首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Fusarium head blight caused by Fusarium graminearum is a disease of cereal crops that not only reduces crop yield and quality but also results in contamination with trichothecenes such as nivalenol and deoxynivalenol (DON). To analyze the trichothecene induction mechanism, effects of 12 carbon sources on the production of DON and 3-acetyldexynivalenol (3ADON) were examined in liquid cultures incubated with nine strains of 3ADON-producing F. graminearum. Significantly high levels of trichothecene (DON and 3ADON) production by sucrose, 1-kestose and nystose were commonly observed among all of the strains tested. On the other hand, the levels of trichothecene biosynthesis induced by the other carbon sources were strain-specific. Tri4 and Tri5 expressions were up-regulated in the sucrose-containing medium but not in glucose. Trichothecene accumulation in the sucrose-containing medium was not repressed by the addition of glucose, indicating that trichothecene production was not regulated by carbon catabolite repression. These findings suggest that F. graminearum recognizes sucrose molecules, activates Tri gene expression and induces trichothecene biosynthesis.  相似文献   

2.
Eighty-two cultures of Fusarium species isolated in 1986 from moldy maize in Minnesota were each cultured on rice for 4 weeks and found to produce the following mycotoxins: F. graminearum isolates, deoxynivalenol (DON, 4–225 g/g), 3-acetyldeoxynivalenol (3-ADON, 2–4g/g), 15-acetyldeoxynivalenol (15-ADON, 1–35 g/g) and zearalenone (ZEA, 5–4350 g/g); F. moniliforme, fusarin C (detectable amounts to 1000 g/g); F. mòniliforme, F. oxysporum, F. proliferatum and F. subglutinans isolates, moniliformin (15–6775 g/g); F. moniliforme, F. proliferatum, and F. subglutinans isolates, fusaric acid (detectable amounts). Other mycotoxins screened for in each rice sample and not detected were T-2 toxin, HT-2 toxin, neosolaniol, T-2 tetraol, nivalenol, fusarenon-X, scirpenols, alpha and beta trans-zearalenols, wortmannin, and fusarochromanone. The rat feeding bioassay indicated that other, unidentified toxins may be present.  相似文献   

3.
《Fungal biology》2019,123(8):618-624
This study examined the effect of climate change (CC) abiotic factors of temperature (20, 25, 30 °C), water activity (aw; 0.995, 0.98) and CO2 exposure (400, 1000 ppm) may have on (a) growth, (b) gene expression of biosynthetic toxin genes (Tri5, Tri6, Tri16), and (c) T-2/HT-2 toxins and associated metabolites by Fusarium langsethiae on oat-based media and in stored oats. Lag phases and growth were optimum at 25 °C with freely available water. This was significantly reduced at 30 °C, at 0.98 aw and 1000 ppm CO2 exposure. In oat-based media and stored oats, Tri5 gene expression was reduced in all conditions except 30 °C, 0.98 aw, elevated CO2 where there was a significant (5.3-fold) increase. The Tri6 and Tri16 genes were upregulated, especially in elevated CO2 conditions. Toxin production was higher at 25 °C than 30 °C. In stored oats, at 0.98 aw, elevated CO2 led to a significant increase (73-fold) increase in T2/HT-2 toxin, especially at 30 °C. Nine T-2 and HT-2 related metabolites were detected, including a new dehydro T-2 toxin (which correlated with T-2 production) and the conjugate, HT-2 toxin, glucuronide. This shows that CC factors may have a significant impact on growth and mycotoxin production by F. langsethiae.  相似文献   

4.

Background

Genome comparisons between closely related species often show non-conserved regions across chromosomes. Some of them are located in specific regions of chromosomes and some are even confined to one or more entire chromosomes. The origin and biological relevance of these non-conserved regions are still largely unknown. Here we used the genome of Fusarium graminearum to elucidate the significance of non-conserved regions.

Results

The genome of F. graminearum harbours thirteen non-conserved regions dispersed over all of the four chromosomes. Using RNA-Seq data from the mycelium of F. graminearum, we found weakly expressed regions on all of the four chromosomes that exactly matched with non-conserved regions. Comparison of gene expression between two different developmental stages (conidia and mycelium) showed that the expression of genes in conserved regions is stable, while gene expression in non-conserved regions is much more influenced by developmental stage. In addition, genes involved in the production of secondary metabolites and secreted proteins are enriched in non-conserved regions, suggesting that these regions could also be important for adaptations to new environments, including adaptation to new hosts. Finally, we found evidence that non-conserved regions are generated by sequestration of genes from multiple locations. Gene relocations may lead to clustering of genes with similar expression patterns or similar biological functions, which was clearly exemplified by the PKS2 gene cluster.

Conclusions

Our results showed that chromosomes can be functionally divided into conserved and non-conserved regions, and both could have specific and distinct roles in genome evolution and regulation of gene expression.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-191) contains supplementary material, which is available to authorized users.  相似文献   

5.
Fusarium graminearum, as the causal agent of Fusarium head blight (FHB), not only causes yield loss, but also contaminates the quality of wheat by producing mycotoxins, such as deoxynivalenol (DON). The plasma membrane H+-ATPases play important roles in many growth stages in plants and yeasts, but their functions and regulation in phytopathogenic fungi remain largely unknown. Here we characterized two plasma membrane H+-ATPases: FgPMA1 and FgPMA2 in Fgraminearum. The FgPMA1 deletion mutant (∆FgPMA1), but not FgPMA2 deletion mutant (∆FgPMA2), was impaired in vegetative growth, pathogenicity, and sexual and asexual development. FgPMA1 was localized to the plasma membrane, and ∆FgPMA1 displayed reduced integrity of plasma membrane. ∆FgPMA1 not only impaired the formation of the toxisome, which is a compartment where DON is produced, but also suppressed the expression level of DON biosynthetic enzymes, decreased DON production, and decreased the amount of mycelial invasion, leading to impaired pathogenicity by exclusively developing disease on inoculation sites of wheat ears and coleoptiles. ∆FgPMA1 exhibited decreased sensitivity to some osmotic stresses, a cell wall-damaging agent (Congo red), a cell membrane-damaging agent (sodium dodecyl sulphate), and heat shock stress. FgMyo-5 is the target of phenamacril used for controlling FHB. We found FgPMA1 interacted with FgMyo-5, and ∆FgPMA1 showed an increased expression level of FgMyo-5, resulting in increased sensitivity to phenamacril, but not to other fungicides. Furthermore, co-immunoprecipitation confirmed that FgPMA1, FgMyo-5, and FgBmh2 (a 14-3-3 protein) form a complex to regulate the sensitivity to phenamacril and biological functions. Collectively, this study identified a novel regulating mechanism of FgPMA1 in pathogenicity and phenamacril sensitivity of F. graminearum.  相似文献   

6.
7.
8.
Fusarium graminearum is a causal agent of wheat scab disease and a producer of deoxynivalenol (DON) mycotoxins. Treatment with exogenous cyclic adenosine monophosphate (cAMP) increases its DON production. In this study, to better understand the role of the cAMP–protein kinase A (PKA) pathway in F. graminearum, we functionally characterized the PKR gene encoding the regulatory subunit of PKA. Mutants deleted of PKR were viable, but showed severe defects in growth, conidiation and plant infection. The pkr mutant produced compact colonies with shorter aerial hyphae with an increased number of nuclei in hyphal compartments. Mutant conidia were morphologically abnormal and appeared to undergo rapid autophagy‐related cell death. The pkr mutant showed blocked perithecium development, but increased DON production. It had a disease index of less than unity and failed to spread to neighbouring spikelets. The mutant was unstable and spontaneous suppressors with a faster growth rate were often produced on older cultures. A total of 67 suppressor strains that grew faster than the original mutant were isolated. Three showed a similar growth rate and colony morphology to the wild‐type, but were still defective in conidiation. Sequencing analysis with 18 candidate PKA‐related genes in three representative suppressor strains identified mutations only in the CPK1 catalytic subunit gene. Further characterization showed that 10 of the other 64 suppressor strains also had mutations in CPK1. Overall, these results showed that PKR is important for the regulation of hyphal growth, reproduction, pathogenesis and DON production, and mutations in CPK1 are partially suppressive to the deletion of PKR in F. graminearum.  相似文献   

9.
This study was aimed at assessing the relative contributions to H(2)O(2) detoxification by glutathione peroxidase and catalase in the mitochondrial matrix of heart. For this purpose, mitoplasts from rat heart were used in order to minimize contamination with microperoxisomes, and the kinetic rate constants of both enzymatic activities were determined along with a simulation profile. Results show that the contribution of catalase to H(2)O(2) removal in heart mitochondria is not significant, even under strong oxidative conditions, such as those achieved in ischemia-reperfusion and involving extensive glutathione depletion and high H(2)O(2) concentrations. Conversely, maintenance of the steady state levels of H(2)O(2) in the heart mitochondrial matrix seems to be the domain of glutathione peroxidase. It is suggested that the physiological role of the low amounts of catalase found in heart mitochondria is related to its peroxidatic rather than catalatic activity.  相似文献   

10.
Unground wheat kernels contaminated with 2.09 mg deoxynivalenol (DON) per kg dry matter were stored for up to 56 days at moisture contents of 15, 17.5 and 20% to study the alterations of DON concentration when the wheat was stored either unsupplemented or supplemented with 5 g sodium metabisulfite (Na2S2O5, SBS), 10 g propionic acid (PA) or 5 g SBS plus 10 g PA per kg. SBS addition alone or in combination with PA reduced the DON contamination to 1.2–4.3% of the initial DON concentration while DON concentration of unsupplemented and wheat batches supplemented only with PA varied inconsistently or remained unchanged. The SBS-related DON reduction was paralleled by a concomitant increase in the concentration of the non-toxic reaction product DON sulfonate. In contrast to the unsupplemented wet-stored controls, SBS addition prevented the growth of moulds and yeasts when added alone or in combination with PA. In conclusion, for the conditions examined, the wet preservation of DON-contaminated wheat with SBS seems to be promising as an on-farm detoxification measure.  相似文献   

11.
12.
Rapid generation of superoxide radicals and accumulation of H2O2 is a characteristic early response of plants following perception of insect herbivory signals. Induction of oxidative burst on account of herbivory triggers various defense mechanisms in plants. Response of superoxide and H2O2-metabolizing enzymes and secondary metabolites in nine pigeonpea genotypes to Helicoverpa armigera feeding was investigated. Out of nine, four genotypes were found to be moderately resistant, three were intermediate and two were moderately susceptible. In general, H. armigera infestation resulted in increase in superoxide dismutase activity, H2O2 and phenolics content and decrease in catalase (CAT) activity in leaves, developing seeds and pod wall of pigeonpea genotypes. Peroxidase activity was found only in leaves. Among genotypes, the increase in phenolic constituents was found greater in moderately resistant genotypes than in moderately susceptible genotypes; this might determine their contribution in providing resistance to genotypes against H. armigera infestation. The capability of moderately resistant genotypes to maintain relatively lower H2O2 content and higher CAT activity in pod wall and developing seeds also appeared to determine resistance of genotypes towards H. armigera. Expression of resistance to H. armigera was found to be associated with a negative correlation of H2O2-metabolizing enzymes and phenolics with pod damage as well as with negative association between CAT activity and H2O2 content. A positive correlation found between H2O2 content and pod damage suggested the accumulation of H2O2 in response to pod borer attack. In addition, correlation analysis also revealed a positive association between CAT, phenolic compounds and DPPH radical scavenging activity following pod borer attack; this indicated their contribution in resistance mechanisms against H. armigera herbivory.  相似文献   

13.
In this study, we propose a new strategy to boost the power density of glucose biofuel cells (GBFCs) biocathodes. By combining laccase with catalase enzymes electrophoretically deposited by means of AC electric fields on multiple walled carbon nanotubes modified platinum black and, then stabilized by an outer layer of polypyrrole in the construction of GC/MWCNTs/Ptb/LAc-CAt/PPy biocathode, we can take advantage of the H(2)O(2) present in the solution or body tissue to increase the level of the dissolved O(2). The results from cyclic voltammetry, amperometry and electrochemical impedance spectroscopy demonstrate that the deposited enzymes laccase and catalase by means of AC-EPD did not inhibit each other and carry out ~90% of the catalytic reduction process of O(2)-H(2)O(2). The power density of the non-compartmentalized GBFC constructed from GC/MWCNTs/Ptb/LAc-CAt/PPy biocathode and GC/MWCNTs/GOx/PPy bioanode in phosphate buffer containing 10mM glucose and equal amounts of dissolved O(2) and H(2)O(2) (0.3mM) is almost doubled because of the presence of catalase enzyme in the constructed biocathode. The latter might be of great interest for in vivo studies of GBFCs where the concentration of dissolved O(2) in the body tissues or biological fluids is very low compared to in vitro conditions (buffers under air).  相似文献   

14.
Histone H4 and H2B genes in rainbow trout (Salmo gairdnerii)   总被引:5,自引:0,他引:5  
Summary The complete nucleotide sequence of the 3.0-kb BamH I-Sst I restriction fragment contained within the rainbow trout genomic clone TH2 has been determined. This region contains the rainbow trout H4 and H2B histone genes and 5 and 3 flanking and spacer sequences, and represents the 5 half of the histone-gene cluster; the remaining half has been characterized previously. The genes are uninterrupted, and are transcribed from the same strand. The protein sequence of H4, as determined from the nucleic acid sequence, is the same as that derived for other vertebrate H4 proteins, although comparison of nucleotide sequences shows a great deal of sequence divergence, especially in the third base position. The amino acid sequence of H2B, though largely homologous to those of other vertebrate H2B proteins, displays some characteristic differences in primary structure. Consensus sequences noted in many other eukaryotic genes, as well as histone-specific consensus sequences, have been identified. An unusual feature of the spacer region between the H4 and H2B genes is the presence of a duplicated sequence 87 bp in length. The 5 and 3 ends of each repeat are complementary, and each repeat contains smaller repeated sequences internally, as well as a possible cruciform structure.  相似文献   

15.
Dysfunction of protein turnover is a feature of many human diseases, and proteins are substrates in important biological processes. Currently, no method exists for the measurement of global protein turnover (i.e., proteome dynamics) that can be applied in humans. Here we describe the use of metabolic labeling with deuterium ((2)H) from (2)H(2)O and liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of mass isotopomer patterns to measure protein turnover. We show that the positions available for (2)H label incorporation in vivo can be calculated using peptide sequence. The isotopic incorporation values calculated by combinatorial analysis of mass isotopomer patterns in peptides correlate very closely with values established for individual amino acids. Inpatient and outpatient heavy water labeling protocols resulted in (2)H label incorporation sufficient for reproducible quantitation in humans. Replacement rates were similar for peptides deriving from the same protein. Using a kinetic model to account for the time course of each individual's (2)H(2)O enrichment curves, dynamics of approximately 100 proteins with half-lives ranging from 0.4 to 40 days were measured using 8 μl of plasma. The measured rates were consistent with literature values. This method can be used to measure in vivo proteome homeostasis in humans in disease and during therapeutic interventions.  相似文献   

16.
Treatment of IMR-90 human diploid fibroblasts with a sublethal concentration of H(2)O(2) induces premature senescence. We investigated the protein abundance, subcellular localization and involvement of caveolin 1 in premature senescence. Caveolin 1 is a scaffolding protein able to concentrate and organize signaling molecules within the caveolae membrane domains. We report the first evidence of increased nuclear and cytoplasmic localization of caveolin 1 during establishment of H(2)O(2)-induced premature senescence. Moreover, we demonstrate that phosphorylation of caveolin 1 during treatment with H(2)O(2) is dependent on p38alpha mitogen-activated protein kinase.  相似文献   

17.
The kelp grouper, Epinephelus bruneus, is an economically important intensively cultured species in Southeast Asia. Despite the insatiable demand its large-scale production has been hindered by problems associated with water quality, nutrition, and diseases especially due to increased rearing density. It is generally accepted that in fish both innate and adaptive immune system provide protection from diseases. In the present study a cDNA library of Streptococcus iniae-challenged kelp grouper was constructed to identify the genes that reveal molecular mechanism, physiological functions, and gene expression in different tissues using expressed sequence tags (ESTs) and RT-PCR strategy. Of a total of 2170 ESTs examined 279 (12.9%) were identified as contig and 860 (39.6%) as singletons. A total of 190 important immune and enzyme related genes (16.7%) were identified in both contig and singletons. The key immune molecules identified comprise complement factors, chemotaxin, chemokine, Fas ligand, ferritins, hepcidin, lysozyme c, MHC, and TLR which are involved in the innate or adaptive immune system. Among the genes a full-length cDNA of leukocyte cell-derived chemotaxin-2 (EbLECT2) with 540 base pair (bp) was identified; it consists of a 5′-untranslated region (UTR) of 17 bp, a 3′-UTR of 76 bp, and a stop codon TAA in 3′-UTR. The EbLECT2 is an important molecule in the innate immunity. It is a multifunctional protein involved in cell growth, differentiation, and autoimmunity. The open reading frame (ORF) of the EbLECT2 encodes with 155 amino acid (aa) residues with a predicted molecular weight and isoelectric point (pI) of 17 kDa and 9, respectively. The close phylogenetic relationship of EbLECT2 shares the highest similarity with the already reported LECT2 from Epinephelus coioides (96%) and Epinephelus akaara (94%). EbLECT2 mRNA was expressed predominantly in liver, spleen, and kidney while the expression was moderate in gills, heart, and muscle in E. bruneus after being challenged with LPS from Escherichia coli and pathogenic bacterium Vibrio anguillarum both of which involve the immune defense system. Further, the recombinant mature EbLECT2 (rEbLECT2) was successfully expressed in E. coli BL21 (DE3), and the antiserum against EbLECT2 was obtained for further investigations. The significant number of ESTs genome results obtained constitutes a powerful resource for further investigation to establish the gene discovery, functional genomic research, molecular mechanisms, and development of microarrays for the gene expression studies in kelp grouper.  相似文献   

18.
Cytokines such as tumor necrosis factor alpha (TNF-α)-induced expression of matrix metalloproteinase (MMP) play a pivotal role in the destruction of articular cartilage in patients who are suffering from osteoarthritis (OA). Collagen type II, the basis for articular cartilage, can be degraded by MMP-1, MMP-3, and 13. EGb761, the standardized extract of Ginkgo biloba produced by Dr. Willar Schwabe Pharmaceuticals, has shown its anti-inflammatory capacity. This study aimed to determine a mechanism whereby EGb761 may inhibit cartilage degradation. Our results indicated that pretreatment with EGb761 abolishes MMP-1, MMP-3, and MMP-13 gene expression and protein expression induced by TNF-α in human chondrocyte monolayer. In addition, the reduction of the tissue inhibitor of metalloproteinase-1(TIMP-1) and metalloproteinase-2 gene expression induced by TNF-α was rescued by pretreatment with EGb761. Importantly, TNF-α-induced degradation of collagen type II was ameliorated by EGb761 in a dose-dependent manner. Mechanistically, our results indicated that EGb761 treatment attenuated TNF-α-induced NF-κB activation. These actions of EGb761 suggest a mechanism by which EGb761 may act to prevent cartilage breakdown in arthritis.  相似文献   

19.
In order to examine whether polyamines (PAs) modify the functioning of the scavenging system and oxidative stress levels in water-stressed plants, cucumber (Cucumis sativus L.) seedlings were treated with spermidine (Spd) prior to dehydration, and stress-evoked changes in superoxide dismutase (SOD) (EC 1.15.1.1), catalase (EC 1.11.1.6), guaiacol peroxidase (EC 1.11.1.7) activities, H(2)O(2) and superoxide radical levels were determined. Free PA content during Spd treatment and during the stress period were also determined. Exogenous application of Spd differentially influenced enzymes of the antioxidative system under stress conditions; we observed an increase of guaiacol peroxidase activity, and, to a lesser degree, a reduction of SOD and catalase activities in Spd-treated plants in comparison to untreated stressed plants. Hydrogen peroxide and superoxide radical contents were also reduced in stressed plants after Spd pretreatment. These positive effects were observed in the case of 1mM Spd concentration. A higher concentration (3mM) influenced negative, more significant stress-induced changes, but a lower concentration (0.1mM) had a very limited effect. In summary, PAs are able to moderate the activities of scavenging system enzymes and to influence oxidative stress intensity.  相似文献   

20.
Premature senescence of IMR-90 human diploid fibroblasts expressing telomerase (hTERT) establishes after exposure to an acute sublethal concentration of H2O2. We showed herein that p38(MAPK) was phosphorylated after exposure of IMR-90 hTERT cells to H2O2. Selective inhibition of p38(MAPK) activity attenuated the increase in the proportion of cells positive for senescence associated beta-galactosidase activity. We generated a low density DNA array to study gene expression profiles of 240 senescence-related genes. Using this array, p38(MAPK) inhibitor and p38(MAPK) small interferent RNA, we identified several p38(MAPK)-target genes differentially expressed in H2O2-stressed IMR-90 hTERT fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号