首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
A lignin-degrading basidiomycete, Ceriporiopsis subvermispora produces a series of alkyl- and alkenylitaconates (ceriporic acids). Previously, two alkylitaconic acids with tetradecyl and hexadecyl side chains were isolated and identified as 1-heptadecene-2,3-dicarboxylic acid (ceriporic acid A) and 1-nonadecene-2,3-dicarboxylic acid (ceriporic acid B). In the present study, one hexadecenylitaconate (ceriporic acid C) was isolated and its chemical structure was analyzed by glycolation and subsequent (1) trimethylsilation, or (2) acetalation with acetone and acetone-d6. Analyses of the isolated metabolite demonstrated that the hexadecenylitaconic acid was (Z)-1,10-nonadecadiene-2,3-dicarboxylic acid. The structure of the side chain in ceriporic acid C was the same as that of hexadecenylcitraconate, chaetomellic acid B. Thus, it was found that ceriporic acids share close structural similarity with alk(en)yl citraconate derivatives, chaetomellic acids and other lichen lactones, protolichesterinic, lichesterinic, and murolic acids.  相似文献   

2.
Ceriporiopsis subvermispora is a selective white rot basidiomycete which degrades lignin in wood at a distance far from enzymes. Low molecular mass metabolites play a central role in the oxidative degradation of lignin. To understand the unique wood-decaying mechanism, we surveyed the oxidized derivatives of ceriporic acids (alk(en)ylitaconic acids) produced by C. subvermispora using high-resolution liquid chromatography multiple-stage mass spectrometry (HR-LC/MSn). The analysis of the precursor and product ions from the extract suggested that an epoxidized derivative of ceriporic acid is produced by the fungus. To identify the new metabolite, an authentic compound of ceriporic acid epoxide was synthesized in vitro by reacting (R)-3-[(Z)-hexadec-7-enyl]-itaconic acid (ceriporic acid C) with m-chloroperbenzoic acid. The precursor and product ions from the natural metabolite and authentic epoxide were identical and distinguishable from those of hydroxy and hydroperoxy derivatives after reduction with NaBD4. Feeding experiments with [U-13C]-glucose, 99% and the subsequent analyses of the first and second generation product ions demonstrated that the oxidized ceriporic acid was (R)-3-(7,8-epoxy-hexadecyl)-itaconic acid. To our knowledge, this study is the first to report that natural alkylitaconic acid bears an epoxy group on its side chain.  相似文献   

3.
Ceriporiopsis subvermispora was used for biochemical pulping of agricultural residues and the results were compared with chemical pulping. Independent variables were screened by Plackett-Burman and optimized by full factorial experimental designs. Biological treatment of rice, wheat and barley straw samples resulted in decrease of the kappa number of these straws by 34%, 21% and 19%, respectively, as compared with controlled samples. The tensile strength and burst factor of hand sheets produced from rice straw were increased by 51% and 33% as compared with the control straws. The tensile strength and burst factor of hand sheets produced from wheat straws were improved by 67% and 36%, these variables for barely straws were 36.7% and 45%, respectively. Although the delignification of wheat and barley straws are not as efficient as chemical process, but the quality of papers produced by biochemical pulping of straws were excellent.  相似文献   

4.
Laccase activity in the lignin-degrading fungus Ceriporiopsis subvermispora was associated with several proteins in the broth of cultures grown in a defined medium. Activity was not increased significantly by adding 2,5-xylidine or supplemental copper to the medium. Higher activity, associated with two major isoenzymes, developed in cultures grown on a wheat bran medium. These two isoenzymes were purified to homogeneity. L1 and L2 had isoelectric points of 3.4 and 4.8, molecular masses of 71 and 68 kDa, and approximate carbohydrate contents of 15 and 10%, respectively. Data indicated 4 copper atoms per mol. L1 and L2 had overlapping pH optima in the range of 3 to 5, depending on the substrate, and exhibited half-lives of 120 and 50 min at 60 degrees C. They were strongly inhibited by sodium azide and thioglycolic acid but not by hydroxylamine or EDTA. The isoenzymes oxidized 1,2,4,5-tetramethoxybenzene but not other methoxybenzene congeners. A variety of usual laccase substrates, including lignin-related phenols and ABTS [2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)], were also oxidized. Kinetic parameters were similar to those of the laccases of Coriolus versicolor. The N-terminal amino acid sequence (20 residues for L1) showed significant homology to those of laccases of other white rot basidiomycetes but not to those of the laccases of Agaricus bisporus or Neurospora crassa.  相似文献   

5.
6.
The aim of this work was to make a survey describing factors that influence the production of extracellular enzymes by white-rot fungus Ceriporiopsis subvermispora responsible for the degradation of lignocellulolytic materials. These factors were: carbon sources (glucose, cellulose, hemicellulose, lignin, maltose and starch), nitrogen sources (ammonium sulphate, potassium nitrate, urea, albumin and peptone), pH, temperature and addition of three different concentrations of Cu2+ and Mn2+. The cellulase and xylanase activities were similar in medium with different carbon sources and the highest cellulase and xylanase activities were measured in medium with urea and potassium nitrate as nitrogen sources, respectively. The highest laccase activity was observed in medium with lignin and peptone as carbon and nitrogen sources. In other experiments, time course of production of lignocellulolytic enzymes by white-rot fungus C. subvermispora in medium with lignin or glucose as carbon sources was observed.  相似文献   

7.
(sup14)C-synthetic lignin mineralization by the basidiomycete Ceriporiopsis subvermispora occurs at the highest rate (about 30% after 29 days) in liquid cultures containing 1% glucose and a growth-limiting amount (1 mM) of ammonium tartrate. The titers of manganese peroxidase (MnP) and laccase are lower in these cultures than in cultures containing 1% glucose and 10 mM ammonium tartrate, where the extent of lignin mineralization in the same period is only about 15%. The inverse correlation between enzyme activity and lignin mineralization is also observed when ammonium tartrate is replaced by ammonium chloride or Casamino Acids as the source of nitrogen. This phenomenon can be explained by a gradual increase in the pH of the medium that takes place only in the cultures with high nitrogen concentrations. Supporting this finding, when cultures with 1 mM ammonium tartrate were grown at different pHs, (sup14)CO(inf2) evolved more rapidly from those with pH values near the optimum for MnP activity. On the other hand, (sup14)CO(inf2) evolution from cultures containing 1% glucose supplemented with 1 mM ammonium tartrate plus 9 mM sodium tartrate was as low as that from cultures with a high ammonium tartrate concentration. Since the changes in the pH of these cultures were not as pronounced as those in cultures containing high nitrogen concentrations, tartrate itself may also be contributing to limit the extent of lignin mineralization. Considering that pH instability seems to constitute a common feature of fungal cultures, precautions must be taken to avoid underestimation of their ligninolytic efficiencies.  相似文献   

8.
Vol. 62, no. 10, p. 3684, column 2, line 16: "Tri(methylsilyl)" should read "Tri(trimethylsilyl)." Line 17: "Di(methylsilyl)" should read "Di(trimethylsilyl)." Line 20: "Tri(methylsilyl)" should read "Trimethylsilyl." Page 3686, column 1, reference 12: The journal should be Dokl. Akad. Nauk Belarusi. [This corrects the article on p. 3679 in vol. 62.].  相似文献   

9.
Many ligninolytic fungi appear to lack lignin peroxidase (LiP), the enzyme generally thought to cleave the major, recalcitrant, nonphenolic structures in lignin. At least one such fungus, Ceriporiopsis subvermispora, is nevertheless able to degrade these nonphenolic structures. Experiments showed that wood block cultures and defined liquid medium cultures of C. subvermispora rapidly depolymerized and mineralized a (sup14)C-labeled, polyethylene glycol-linked, high-molecular-weight (beta)-O-4 lignin model compound (model I) that represents the major nonphenolic structure of lignin. The fungus cleaved model I between C(inf(alpha)) and C(inf(beta)) to release benzylic fragments, which were shown in isotope trapping experiments to be major products of model I metabolism. The C(inf(alpha))-C(inf(beta)) cleavage of (beta)-O-4 lignin structures to release benzylic fragments is characteristic of LiP catalysis, but assays of C. subvermispora liquid cultures that were metabolizing model I confirmed that the fungus produced no detectable LiP activity. Three results pointed, instead, to the participation of a different enzyme, manganese peroxidase (MnP), in the degradation of nonphenolic lignin structures by C. subvermispora. (i) The degradation of model I and of exhaustively methylated (nonphenolic), (sup14)C-labeled, synthetic lignin by the fungus in liquid cultures was almost completely inhibited when the Mn concentration of the medium was decreased from 35 (mu)M to approximately 5 (mu)M. (ii) The fungus degraded model I and methylated lignin significantly faster in the presence of Tween 80, a source of unsaturated fatty acids, than it did in the presence of Tween 20, which contains only saturated fatty acids. Previous work has shown that nonphenolic lignin structures are degraded during the MnP-mediated peroxidation of unsaturated lipids. (iii) In experiments with MnP, Mn(II), and unsaturated lipid in vitro, this system mimicked intact C. subvermispora cultures in that it cleaved nonphenolic (beta)-O-4 lignin model compounds between C(inf(alpha)) and C(inf(beta)) to release a benzylic fragment.  相似文献   

10.
The herbicide diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is used in many agricultural crops and non-crop areas worldwide, leading to the pollution of the aquatic environment by soil leaching. White rot fungi and its lignin modifying enzymes, peroxidases and laccases, are responsible for its degradation. Therefore, it is of interest to explore the potential use of Ceriporiopsis subvermispora laccase (CersuLac1) in the biotransformation of this herbicide by using its enzyme laccase. However, the structure of laccase from Ceriporiopsis subvermispora is still unknown. Hence, a model of laccase was constructed using homology modeling. The model was further used to dock p-methylbenzoate in the presence of four copper ions to analyze molecular basis of its binding and interaction. The ligand-protein interaction is stereo-chemically favorable in nature. The presence of the single protonated Lys457 was necessary for catalysis, being coordinated by a cupper ion. The best pose of diuron on CersuLac1 has a theoretical Ki of 2.91 mM. This is comparable to the KM values for laccases from other organisms with similar compounds. Thus, we document the insights for the potential use of laccase from Ceriporiopsis subvermispora in the biotransfrormation of diuron.  相似文献   

11.
Ceriporiopsis subvermispora is a white-rot fungus used in biopulping processes and seems to use the fatty acid peroxidation reactions initiated by manganese-peroxidase (MnP) to start lignin degradation. The present work shows that C. subvermispora was able to peroxidize unsaturated fatty acids during wood biotreatment under biopulping conditions. In vitro assays showed that the extent of linoleic acid peroxidation was positively correlated with the level of MnP recovered from the biotreated wood chips. Milled wood was treated in vitro by partially purified MnP and linoleic acid. UV spectroscopy and size exclusion chromatography (SEC) showed that soluble compounds similar to lignin were released from the milled wood. SEC data showed a broad elution profile compatible with low molar mass lignin fractions. MnP-treated milled wood was analyzed by thioacidolysis. The yield of thioacidolysis monomers recovered from guaiacyl and syringyl units decreased by 33% and 20% in MnP-treated milled wood, respectively. This has suggested that lignin depolymerization reactions have occurred during the MnP/linoleic acid treatment.  相似文献   

12.
A white rot basidiomycete, Ceriporiopsis subvermispora, degraded vulcanized natural rubber (NR) sheets on a wood medium. The fungus decreased the total sulfur content of the rubber by 29% in 200 days, accompanied by the cleavage of sulfide bonds between polyisoprene chains. X-ray photoelectron spectroscopy (XPS) demonstrated that C. subvermispora reduced the frequency of S-C bonds by 69% with a concomitant formation of S-O bonds during the culture period. Dipolar decoupling/magic angle spinning (DD/MAS) solid state 13C NMR revealed that the fungus preferentially decomposed monosulfide bonds linked to a cis- and trans-1,4-isoprene backbone but the cleavage of polysulfide bonds was also observed. In contrast, no decrease in weight or devulcanization of rubber was observed in cultures of a white rot fungus, Dichomitus squalens. The oxidative cleavage of sulfide bonds by C. subvermispora demonstrates that ligninolytic basidiomycetes are potential microbes for the biological devulcanization of rubber products.  相似文献   

13.
Lipid peroxidation by managanese peroxidase (MnP) is reported to decompose recalcitrant polycyclic aromatic hydrocabon (PAH) and nonphenolic lignin models. To elucidate the oxidative process, linoleic acid and 13(S)-hydroperoxy-9Z,11E-octadecadienoic acid [13(S)-HPODE] were reacted with MnPs from Ceriporiopsis subvermispora and Bjerkandera adusta and the free radicals produced were analyzed by ESR. When the MnPs were reacted with 13(S)-HPODE in the presence of Mn(II), H2O2 and tert-nitrosobutane (t-NB), the ESR spectrum contained a sharp triplet of acyl radical (aN = 0.81 mT). Formation of acyl radical was also observed in the reactions of Mn(III)-tartrate with 13(S)-HPODE and with linoleic acid, but the latter reaction occurred explosively after an induction period of around 30 min. Reactions of MnP with linoleic acid in the presence of Mn(II), H2O2 and t-NB gave no spin adducts while addition of t-NB after preincubation of linoleic acid with MnP/Mn(II)/H2O2 for 2 h gave spin adducts of carbon-centered (aN = 1.53 mT, aH = 0.21 mT) and acyl (aN = 0.81 mT) radicals. In contrast to linoleic acid, methyl linoleate and oleic acid were not peroxidized by MnP and chelated Mn(III) within a few hours, indicating that structures containing both the 1,4-pentadienyl moiety and a free carboxyl group are necessary for inducing the peroxidation in a short reaction time. These results indicate that MnP-dependent lipid peroxidation is not initiated by direct abstraction of hydrogen from the bis-allylic position during turnover but proceeds by a Mn(III)-dependent hydrogen abstraction from enols and subsequent propagation reactions involving the formation of acyl radical from lipid hydroperoxide. This finding expands the role of chelated Mn(III) from a phenol oxidant to a strong generator of free radicals from lipids and lipid hydroperoxides in lignin biodegradation.  相似文献   

14.
15.
The ligninolytic system of the basidiomycete Ceriporiopsis subvermispora is composed of manganese peroxidase (MnP) and laccase. In this work, the source of extracellular hydrogen peroxide required for MnP activity was investigated. Our attention was focused on the possibility that hydrogen peroxide might be generated by MnP itself through the oxidation of organic acids secreted by the fungus. Both oxalate and glyoxylate were found in the extracellular fluid of C. subvermispora cultures grown in chemically defined media, where MnP is also secreted. The in vivo oxidation of oxalate was measured; 14CO2 evolution was monitored after addition of exogenous [14C]oxalate to cultures at constant specific activity. In standard cultures, evolution of CO2 from oxalate was maximal at day 6, although the MnP titers were highest at day 12, the oxalate concentration was maximal (2.5 mM) at day 10, and the glyoxylate concentration was maximal (0.24 mM) at day 5. However, in cultures containing low nitrogen levels, in which the pH is more stable, a better correlation between MnP titers and mineralization of oxalate was observed. Both MnP activity and oxidation of [14C]oxalate were negligible in cultures lacking Mn(II). In vitro assays confirmed that Mn(II)-dependent oxidation of [14C]oxalate by MnP occurs and that this reaction is stimulated by glyoxylate at the concentrations found in cultures. In addition, both organic acids supported phenol red oxidation by MnP without added hydrogen peroxide, and glyoxylate was more reactive than oxalate in this reaction. Based on these results, a model is proposed for the extracellular production of hydrogen peroxide by C. subvermispora.  相似文献   

16.
Methane fermentation of Japanese cedar wood was carried out after pretreatment with four strains of white rot fungi, Ceriporiopsis subvermispora ATCC 90467, CZ-3, CBS 347.63 and Pleurocybella porrigens K-2855. These fungi were cultivated on wood chip media with and without wheat bran for 4-8 weeks. The pretreated wood chip was fermented anaerobically with sludge from a sewage treatment plant. Pretreatments with C. subvermispora ATCC 90467, CZ-3 and CBS 347.63 in the presence of wheat bran for 8 weeks decreased 74-76% of beta-O-4 aryl ether linkages in the lignin to accelerate production of methane. After fungal treatments with C. subvermispora ATCC 90467 and subsequent 30-days methane fermentation, the methane yield reached 35 and 25% of the theoretical yield based on the holocellulose contents of the decayed and original wood, respectively. In contrast, treatment with the three strains of C. subvermispora without wheat bran cleaved 15-26% of the linkage and produced 6-9% of methane. There were no significant accelerating effects in wood chips treated with P. porrigens which has a lower ability to decompose the lignin. Thus, it was found that C. subvermispora, with a high ability to decompose aryl ether bonds of lignin, promoted methane fermentation of softwood in the presence of wheat bran.  相似文献   

17.
White zones produced on biodegraded Pinus radiata wood chips were characterized by micro-localized-FTIR (Fourier Transformed Infra Red) spectroscopy and scanning electron microscopy. Both techniques permitted assignment of the white zones to a selective lignin removal process. Although both fungi studied have degraded lignin selectively in these restricted superficial areas, chemical analysis of the wood chips indicated that Ganoderma australe removed 16% of the initial amount of glucan at the 20% weight loss level. Ceriporiopsis subvermispora did not remove glucan at weight loss values below 17%. Prolonged biodegradation resulted in reduction of white zones by G. australe, and increased white zones from C. subvermispora decayed samples. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Oxalate oxidase is thought to be involved in the production of hydrogen peroxide for lignin degradation by the dikaryotic white rot fungus Ceriporiopsis subvermispora. This enzyme was purified, and after digestion with trypsin, peptide fragments of the enzyme were sequenced using quadrupole time-of-flight mass spectrometry. Starting with degenerate primers based on the peptide sequences, two genes encoding isoforms of the enzyme were cloned, sequenced, and shown to be allelic. Both genes contained 14 introns. The sequences of the isoforms revealed that they were both bicupins that unexpectedly shared the greatest similarity to microbial bicupin oxalate decarboxylases rather than monocupin plant oxalate oxidases (also known as germins). We have shown that both fungal isoforms, one of which was heterologously expressed in Escherichia coli, are indeed oxalate oxidases that possess < or =0.2% oxalate decarboxylase activity and that the organism is capable of rapidly degrading exogenously supplied oxalate. They are therefore the first bicupin oxalate oxidases to have been described. Heterologous expression of active enzyme was dependent on the addition of manganese salts to the growth medium. Molecular modeling provides new and independent evidence for the identity of the catalytic site and the key amino acid involved in defining the reaction specificities of oxalate oxidases and oxalate decarboxylases.  相似文献   

19.
In order to obtain genetically stable, high-yield, laccase-producing strains, Ceriporiopsis subvermispora was induced by N+ ion implantation and subcultured. The results revealed that, with energy of 30 keV and a dose of 80×1014 ions/cm2, a relatively high increase in mutations and positive mutations were achieved. Three screened high-yield strains (NL3, NL4, and NL6) were obtained and subcultured. The results of the comparison showed that, NL4 had stable genetic traits and the highest laccase activity (323 U/L). In the course of fermentation, NL4 entered a vigorous growth period 24 h ahead of the original strain, and produced a large amount of laccase during the stationary phase. Up until the sixth day of fermentation achieved the highest laccase activity of 377 U/L, and a corresponding biomass dry weight of 4.2 mg/mL. The relative laccase activity of the per gram dry cells was 89.76 U, which was 4.79 times that of the original strain. The results indicated that N+ ion implantation was an ideal technique for microbial breeding, which could be applied for the improvement of Ceriporiopsis subvermispora.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号