首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Human emerin is a nuclear membrane protein that is lost or altered in patients with Emery-Dreifuss muscular dystrophy (EMD). While the protein is expressed in the majority of human tissues analyzed, the pathology predominates in cardiac and skeletal muscles of patients with EMD. Our results show that emerin can be detected by immunocytochemistry and immunoblotting in the nuclear envelope of all vertebrates studied from man to Xenopus. Immunolocalizations and nuclear envelope extraction experiments confirm that emerin possesses properties characteristic for integral membrane proteins of the inner nuclear membrane. Some nuclear envelope proteins are localized also in annulate lamellae (AL), i.e. cytoplasmic flattened membrane cisternae penetrated by pore complexes. To verify whether emerin is contained in these membrane stacks, we have induced the formation of AL by exposure of rat cells (line RV-SMC) to sublethal doses of the antimitotic drug vinblastine sulfate and found that emerin is present in the nuclear envelope, but is absent from AL. In contrast to the homogeneous distribution of emerin in the nuclear envelope of interphase cells, this protein shows a focal accumulation in the nuclear membranes of late telophase cells. During early reassembly of the nuclear envelope at this mitotic stage emerin colocalizes with lamin A/C but not with lamin B and LAP2 proteins. Confocal laser scanning microscopy after double-labeling experiments with emerin and tubulin shows that emerin is concentrated in areas of the mitotic spindle and in the midbody of mitotic cells suggesting a close interaction of these proteins. Our data suggest that emerin participates in the reorganisation of the nuclear envelope at the end of mitosis.  相似文献   

3.
Like Duchenne and Becker muscular dystrophies, Emery-Dreifuss muscular dystrophy (EDMD) is characterized by myopathic and cardiomyopathic abnormalities. EDMD has the particularity of being linked to mutations in nuclear proteins. The X-linked form of EDMD is caused by mutations in the emerin gene, whereas autosomal dominant EDMD is caused by mutations in the lamin A/C gene. Emerin colocalizes with lamin A/C in interphase cells, and binds in vitro to lamin A/C. Recent work suggests that lamin A/C might serve as a receptor for emerin. We have undertaken a structural analysis of emerin, and in particular of its N-terminal domain, which is comprised in the emerin segment critical for binding to lamin A/C. We show that region 2-54 of emerin adopts the LEM fold. This fold was originally described in the two N-terminal domains of another inner nuclear membrane protein called lamina-associated protein 2 (LAP2). The existence of a conserved solvent-exposed surface on the LEM domains of LAP2 and emerin is discussed, as well as the nature of a possible common target.  相似文献   

4.
Papillary thyroid carcinomas (PTCs) have characteristic nuclear shape changes compared to follicular-type thyroid epithelium. We tested the hypothesis that the altered nuclear shape results from altered distribution or expression of the major structural proteins of the nuclear envelope. Lamin A, lamin B1, lamin C, lamin B receptor (LBR), lamina-associated polypeptide 2 (LAP2), emerin, and nuclear pores were examined. PTC's with typical nuclear features by H&E were compared to non-neoplastic thyroid and follicular neoplasms using confocal microscopy, and semi-quantitative immunoblotting. Lamin A/C, lamin B1, LAP2, emerin, and nuclear pores all extend throughout the grooves and intranuclear inclusions of PTC. Their distribution and fluorescent intensity is not predictably altered relative to nuclear envelope irregularities. By immunoblotting, the abundance (per cell) and electrophoretic mobilities of lamin A, lamin B1, lamin C, emerin, and LAP2 proteins do not distinguish PTC, normal thyroid, or follicular neoplasms. These results do not support previously published predictions that lamin A/C expression is related to a loss of proliferative activity. At least three LAP2 isoforms are identified in normal and neoplastic thyroid. LBR is sparse or undetectable in all the thyroid samples. The results suggest that the irregular nuclear shape of PTC is not determined by these nuclear envelope structural proteins per se. We review the structure of the nuclear envelope, the major factors that determine nuclear shape, and the possible functional consequences of its alteration in PTC.  相似文献   

5.
Emerin and specific isoforms of nesprin-1 and -2 are nuclear membrane proteins which are binding partners in multi-protein complexes spanning the nuclear envelope. We report here the characterisation of the residues both in emerin and in nesprin-1alpha and -2beta which are involved in their interaction and show that emerin requires nesprin-1 or -2 to retain it at the nuclear membrane. Using several protein-protein interaction methods, we show that residues 368 to 627 of nesprin-1alpha and residues 126 to 219 of nesprin-2beta, which show high homology to one another, both mediate binding to emerin residues 140-176. This region has previously been implicated in binding to F-actin, beta-catenin and lamin A/C suggesting that it is critical for emerin function. Confirmation that these protein domains interact in vivo was shown using GFP-dominant negative assays. Exogenous expression of either of these nesprin fragments in mouse myoblast C2C12 cells displaced endogenous emerin from the nuclear envelope and reduced the targeting of newly synthesised emerin. Furthermore, we are the first to report that emerin mutations which give rise to X-linked Emery-Dreifuss muscular dystrophy, disrupt binding to both nesprin-1alpha and -2beta isoforms, further indicating a role of nesprins in the pathology of Emery-Dreifuss muscular dystrophy.  相似文献   

6.
Mutations in the LMNA gene encoding nuclear lamins A and C are responsible for seven inherited disorders affecting specific tissues. We have analyzed skin fibroblasts from a patient with type 1B limb-girdle muscular dystrophy and from her deceased newborn grandchild carrying, respectively, a heterozygous (+/mut) and a homozygous (mut/mut) nonsense Y259X mutation. In fibroblasts(+/mut), the presence of only 50% lamins A and C promotes no detectable abnormality, whereas in fibroblasts(mut/mut) the complete absence of lamins A and C leads to abnormally shaped nuclei with lobules in which none of the analyzed nuclear proteins were detected, i.e., B-type lamins, emerin, nesprin-1alpha, LAP2beta, and Nup153. These lobules perturb cell division as fibroblast(mut/mut) cultures with large proportions of cells with dysmorphic nuclei grow more slowly than controls and the cell proliferation normalizes when the number of these abnormally shaped nuclei declines. In all fibroblasts(mut/mut), nesprin-1alpha-like emerin exhibited aberrant localization in the endoplasmic reticulum. Transfection of wild-type lamin A or C cDNAs restored the correct localization of both emerin and nesprin-1alpha. These data demonstrate that lamin C, like lamin A, interacts in vivo directly with nesprin-1alpha and with emerin and that lamin A or C is sufficient for the correct anchorage of emerin and nesprin-1alpha at the nuclear envelope in human cells.  相似文献   

7.
Direct interaction between emerin and lamin A   总被引:11,自引:0,他引:11  
Emerin is the protein of the inner nuclear membrane that is affected by mutation in X-linked Emery-Dreifuss muscular dystrophy. The autosomal dominant form of the disease is caused by mutations in the lamin A/C gene. Several lines of circumstantial evidence have suggested an interaction of emerin with lamins in the nuclear lamina but direct interaction between the two proteins has not yet been demonstrated. We now demonstrate direct interaction between recombinant emerin and lamin A molecules using biomolecular interaction analysis (BIA) and monoclonal antibodies. An emerin-lamin A interaction system may be related in function to the LAP2-lamin B system at the inner nuclear rim.  相似文献   

8.
9.
Nuclear envelope defects in muscular dystrophy   总被引:2,自引:0,他引:2  
Muscular dystrophies are a heterogeneous group of disorders linked to defects in 20-30 different genes. Mutations in the genes encoding a pair of nuclear envelope proteins, emerin and lamin A/C, have been shown to cause the X-linked and autosomal forms respectively of Emery-Dreifuss muscular dystrophy. A third form of muscular dystrophy, limb girdle muscular dystrophy 1b, has also been linked to mutations in the lamin A/C gene. Given that these two genes are ubiquitously expressed, a major goal is to determine how they can be associated with tissue specific diseases. Recent results suggest that lamin A/C and emerin contribute to the maintenance of nuclear envelope structure and at the same time may modulate the expression patterns of certain mechanosensitive and stress induced genes. Both emerin and lamin A/C may play an important role in the response of cells to mechanical stress and in this way may help to maintain muscle cell integrity.  相似文献   

10.
Cells infected with wild-type herpes simplex virus type 1 (HSV-1) show disruption of the organization of the nuclear lamina that underlies the nuclear envelope. This disruption is reflected in changes in the localization and phosphorylation of lamin proteins. Here, we show that HSV-1 infection causes relocalization of the LEM domain protein emerin. In cells infected with wild-type virus, emerin becomes more mobile in the nuclear membrane, and in cells infected with viruses that fail to express UL34 protein (pUL34) and US3 protein (pUS3), emerin no longer colocalizes with lamins, suggesting that infection causes a loss of connection between emerin and the lamina. Infection causes hyperphosphorylation of emerin in a manner dependent upon both pUL34 and pUS3. Some emerin hyperphosphorylation can be inhibited by the protein kinase Cdelta (PKCdelta) inhibitor rottlerin. Emerin and pUL34 interact physically, as shown by pull-down and coimmunoprecipitation assays. Emerin expression is not, however, necessary for infection, since virus growth is not impaired in cells derived from emerin-null transgenic mice. The results suggest a model in which pUS3 and PKCdelta that has been recruited by pUL34 hyperphosphorylate emerin, leading to disruption of its connections with lamin proteins and contributing to the disruption of the nuclear lamina. Changes in emerin localization, nuclear shape, and lamin organization characteristic of cells infected with wild-type HSV-1 also occur in cells infected with recombinant virus that does not make viral capsids, suggesting that these changes occur independently of capsid envelopment.  相似文献   

11.
The nuclear envelope, muscular dystrophy and gene expression   总被引:16,自引:0,他引:16  
Lamins and other nuclear envelope proteins organize nuclear architecture through structural attachments that vary dynamically during the cell cycle and cell differentiation. Genetic studies have now shown that people with mutations in either lamins A/C or emerin, a nuclear membrane protein, develop Emery-Dreifuss muscular dystrophy. A mouse model for this rare disease has been created by knocking out the gene that encodes lamin A/C. This article discusses these and other recent results in the wider context of nuclear envelope function, as a framework for thinking about the possible ways in which defects in nuclear envelope proteins can lead to disease.  相似文献   

12.
13.
Emerin is an inner nuclear membrane protein that is involved in X-linked recessive Emery-Dreifuss muscular dystrophy (X-EDMD). Although the function of this protein is still unknown, we revealed that C-terminus transmembrane domain-truncated emerin (amino acid 1-225) binds to lamin A with higher affinity than lamin C. Screening for the emerin binding protein and immunoprecipitation analysis showed that lamin A binds to emerin specifically. We also used the yeast two-hybrid system to clarify that this interaction requires the top half of the tail domain (amino acid 384-566) of lamin A. Lamin A and lamin C are alternative splicing products of the lamin A/C gene that is responsible for autosomal dominant Emery-Dreifuss muscular dystrophy (AD-EDMD). These results indicate that the emerin-lamin interaction requires the tail domains of lamin A and lamin C. The data also suggest that the lamin A-specific region (amino acids 567-664) plays some indirect role in the difference in emerin-binding capacity between lamin A and lamin C. This is the first report that refers the difference between lamin A and lamin C in the interaction with emerin. These data also suggest that lamin A is important for nuclear membrane integrity.  相似文献   

14.
Integral proteins of the nuclear envelope inner membrane have been proposed to reach their sites by diffusion after their co-translational insertion in the rough endoplasmic reticulum. They are then retained in the inner nuclear membrane by binding to nuclear structures. One such structure is the nuclear lamina, an intermediate filament meshwork composed of A-type and B-type lamin proteins. Emerin, MAN1, and LBR are three integral inner nuclear membrane proteins. We expressed these proteins fused to green fluorescent protein in embryonic fibroblasts from wild-type mice and Lmna -/- mice, which lack A-type lamins. We then studied the diffusional mobilities of emerin, MAN1, and LBR using fluorescence recovery after photobleaching. We show that emerin and MAN1, but not LBR, are more mobile in the inner nuclear membrane of cells from Lmna -/- mice than in cells from wild-type mice. In cells from Lmna -/- mice expressing exogenous lamin A, the protein mobilities were similar to those in cells from wild-type mice. This supports a model where emerin and MAN1 are at least partly retained in the inner nuclear membrane by binding to A-type lamins, while LBR depends on other binding partners for its retention.  相似文献   

15.
The nuclear envelope (NE) LINC complex, in mammals comprised of SUN domain and nesprin proteins, provides a direct connection between the nuclear lamina and the cytoskeleton, which contributes to nuclear positioning and cellular rigidity. SUN1 and SUN2 interact with lamin A, but lamin A is only required for NE localization of SUN2, and it remains unclear how SUN1 is anchored. Here, we identify emerin and short nesprin-2 isoforms as novel nucleoplasmic binding partners of SUN1/2. These have overlapping binding sites distinct from the lamin A binding site. However, we demonstrate that tight association of SUN1 with the nuclear lamina depends upon a short motif within residues 209–228, a region that does not interact significantly with known SUN1 binding partners. Moreover, SUN1 localizes correctly in cells lacking emerin. Importantly then, the major determinant of SUN1 NE localization has yet to be identified. We further find that a subset of lamin A mutations, associated with laminopathies Emery-Dreifuss muscular dystrophy (EDMD) and Hutchinson-Gilford progeria syndrome (HGPS), disrupt lamin A interaction with SUN1 and SUN2. Despite this, NE localization of SUN1 and SUN2 is not impaired in cell lines from either class of patients. Intriguingly, SUN1 expression at the NE is instead enhanced in a significant proportion of HGPS but not EDMD cells and strongly correlates with pre-lamin A accumulation due to preferential interaction of SUN1 with pre-lamin A. We propose that these different perturbations in lamin A-SUN protein interactions may underlie the opposing effects of EDMD and HGPS mutations on nuclear and cellular mechanics.  相似文献   

16.
17.
SINC, a new type III secreted protein of the avian and human pathogen Chlamydia psittaci, uniquely targets the nuclear envelope of C. psittaci–infected cells and uninfected neighboring cells. Digitonin-permeabilization studies of SINC-GFP–transfected HeLa cells indicate that SINC targets the inner nuclear membrane. SINC localization at the nuclear envelope was blocked by importazole, confirming SINC import into the nucleus. Candidate partners were identified by proximity to biotin ligase-fused SINC in HEK293 cells and mass spectrometry (BioID). This strategy identified 22 candidates with high confidence, including the nucleoporin ELYS, lamin B1, and four proteins (emerin, MAN1, LAP1, and LBR) of the inner nuclear membrane, suggesting that SINC interacts with host proteins that control nuclear structure, signaling, chromatin organization, and gene silencing. GFP-SINC association with the native LEM-domain protein emerin, a conserved component of nuclear “lamina” structure, or with a complex containing emerin was confirmed by GFP pull down. Our findings identify SINC as a novel bacterial protein that targets the nuclear envelope with the capability of globally altering nuclear envelope functions in the infected host cell and neighboring uninfected cells. These properties may contribute to the aggressive virulence of C. psittaci.  相似文献   

18.
Barrier-to-autointegration factor (BAF), encoded by the BANF1 gene, is an abundant and ubiquitously expressed metazoan protein that has multiple functions during the cell cycle. Through its ability to cross-bridge two double-stranded DNA (dsDNA), it favours chromosome compaction, participates in post-mitotic nuclear envelope reassembly and is essential for the repair of large nuclear ruptures. BAF forms a ternary complex with the nuclear envelope proteins lamin A/C and emerin, and its interaction with lamin A/C is defective in patients with recessive accelerated aging syndromes. Phosphorylation of BAF by the vaccinia-related kinase 1 (VRK1) is a key regulator of BAF localization and function. Here, we demonstrate that VRK1 successively phosphorylates BAF on Ser4 and Thr3. The crystal structures of BAF before and after phosphorylation are extremely similar. However, in solution, the extensive flexibility of the N-terminal helix α1 and loop α1α2 in BAF is strongly reduced in di-phosphorylated BAF, due to interactions between the phosphorylated residues and the positively charged C-terminal helix α6. These regions are involved in DNA and lamin A/C binding. Consistently, phosphorylation causes a 5000-fold loss of affinity for dsDNA. However, it does not impair binding to lamin A/C Igfold domain and emerin nucleoplasmic region, which leaves open the question of the regulation of these interactions.  相似文献   

19.
Emery-Dreifuss muscular dystrophy (EDMD) is caused by mutations in the gene encoding the nuclear membrane protein emerin (X-linked EDMD) or in the gene encoding lamins A/C (autosomal dominant EDMD). One hypothesis explaining the disease suggests that the mutations lead to weakness of the nuclear lamina. To test this hypothesis we investigated lamin solubility and distribution in skin fibroblasts from X-EDMD patients. Using in situ extraction of cells and immunofluorescence microscopy or biochemical fractionation and immunoblotting, we found that all lamin subtypes displayed increased solubility properties in fibroblasts from X-EDMD patients compared to normal individuals. Lamin and emerin solubility was mildly increased in fibroblasts from an X-EDMD carrier. Biochemical fractionation and immunoblotting also indicated that lamin C but no other lamin became redistributed from the nuclear lamina to the nucleoplasm in X-EDMD fibroblasts. Indirect immunofluorescence and confocal microscopy studies using lamin A- and lamin C-specific antibodies confirmed that lamin C but not lamin A became redistributed to the nucleoplasm. Interestingly, the lamin A/C binding protein LAP2alpha was also mislocalized in X-EDMD fibroblasts.  相似文献   

20.
The nuclear lamina (NL) consists of lamin polymers and proteins that bind to the polymers. Disruption of NL proteins such as lamin and emerin leads to developmental defects and human diseases. However, the expression of multiple lamins, including lamin-A/C, lamin-B1, and lamin-B2, in mammals has made it difficult to study the assembly and function of the NL. Consequently, it has been unclear whether different lamins depend on one another for proper NL assembly and which NL functions are shared by all lamins or are specific to one lamin. Using mouse cells deleted of all or different combinations of lamins, we demonstrate that the assembly of each lamin into the NL depends primarily on the lamin concentration present in the nucleus. When expressed at sufficiently high levels, each lamin alone can assemble into an evenly organized NL, which is in turn sufficient to ensure the even distribution of the nuclear pore complexes. By contrast, only lamin-A can ensure the localization of emerin within the NL. Thus, when investigating the role of the NL in development and disease, it is critical to determine the protein levels of relevant lamins and the intricate shared or specific lamin functions in the tissue of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号