobic residues and the heme edge, suggesting the importance of hydrophobic interactions. Upon binding of bezafibrate, the distance between Fe and the N epsilon(2) of distal His E7(alpha 58) is shortened by 0.22 A in the alpha subunit, whereas no significant structural changes are transmitted to the beta subunit. Oxygen equilibrium studies of R-state-locked hemoglobin with bezafibrate in a wet porous sol-gel indicate that bezafibrate selectively lowers the oxygen affinity of one type of subunit within the R-state, consistent with the structural data. These results disclose a new allosteric mechanism of bezafibrate and offer the first demonstration of how the allosteric effector interacts with R-state hemoglobin.  相似文献   

12.
C H Robert  L Fall  S J Gill 《Biochemistry》1988,27(18):6835-6843
We have performed high-precision oxygen binding studies on human hemoglobin tetramers in the presence of a series of limited, subsaturating amounts of the effector compounds 2,3-diphosphoglycerate (DPG) and inositol hexaphosphate (IHP). The use of thin-layer optical methods enabled the use of high hemoglobin concentrations, preventing complications arising from the dissociation of the tetramer into dimers. Model-independent, simultaneous analysis of all data for each effector demonstrated that the intrinsic oxygen binding characteristics of the molecule are in agreement with those determined in earlier high-precision studies [e.g., Gill, S. J., Di Cera, E., Doyle, M. L., Bishop, G. A., & Robert, C. H. (1987) Biochemistry 26, 3995-4002] and that the affinity of the tetramer for the tightly binding effector IHP changes most markedly between the second and fourth oxygen binding steps, perhaps indicating a large conformational change. The data were then analyzed by using the truncated allosteric model [Di Cera, E., Robert, C. H., & Gill, S. J. (1987) Biochemistry 26, 4003-4008], which is based on the hypothesis that a quaternary conformational change occurs in the hemoglobin tetramer before the third and fourth oxygen molecules bind.  相似文献   

13.
A fluorescent ATP analog, β-naphthyl triphosphate, was hydrolyzed to β-naphthyl diphosphate and orthophosphate by heavy meromyosin ATPase. In the process of hydrolysis the fluorescence intensity of β-naphthyl triphosphate changed remarkably. Thus, the rate of β-naphthyl triphosphate hydrolysis is evaluated directly and continuously by measuring the time course of fluorescence intensity.In the presence of Ca2+, the Michaelis constant (Km) of β-naphthyl triphosphate hydrolysis by heavy meromyosin was similar to that of ATP hydrolysis. While, in the presence of Mg2+ the Km of β-napthyl triphosphate hydrolysis was 9.0·10−6 M, much larger than the value of ATP hydrolysis, indicating that the apparent affinity of the enzyme for β-naphthyl triphosphate is less than that for ATP.The pH dependence of β-naphthyl triphosphatase activity resembled that of ATPase activity, suggesting a similarity in the mechanism of hydrolysis of the two substrates.  相似文献   

14.
Testing the two-state model: anomalous effector binding to human hemoglobin   总被引:1,自引:0,他引:1  
M C Marden  E S Hazard  Q H Gibson 《Biochemistry》1986,25(23):7591-7596
Three allosteric states are required to describe the relaxation of (carbon monoxy) hemoglobin following flash photolysis. Combined absorbance and fluorescence probes were used. The absorbance signals consist of a component corresponding to ligand recombination and a component for the R-T transition. The fluorescence of 8-hydroxy-1,3,6-pyrenetrisulfonate (HPT), an analogue of 2,3-diphosphoglycerate, shows rates and amplitudes correlated with the absorbance transients. Measurements were made at pII 6, 6.5, and 7.0 at CO partial pressures of 0.1 and 1 atm. The fractional photolysis was varied in each case to change the initial distribution of the R states. Data show an immediate absorbance change due to ligand dissociation, while the changes in the ligand isosbestic and the fluorescence signals occur with time constants of 80 microseconds (at pH 6.5). The signals then show a biphasic return to equilibrium, characteristic of the allosteric system. The measurements provide three independent probes of the kinetics of the substates of hemoglobin. Although the ligand binding data can be generally represented by a two-state model, the fluorescence data require T states with different affinities for HPT.  相似文献   

15.
The thermodynamics of sickle cell hemoglobin gelation in the presence of oxygen has been investigated by measuring the fractional saturation of the solution and polymer phases, and the solubility. The fractional saturation of the solution phase with oxygen and the solubility were measured by near infrared spectrophotometry after sedimentation of the polymers, while the fractional saturation of the polymer phase was determined from linear dichroism measurements on gels formed by nucleation with an argon ion laser. Using the solution binding data of Gill et al. (1979) to calculate the oxygen pressure corresponding to the solution phase saturation, the initial portion of the polymer binding curve was determined. The self-consistency of the data analysis in terms of the two-phase model for the gel was tested by comparing measured and calculated gel (i.e. solution plus polymer) binding curves, and by comparing the observed solubilities with those calculated from the solution and polymer binding curves using Gibbs-Duhem relations.Oxygen binding to the polymer was found to be non-co-operative up to the maximum measured fractional saturation of 0.14. The binding constant was 0.0059 ± 0.0015 torr?1 (p50 = 170 ± 40 torr), which is about three times smaller than that of hemoglobin in the low-affinity T quaternary structure. Both the non-co-operative binding and the low affinity could be qualitatively explained in terms of an allosteric model and the current information on the polymer structure.  相似文献   

16.
By introducing an additional H-bond in the alpha(1)beta(2) subunit interface or altering the charge properties of the amino acid residues in the alpha(1)beta(1) subunit interface of the hemoglobin molecule, we have designed and expressed recombinant hemoglobins (rHbs) with low oxygen affinity and high cooperativity. Oxygen-binding measurements of these rHbs under various experimental conditions show interesting properties in response to pH (Bohr effect) and allosteric effectors. Proton nuclear magnetic resonance studies show that these rHbs can switch from the oxy (or CO) quaternary structure (R) to the deoxy quaternary structure (T) without changing their ligation states upon addition of an allosteric effector, inositol hexaphosphate, and/or reduction of the ambient temperature. These results indicate that if we can provide extra stability to the T state of the hemoglobin molecule without perturbing its R state, we can produce hemoglobins with low oxygen affinity and high cooperativity. Some of these rHbs are also quite stable against autoxidation compared to many of the known abnormal hemoglobins with altered oxygen affinity and cooperativity. These results have provided new insights into the structure-function relationship in hemoglobin.  相似文献   

17.
T Shiga  N Tateishi  N Maeda 《Biorheology》1990,27(3-4):389-397
An optical spectroscopic system for determining the rate of oxygen release from flowing erythrocytes in microvessel is developed. The apparatus consists of following units attached to an inverted microscope. 1) A scanning spectrophotometer, equipped with a grating and a photon counter, was connected to an eyepiece of the microscope through a narrow light-guide, as to obtain the absorption spectrum (wave length range: 450-650 nm) of a focused spot (phi = 7 microns). 2) The velocity of erythrocyte flow was measured by dual-spots cross-correlation method, using two photomultipliers (connected to A/D converter and microcomputer) with two light-guides inserted into another eyepiece. 3) The diameter of vessel was estimated from digitized video-images, using a color image-processor. The ability of the apparatus was tested with (a) hemoglobin solution, (b) flowing erythrocyte suspension and (c) capillaries of rat mesentery. The rate of oxygen release through the vessel wall was calculated.  相似文献   

18.
The Monod-Wyman-Changeux allosteric model parameters evaluated from accurate oxygen equilibrium curves (OECs) of hemoglobin that were measured in an extremely wide range of structural constraints, imposed by allosteric effectors, yielded a closed circle when log K(T) and log K(R) were plotted against log L(0) and log L(4), respectively, showing novel phenomena that L(0) and L(4) have a maximal value and a minimal value, respectively, and K(T) and K(R) vary by more than three orders of magnitude. These phenomena were successfully described by a global allostery model, which mathematically keeps the frame work of the MWC model, but allows that K(T) under a set of solution conditions becomes larger than K(R) under another set of solution conditions and postulates that a representative allosteric effector binds to both the T and R states with a lower affinity but with a larger stoichiometry for the R state than for the T state. Thus, this global model can describe any given OEC measured under universal solution conditions with the single adjustable parameter, the concentration of the representative effector.  相似文献   

19.
The interaction between Escherichia coli carbamoyl-phosphate synthetase (CPS) and a fluorescent analogue of an allosteric effector molecule, 1,N6-ethenoadenosine 5'-monophosphate (epsilon-AMP), has been detected by using fluorescence techniques and kinetic measurements. From fluorescence anisotropy titrations, it was found that epsilon-AMP binds to a single site on CPS with Kd = 0.033 mM. The nucleotide had a small activating effect on the rate of synthesis of carbamoyl phosphate but had no effect on the Km for ATP. To test whether epsilon-AMP binds to an allosteric site, allosteric effectors (UMP, IMP, and CMP), known to bind at the UMP/IMP site, were added to solutions containing the epsilon-AMP-CPS complex. With addition of these effector molecules, a progressive decrease of the fluorescence anisotropy was observed, indicating that bound epsilon-AMP was displaced by the allosteric effectors examined. From these titrations, the dissociation constants for UMP, IMP, CMP, ribose 5-phosphate, 2-deoxyribose 5-phosphate, and orthophosphate were determined. When MgATP, a substrate, was employed as a titrant, the observed decrease in anisotropy was consistent with the formation of a ternary complex (epsilon-AMP-CPS-MgATP). The effect of ATP binding, monitored at the allosteric site, was magnesium dependent, and free magnesium in solution was required to obtain a hyperbolic binding isotherm. Solvent accessibility of epsilon-AMP in binary (epsilon-AMP-CPS) and ternary (epsilon-AMP-CPS-MgATP) complexes was determined from acrylamide quenching, showing that the base of epsilon-AMP is well shielded from the solvent even in the presence of MgATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Distribution dynamics of oxygen tension throughout the erythrocyte volume was calculated by means of a mathematical model describing the dynamics of oxygen transport in the erythrocyte, its shape, diffusion resistance of hemoglobin solution. The pattern of the dissociation curve of oxyhemoglobin being taken into account. The model is presented as a system of differential equations in partial derivatives. Its solution was performed on an electron computer by a net method. Sharp jumps of pO2 inside the erythrocyte at its fast movements in the media with different partial pressure of O2 were shown. A quantitative relationship was found between the rate of physico-chemical reactions of oxygen binding and yield by hemoglobin and the level of hemoglobin saturation with oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号