首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A general approach for isolating large nested deletions in P1 artificial chromosomes (PACs) and bacterial artificial chromosomes (BACs) by retrofitting with a loxP site-containing Tn10 mini-transposon is described. Cre-mediated recombination between the loxP site existing in these clones and one introduced by transposition leads to deletions and inversions of the DNA between these sites. Large deletions are selectively recovered by transducing the retrofitted PAC or BAC clones with P1 phage. The requirement that both loxP sites in the cointegrate be packaged into a P1 head ensures that only large deletions are rescued. PCR analyses identified these deletions as products of legitimate recombination between loxP sites mediated by Cre protein. BACs produce deletions much more efficiently than PACs although the former cannot be induced to greater than unit copy in cells. Mammalian cell-responsive antibiotic resistance markers are introduced as part of the transposon into genomic clone deletions for subsequent functional analysis. Most importantly, the loxP site retrofitting and P1 transduction can be performed in the same bacterial host containing these clones directly isolated from PAC or BAC libraries. These procedures should facilitate physical and functional mapping of genes and regulatory elements in these large plasmids.  相似文献   

2.
Contrary to several earlier reports, we find that cross-recombination between wild-type and the mutant loxP511 sites is <0.5% of that between two wild-type sites if Cre protein is expressed by phage P1 during an infection. The finding enabled us to develop a procedure to truncate DNA progressively from both ends of large genomic inserts flanked by these two loxP sites in pBACe3.6 and related vectors with transposons carrying either a wild-type or a loxP511 sequence. Newly constructed loxP511 transposons contained either a kanamycin resistance gene or no marker. Insert DNA ends in deletions were sequenced with primers unique to each transposon-end remaining after the respective recombination. End-sequencing 223 deletions confirmed that the low level of cross-recombination, observed between those sites during the P1 transductions, does not complicate the procedure: truncations from the unintended end of genomic inserts did not occur. Multiple BACs pooled together could also be processed in a single tube to make end-deletions. This deletion technology, utilizing the very minimal cross-recombination between the mutant and wild-type loxP sites of most BAC clones in the public domain and a heterologous one inserted as a transposon, should facilitate functionally mapping long-range gene regulatory sequences and help to isolate genes with defined functional boundaries in numerous projects including those of therapeutic interest.  相似文献   

3.
Mejía JE  Larin Z 《Genomics》2000,70(2):165-170
We have developed a method for recombining bacterial artificial chromosomes (BACs) and P1 artificial chromosomes (PACs) containing large genomic DNA fragments into a single vector using the Cre-lox recombination system from bacteriophage P1 in vivo. This overcomes the limitations of in vitro methods for generating large constructs based on restriction digestion, ligation, and transformation of DNA into Escherichia coli cells. We used the method to construct a human artificial chromosome vector of 404 kb encompassing long tracts of alpha satellite DNA, telomeric sequences, and the human hypoxanthine phosphoribosyltransferase gene. The specificity of Cre recombinase for loxP sites minimizes the possibility of intramolecular rearrangements, unlike previous techniques using general homologous recombination in E. coli, and makes our method compatible with the presence of large arrays of repeated sequences in cloned DNA. This methodology may also be applied to retrofitting PACs or BACs with markers and functional sequences.  相似文献   

4.
In an attempt to combine a cloned genomic copy of a selectable gene with different cloned centromeric sequences to develop mammalian artificial chromosomes (MAC) we used site specific recombination mediated by purified Cre recombinase acting on the loxP sequence in PAC vector DNA. A new method was required to purify highly concentrated, virtually 100% intact PAC DNA which could be stored for a long period. Here we show the efficient linking of linearized PACs containing alpha satellite DNA from chromosomes X and 17 with sizes of 125 and 140 kb, respectively, to a 95 kb restriction fragment derived from a 175 kb PAC containing the intact human HPRT gene locus.  相似文献   

5.
Coren JS  Sternberg N 《Gene》2001,264(1):11-18
The BAC and PAC cloning systems allow investigators to propagate large genomic DNA fragments up to 300 kb in size in E. colicells.We describe a new PAC shuttle vector that can be propagated in both bacterial and human cells. Specifically, the P1 cloning vector pAd10sacBII was modified by the insertion of a puromycin-resistance gene (pac), the Epstein-Barr Virus (EBV) latent replication origin oriP,and the EBV EBNA1 gene. Transfection studies in HEK 293 cells demonstrated that the modified vector was stably maintained as an episome for at least 30 generations. And since pJCPAC-Mam1 contains a loxP site, genomic DNA cloned into this vector can be subjected to loxP-Cre -mediated deletion events. The transposon vector pTnPGKpuro/loxP was modified to make this system amenable to propagation in human cells by inserting pac, oriP, and EBNA1 elements into the vector (Chatterjee, P.K., Coren, J.C., 1997. Isolating large nested deletions in PACs and BACs by in vivo selection of P1 headful-packaged products of Cre-catalyzed recombination between the loxP site in PAC and BAC and one introduced in transposition. NAR 25, 2205-2212.). pTnPGKpuro/loxP-EBV was then used to generate deletions in an individual library member to demonstrate that all of the deletions still contain the required eukaryotic elements and that they were nested. All library members constructed in pJCPAC-Mam1 can be directly transformed into human cells to assess function. And the deletion technology can be used to aid in delineating the boundaries of genes and other cis-acting elements.  相似文献   

6.
A rapid method obviating the use of selectable markers to genetically manipulate large DNA inserts cloned into bacterial artificial chromosomes is described. Mutations such as single-base changes, deletions, and insertions can be recombined into a BAC by using synthetic single-stranded oligonucleotides as targeting vectors. The oligonucleotides include the mutated sequence flanked by short homology arms of 35-70 bases on either side that recombine with the BAC. In the absence of any selectable marker, modified BACs are identified by specific PCR amplification of the mutated BAC from cultures of pooled bacterial cells. Each pool represents about 10 electroporated cells from the original recombination mixture. Subsequently, individual clones containing the desired alteration are identified from the positive pools. Using this BAC modification method, we have observed a frequency of one recombinant clone per 90-260 electroporated cells. The combination of high targeting frequency and the sensitive yet selective PCR-based screening method makes BAC manipulation using oligonucleotides both rapid and simple.  相似文献   

7.
The recent completion of the human genome sequence allows genomics research to focus on understanding gene complexity, expression, and regulation. However, the routine-use genomic DNA expression systems required to investigate these phenomena are not well developed. Bacterial artificial chromosomes (BACs) and P1-based artificial chromosomes (PACs) have proved excellent tools for the human genome sequencing projects. We describe a system to rapidly and efficiently deliver and express BAC and PAC library clones in human and mouse cells by converting them into infectious amplicon vectors. We show packaging and intact delivery of genomic inserts of >100 kilobases with efficiencies of up to 100%. To demonstrate that genomic loci transferred in this way are functional, the complete human hypoxanthine phosphoribosyltransferase (HPRT) locus contained within a 115-kilobase BAC insert was shown to be expressed when delivered by infection into both a human HPRT-deficient fibroblast cell line and a mouse primary hepatocyte culture derived from Hprt-/- mice. Efficient gene delivery to primary cells is especially important, as these cells cannot be expanded using antibiotic selection. This work is the first demonstration of infectious delivery and expression of genomic DNA sequences of >100 kilobases, a technique that may prove useful for analyzing gene expression from the human genome.  相似文献   

8.
We previously assigned the disease locus for autosomal dominant hereditary motor neuropathy type II (distal HMN II) within a 13-cM interval at chromosome 12q24.3. We constructed a physical map of the distal HMN II region based on yeast artificial chromosomes (YACs), P1 artificial chromosomes (PACs), and bacterial artificial chromosomes (BACs) using an STS content mapping approach. The contig contains 26 YAC, 15 PAC, and 60 BAC clones and covers a physical distance of approximately 5 Mb. A total of 99 STS markers, including 25 known STSs and STRs, 49 new STSs generated from clone end-fragments, 20 ESTs, and 5 known genes, were located on the contig. This physical map provides a valuable resource for mapping genes and markers located within the distal HMN II region and facilitates the positional cloning of the distal HMN II gene.  相似文献   

9.
Hierarchical shotgun sequencing remains the method of choice for assembling high‐quality reference sequences of complex plant genomes. The efficient exploitation of current high‐throughput technologies and powerful computational facilities for large‐insert clone sequencing necessitates the sequencing and assembly of a large number of clones in parallel. We developed a multiplexed pipeline for shotgun sequencing and assembling individual bacterial artificial chromosomes (BACs) using the Illumina sequencing platform. We illustrate our approach by sequencing 668 barley BACs (Hordeum vulgare L.) in a single Illumina HiSeq 2000 lane. Using a newly designed parallelized computational pipeline, we obtained sequence assemblies of individual BACs that consist, on average, of eight sequence scaffolds and represent >98% of the genomic inserts. Our BAC assemblies are clearly superior to a whole‐genome shotgun assembly regarding contiguity, completeness and the representation of the gene space. Our methods may be employed to rapidly obtain high‐quality assemblies of a large number of clones to assemble map‐based reference sequences of plant and animal species with complex genomes by sequencing along a minimum tiling path.  相似文献   

10.
Bacterial artificial chromosomes (BACs) and P1 artificial chromosomes (PACs), which contain large fragments of genomic DNA, have been successfully used as transgenes to create mouse models of dose-dependent diseases. They are also potentially valuable as transgenes for dominant diseases given that point mutations and/or small rearrangements can be accurately introduced. Here, we describe a new method to introduce small alterations in BACs, which results in the generation of point mutations with high frequency. The method involves homologous recombination between the original BAC and a shuttle vector providing the mutation. Each recombination step is monitored using positive and negative selection markers, which are the Kanamycin-resistance gene, the sacB gene and temperature-sensitive replication, all conferred by the shuttle plasmid. We have used this method to introduce four different point mutations and the insertion of the β-galactosidase gene in a BAC, which has subsequently been used for transgenic animal production.  相似文献   

11.
Cre is widely used for DNA tailoring and, in combination with recombineering techniques, to modify BAC/PAC sequences for generating transgenic animals. However, mammalian genomes contain recombinase recognition sites (cryptic loxP sites) that can promote illegitimate DNA recombination and damage when cells express the Cre recombinase gene. We have created a new bioinformatic tool, FuzznucComparator, which searches for cryptic loxP sites and we have applied it to the analysis of the whole mouse genome. We found that cryptic loxP sites occur frequently and are homogeneously distributed in the genome. Given the mammalian nature of BAC/PAC genomic inserts, we hypothesised that the presence of cryptic loxP sites may affect the ability to grow and modify BAC and PAC clones in E. coli expressing Cre recombinase. We have observed a defect in bacterial growth when some BACs and PACs were transformed into EL350, a DH10B-derived bacterial strain that expresses Cre recombinase under the control of an arabinose-inducible promoter. In this study, we have demonstrated that Cre recombinase expression is leaky in un-induced EL350 cells and that some BAC/PAC sequences contain cryptic loxP sites, which are active and mediate the introduction of single-strand nicks in BAC/PAC genomic inserts.  相似文献   

12.
J Song  F Dong  J W Lilly  R M Stupar  J Jiang 《Génome》2001,44(3):463-469
The cloning and propagation of large DNA fragments as bacterial artificial chromosomes (BACs) has become a valuable technique in genome research. BAC clones are highly stable in the host, Escherichia coli, a major advantage over yeast artificial chromosomes (YACs) in which recombination-induced instability is a major drawback. Here we report that BAC clones containing tandemly repeated DNA elements are not stable and can undergo drastic deletions during routine library maintenance and DNA preparation. Instability was observed in three BAC clones from sorghum, rice, and potato, each containing distinct tandem repeats. As many as 46% and 74% of the single colonies derived from a rice BAC clone containing 5S ribosomal RNA genes had insert deletions after 24 and 120 h of growth, respectively. We also demonstrated that BAC insert rearrangement can occur in the early stage of library construction and duplication. Thus, a minimum growth approach may not avoid the instability problem of such clones. The impact of BAC instability on genome research is discussed.  相似文献   

13.
Canine herpesvirus (CHV) is an attractive candidate not only for use as a recombinant vaccine to protect dogs from a variety of canine pathogens but also as a viral vector for gene therapy in domestic animals. However, developments in this area have been impeded by the complicated techniques used for eukaryotic homologous recombination. To overcome these problems, we used bacterial artificial chromosomes (BACs) to generate infectious BACs. Our findings may be summarized as follows: (i) the CHV genome (pCHV/BAC), in which a BAC flanked by loxP sites was inserted into the thymidine kinase gene, was maintained in Escherichia coli; (ii) transfection of pCHV/BAC into A-72 cells resulted in the production of infectious virus; (iii) the BAC vector sequence was almost perfectly excisable from the genome of the reconstituted virus CHV/BAC by co-infection with CHV/BAC and a recombinant adenovirus that expressed the Cre recombinase; and (iv) a recombinant virus in which the glycoprotein C gene was deleted was generated by lambda recombination followed by Flp recombination, which resulted in a reduction in viral titer compared with that of the wild-type virus. The infectious clone pCHV/BAC is useful for the modification of the CHV genome using bacterial genetics, and CHV/BAC should have multiple applications in the rapid generation of genetically engineered CHV recombinants and the development of CHV vectors for vaccination and gene therapy in domestic animals.  相似文献   

14.
Recombineering allows DNA cloned in Escherichia coli to be modified via lambda (lambda) Red-mediated homologous recombination, obviating the need for restriction enzymes and DNA ligases to modify DNA. Here, we describe the construction of three new recombineering strains (SW102, SW105 and SW106) that allow bacterial artificial chromosomes (BACs) to be modified using galK positive/negative selection. This two-step selection procedure allows DNA to be modified without introducing an unwanted selectable marker at the modification site. All three strains contain an otherwise complete galactose operon, except for a precise deletion of the galK gene, and a defective temperature-sensitive lambda prophage that makes recombineering possible. SW105 and SW106 cells in addition carry l-arabinose-inducible Cre or Flp genes, respectively. The galK function can be selected both for and against. This feature greatly reduces the background seen in other negative-selection schemes, and galK selection is considerably more efficient than other related selection methods published. We also show how galK selection can be used to rapidly introduce point mutations, deletions and loxP sites into BAC DNA and thus facilitate functional studies of SNP and/or disease-causing point mutations, the identification of long-range regulatory elements and the construction of conditional targeting vectors.  相似文献   

15.
Bacterial artificial chromosomes (BACs) derived from genomes of large DNA viruses are powerful tools for functional delineation of viral genes. Current methods for cloning the genomes of large DNA viruses as BACs require prior knowledge of the viral sequences or the cloning of viral DNA fragments, and are tedious because of the laborious process of multiple plaque purifications, which is not feasible for some fastidious viruses. Here, we describe a novel method for cloning the genomes of large DNA viruses as BACs, which entails direct in vitro transposition of viral genomes with a BAC cassette, and subsequent recovery in Escherichia coli. Determination of insertion sites and adjacent viral sequences identify the BAC clones for genetic manipulation and functional characterization. Compared to existing methods, this new approach is highly efficient, and does not require any information on viral sequences or cloning of viral DNA fragments, and plaque purifications. This method could potentially be used for discovering previously unidentified viruses.  相似文献   

16.
Recombination of wild-type and mutant loxP sites mediated by wild-type Cre protein was analyzed in vivo using a sensitive phage P1 transduction assay. Contrary to some earlier reports, recombination between loxP sites was found to be highly specific: a loxP site recombined in vivo only with another of identical sequence, with no crossover recombination either between a wild-type and mutant site; or between two different mutant sites tested. Mutant loxP sites of identical sequence recombined as efficiently as wild-type. The highly specific and efficient recombination of mutant loxP sites in vivo helped in developing a procedure to progressively truncate DNA from either end of large genomic inserts in P1-derived artificial chromosomes (PACs) using transposons that carry either a wild-type or mutant loxP sequence. PAC libraries of human DNA were constructed with inserts flanked by a wild-type and one of the two mutant loxP sites, and deletions from both ends generated in clones using newly constructed wild-type and mutant loxP transposons. Analysis of the results provides new insight into the very large co-integrates formed during P1 transduction of plasmids with loxP sites: a model with tri- and possibly multimeric co-integrates comprising the PAC plasmid, phage DNA, and transposon plasmid(s) as intermediates in the cell appears best to fit the data. The ability to truncate a large piece of DNA from both ends is likely to facilitate functionally mapping gene boundaries more efficiently, and make available precisely trimmed genes in their chromosomal contexts for therapeutic applications.  相似文献   

17.
Heaney JD  Rettew AN  Bronson SK 《Genomics》2004,83(6):1072-1082
The hypoxanthine phosphoribosyltransferase (Hprt) locus has been shown to have minimal influence on transgene expression when used as a surrogate site in the mouse genome. We have developed a method to transfer bacterial artificial chromosomes (BACs) as a single copy into the partially deleted Hprt locus of embryonic stem cells. BACs were modified by Cre/loxP recombination to contain the sequences necessary for homologous recombination into and complementation of the partially deleted Hprt locus. Modified BACs were shown to undergo homologous recombination into the genome intact, to be stably transmitted through the germ line of transgenic mice, and to be expressed in the proper tissue-specific manner. This technology will facilitate many studies in which correct interpretation of data depends on developmentally appropriate transgene expression in the absence of rearrangements or deletions of endogenous DNA.  相似文献   

18.
Although bacterial artificial chromosomes (BACs) provide a well-characterized resource for the analysis of large chromosomal domains, low transfection rates have proven a significant limitation for their use in cell culture models. Using TP53 BAC clones that contain expression cassettes for enhanced green fluorescent protein or red fluorescent protein, we have examined conditions that promote BAC transfection in hamster, human, and mouse cell lines. Atomic force microscopy shows that BAC transfection efficiency correlates with the generation of small, highly condensed but dispersed lipid: BAC DNA transfection complexes. BAC DNA purity and concentration are critical for good transfection; debris from purification columns induces the formation of large aggregates that do not gain entry into the cell, and DNA concentrations must be optimized to promote intramolecular condensation rather than intermolecular linking, which also causes aggregation and diminished transfection efficiency. The expression of both markers and genes within BACs initially occurs at lower levels than observed with plasmids, requiring 3-5 days to evaluate the transfection results. We also show that BACs can be co-transfected with other BACs, which provides for increased experimental flexibility.  相似文献   

19.
The spinocerebellar ataxia type 2 (SCA2) gene has been localized to chromosome 12q24.1. To characterize this region and to aid in the identification of the SCA2 gene, we have constructed a 3.9-Mb physical map, which covers markers D12S1328 and D12S1329 known to flank the gene. The map comprises a contig of 84 overlapping yeast artificial chromosomes (YACs), P1 artificial chromosomes (PACs), and bacterial artificial chromosomes (BACs) onto which we placed 82 PCR markers. We localized eight genes and expressed sequence tags on this map, many of which had not been precisely mapped before. In contrast to YACs, which showed a high degree of chimerism and deletions in this region, PACs and BACs were stable. Only 1 in 65 PACs contained a small deletion, and 2 in 18 BACs were chimeric. The high-resolution physical map, which was used in the identification of the SCA2 gene, will be useful for the positional cloning of other disease genes mapped to this region.  相似文献   

20.
Recombinogenic engineering or recombineering is a powerful new method to engineer DNA without the need for restriction enzymes or ligases. We report here a general method for using recombineering to combine overlapping bacterial artificial chromosomes (BACs) to build larger, unified BACs. In order to test the feasibility of using recombineering to combine two large DNA fragments (>20 kb), we constructed a unified BAC containing the full-length tyrosinase-related protein-1 (Tyrp-1) gene from two library-derived BACs, one containing the 5′ regulatory elements and the other containing the 3′ coding exons. This was achieved using a two-step homologous recombination method enabled by the bacteriophage λ Red proteins. In the first step, retrieval, a large DNA fragment (~22 kb) was retrieved from one of the original BACs. In the second step, recombination, the retrieved DNA fragment was inserted into the second original BAC to form the unified BAC containing all the desired Tyrp-1 sequence. To further demonstrate the general applicability of our approach, an additional DNA fragment (~20 kb) was inserted into the unified BAC downstream of the coding region. This method should prove very useful for enabling BAC manipulation in a variety of scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号