首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radioprotective effects of serum thymic factor in mice.   总被引:4,自引:0,他引:4  
Serum thymic factor (FTS) reduced mortality of mice after total-body irradiation with 7.56 Gy X rays. The radioprotective effect was achieved by daily repeated subcutaneous injections of 3-100 micrograms FTS, while doses higher than 300 micrograms/day/mouse were neither radioprotective nor toxic. Similarly, degeneration of the spleen was moderated by 3-100 micrograms FTS but not by 500 micrograms FTS in sublethally (3.78 Gy) irradiated mice. Histological examination showed that hematopoiesis was enhanced in the spleen by daily injections of 10 micrograms FTS. Spleen cells from the FTS-treated mice incorporated more [3H]thymidine in culture with or without concanavalin A. The treatment with FTS increased the production of colony-stimulating factor in the spleen as well as in peritoneal macrophage-like cells, and caused a significant increase in the number of granulocyte-macrophage colony-forming cells both in the spleen and in the femoral bone marrow. Furthermore, FTS prevented a decrease in circulating neutrophils in the sublethally irradiated mice. Prominent overshoot recovery of myelopoiesis, which occurred occasionally in sublethally irradiated mice, did not occur in the FTS-treated mice. The decrease in blood erythrocytes was also significantly reduced. These observations imply that this thymic hormone has potential as a radioprotector.  相似文献   

2.
Ammonium trichloro(dioxyethylene-O-O')tellurate (AS101) is a new synthetic compound previously described by us as having immunomodulating properties and minimal toxicity. Clinical trials are currently in progress with AS101 on AIDS and cancer patients. We found that AS101 was capable of inducing spleen cells and peritoneal exudate cells to secrete high quantities of CSF and IL-1. Because IL-1 has been previously described as a radioprotector and CSF may induce in vivo the proliferation of hemopoietic cells, we designed the present study in order to evaluate the effects of prolonged in vivo injections of AS101 on protection against lethal doses of irradiation, on the recovery pattern of precursor cells, and on the functioning of bone marrow (BM) and spleen cells of mice undergoing sublethal doses of treatment. We demonstrate that pretreatment with AS101 protects mice from lethal effects of ionizing radiation. AS101 was also found to significantly increase the number of BM and spleen cells, the absolute number of granulocyte macrophage-CFU and the secretion of CSF by BM cells. All were tested 9 days after sublethal dose of irradiation was administered. AS101 was found to have all of these radioprotective effects only when administered to mice before irradiation treatment. Moreover, the compound was found to enhance the proportion of CFU-S that enters the S phase of the cell cycle. These findings indicate that AS101 may be a promising agent to be used in reducing the time needed for reconstitution of hemopoietic cells after irradiation treatment.  相似文献   

3.
Regulation of immunoglobulin synthesis and secretion was analyzed by exposing spleen cells of b4b4 rabbits to anti-b4 for 24 hr in culture. As noted previously, no lymphocytes with membrane-bound b4 were found immediately after pulse treatment, but substantial regeneration of membrane Ig (mIg) occurred on further culture in antibody-free medium. Splenocytes cultured either in the presence or absence of anti-b4 showed a marked loss of Ig-secreting cells (ISC) after 24 hr in culture but recovered and exhibited peak numbers of ISC on Day 2. However, ISC formation in cultures of antibody-treated cells was significantly suppressed and thereafter declined at a more rapid rate than in control cultures. Polyclonal B cell activators from Nocardia and from gram-negative bacteria stimulated ISC formation in cultures of normal spleen cells, but responsiveness to these activators was depressed following antibody treatment. Antibody-induced suppression of Ig synthesis was attributed to interference with differentiation of B lymphocytes to the secretory stage.  相似文献   

4.
Circulating endothelial progenitor cells (EPCs) derived from the bone marrow (BM) participate in maintaining endothelial integrity and vascular homeostasis. Reduced EPC number and function result in vascular complications in diabetes. EPCs are a population of cells existing in various differentiation stages, and their cell surface marker profiles change during the process of mobilization and maturation. Hence, a generally accepted marker combination and a standardized protocol for the quantification of EPCs remain to be established. To determine the EPC subsets that are affected by diabetes, we comprehensively analyzed 32 surface marker combinations of mouse peripheral blood (PB), BM, and spleen cells by multicolor flow cytometry. Ten subsets equivalent to previously reported mouse EPCs significantly declined in number in the PB of streptozotocin-induced diabetic mice, and this reduction was reversed by insulin treatment. The PI(-)Lin(-)c-Kit(-)Sca-1(+)Flk-1(-)CD34(-)CD31(+) EPC cluster, which can differentiate into mature endothelial cells in vitro, was the highest population in the PB, BM, and spleen and occurred 61 times more in the spleen than in the PB. The cell number significantly decreased in the BM as well as in the PB but paradoxically increased in the spleen under diabetic conditions. Insulin treatment reversed the decrease of EPC subsets in the BM and PB and reversed their increase in spleen. A similar tendency was observed in some of the major cell populations in db/db mice. To the best of our knowledge, we are the first to report spatial population changes in mouse EPCs by diabetes in the blood and in the BM across the spleen. Diminished circulating EPC supply by diabetes may be ascribed to impaired EPC production in the BM and to decreased EPC mobilization from the spleen, which may contribute to vascular dysfunction in diabetic conditions.  相似文献   

5.
Following previous work showing that electrothermocoagulation of the median region of the hypothalamus (MH) caused a marked and permanent decrease in the cytotoxicity of natural killer (NK) cells and in the number of large granular lymphocytes, a study was made of the effect of such lesions on the generation of NK cells in the bone marrow (BM) and spleen of C57BL/6 mice. Fresh spleen and BM cells from MH-lesioned and sham-operated mice were cultured with 40 U of recombinant interleukin-2 (rIL-2). NK activity was significantly higher in BM of lesioned mice, whereas spleen NK activity was greater in the sham-operated controls. NK cells matured by culture with rIL-2 were characterized by assay with fluorescent monoclonal antibodies and found to display the typical NK phenotype. These results show that the number of NK precursors is greater in BM of MH-lesioned mice and that their migration into other organs is probably partially impeded. It can also be concluded that intactness of both BM and the hypothalamus is essential for the physiological generation of NK cells.  相似文献   

6.
Non-obese diabetic (NOD) mice develop Sjögren's-like syndrome (Ss) and a gradual loss of saliva secretory function. Our previous study showed that injections of matched normal spleen cells with Complete Freund's Adjuvant (CFA) reversed salivary gland dysfunction in 14-week-old NOD mice, which had established Ss. The spleen and bone marrow are closely related organs, and both are among the first sites of hematopoiesis during gestation. Noticing a rapidly increasing number of clinical trials using bone marrow (BM) cells treatments for autoimmune diseases, we tested if BM cells can prevent Ss and restore salivary glands’ function. We injected CFA and MHC class I-matched normal BM cells in 7-week-old NOD mice, which had not yet developed Ss. We found at week 52 post-treatment that all NOD mice receiving BM cells and CFA had a recovery of salivary flow and were protected from Ss and diabetes. BM cells-treated mice had their salivary function restored quantitatively and qualitatively. Saliva flow was higher (p < 0.05) in BM cells-transplanted mice when compared to control mice, which continued to deteriorate over time. Total proteins, epidermal growth factor, amylase, and electrolytes concentrations in saliva of BM cells-treated mice were not significantly changed at week 44 and 52 post-therapy when compared to pre-therapy (when the mice did not have Ss). Restoration of salivary flow could have resulted from a combination of rescue and paracrine effects from BM cells. This study suggests that a combined immuno- and cell-based therapy can permanently prevent Ss and restored salivary function in NOD mice.  相似文献   

7.
Human bone marrow (BM) B cells capable of spontaneous and high rate Ig secretion for 14 days in vitro have been described previously. We have shown recently that Ig secretion by these BM cells depends on stromal adherent BM cell-derived factors identified as IL-6 and fibronectin. Our report shows that the endogenous generation of IL-1 beta and TNF-alpha in serum-containing cultures of BM mononuclear cells (BMMC) is also involved in the control of Ig-secreting cells, because their blockade with specific antibodies markedly reduced Ig production. Further experiments revealed that IL-1 beta and TNF-alpha acted by regulating IL-6 production, as can be deduced from the following findings: 1) the inhibition of Ig secretion caused by either anti-IL-1 beta or anti-TNF-alpha antibodies could be reversed by exogenous IL-6; 2) the addition of either of these antibodies inhibited endogenous IL-6 production in BMMC cultures; 3) IL-1 beta plus TNF-alpha, but neither one alone, restored complete IL-6 and Ig production by BMMC in serum-free cultures. Moreover, adherent, but not nonadherent, BM cells were responsible for endogenous IL-1 beta and TNF-alpha secretion. Finally, IL-1 beta plus TNF-alpha induced the production of IL-6, but not of Ig, by adherent BM cells. Neither IL-6 nor Ig production was induced by adding this cytokine combination to nonadherent BM cell cultures, despite the fact that this fraction contained all the Ig-secreting cells. However, the addition of IL-6 restored Ig secretion in this cell fraction. These results suggest that IL-1 beta and TNF-alpha produced by adherent BM cells synergistically induce early IL-6 generation, which, in turn, drives BM B cell producers into the high rate Ig-secreting state.  相似文献   

8.
The frequency of both immunoglobulin (Ig)-synthesizing and Ig-secreting B cells have been analyzed in DA-to-WF rat renal allografts (and in control WF-to-WF autografts). We have correlated the in situ B-cell responses with corresponding events in the central lymphatic system of the recipient. Intracellular IgM- and IgG-containing plasma cells appeared in an allograft (but not in an autograft) very shortly after the transplantation. The numbers of both cell types in situ was approximately equal, the highest numbers of each being found on Day 4 after transplantation. A similar early response was observed in the recipient's spleen, however, very few Ig-synthesizing cells were seen in the blood. Only a fraction of the Ig-synthesizing cells in the allograft were involved in immunoglobulin secretion. Thus, the recovery of IgG- and IgM-secreting cells from an allograft was 10 and 2% of intracellular IgG- and IgM-containing cells, respectively. It appears, therefore, that allograft-infiltrating Ig-synthesizing B cells either die or migrate elsewhere before secreting immunoglobulin. The B-cell response in the graft occurs very early and is disproportionally high when the very low frequency of B lymphocytes in the allograft is considered. The data provide no evidence for inflammatory B cells being an integral part of graft rejection. Indeed, the possibility remains that the inflammatory B-cell response observed during the rejection process represents a meaningless byproduct of the inflammatory response.  相似文献   

9.
Except severe pulmonary disease caused by influenza virus infection, an impaired immune system is also a clinic characteristic. However, the mechanism(s) of influenza virus infection-induced depletion of B cells was unknown. Here, we compared the effect of two variant virulence H9N2 virus infections on mouse B cells. Our study found that the infection with highly pathogenic virus (V) of led to depletion of spleen B cells and bone marrow (BM) early B cells, compared to lowly pathogenic virus (Ts). Moreover, high apoptosis and cell cycle arrest in spleen and BM were detected, suggesting important factors for the reduction of B cells in both organs. Further, this effect was not caused by virus replication in spleen and BM. Compared to Ts virus infection, V virus resulted in higher glucocorticoids (GCs) and lower leptin level in plasma. Intraperitoneal GCs receptor antagonist RU486 injection was sufficient to prevent the loss of spleen B cell and BM pro- and immature B cells, but similar result was not observed in leptin-treated mice. Depletion of spleen B cells and BM pro-B cells was also reversed by chemical sympathectomy mediated by the norepinephrine (NE) analog 6-hydroxydopamine (6-OHDA), but the treatment didn''t affect the GCs level. This study demonstrated that depletion of B cells induced by H9N2 AIV was dependent on HPA axis and sympathetic response.  相似文献   

10.
Human hemopoietic stem cells (HSC) have been shown to engraft, differentiate, and proliferate in the hemopoietic tissues of sublethally irradiated NOD/LtSZ scid/scid (NOD/SCID) mice. We used this model to study homing, survival, and expansion of human HSC populations from different sources or phenotype. We observed that CD34+ cells homed specifically to bone marrow (BM) and spleen, but by 3 days after injection, survived only in the BM. These BM-homed CD34+ cells proliferated intensively and gave rise to a 12-fold, 5.5-fold, and 4-fold expansion in 3 days for umbilical cord blood, adult mobilized peripheral blood, and adult BM-derived cells, respectively. By injection of purified subpopulations, it was demonstrated that both CD34+38+ and CD34+38- umbilical cord blood HSC homed to the BM and expanded. Importantly, kinetics of expansion were different: CD34+38+ cells started to increase in cell number from day 3 onwards, and by 4 wk after injection, virtually all CD34+ cells had disappeared. In contrast, CD34+38- cells remained quiescent during the first week and started to expand intensively from the third week on. In this paper, we have shown that homing, survival, and expansion of stem cells are three independent phenomena important in the early phase of BM engraftment and that kinetics of engraftment differ between CD34+38+ and CD34+38- cells.  相似文献   

11.
To define the characteristics of T cells associated with the gastrointestinal tract, the phenotypes and immunoregulatory function of T cells from mesenteric lymph node (MLN) and lamina propria lymphocytes (LPL) were compared to peripheral blood (PBL) and spleen lymphocytes in normal nonhuman primates. Mesenteric lymph node lymphocytes were characterized by a higher proportion of Leu-3+(CD4+) and 9.3+(alpha-Tp44) lymphocytes and a lower proportion of Leu-2+(CD8) lymphocytes than lymphocytes in other sites. LPL and MLN lymphocytes were both characterized by a higher proportion of cells having the helper-inducer phenotypes (Leu-3+, Leu-8+, Leu-3+, 2H4+) compared to PBL. A lower proportion of cells with the suppressor-inducer phenotypes (Leu-3+, Leu-8+, Leu-3+, 2H4+) was found in LPL, but not in MLN lymphocytes compared to PBL. In studies of the Leu-2+ T cells, it was found that whereas PBL, spleen, and LPL contained approximately equal proportions of Leu-2+, Leu-15+ (suppressor phenotype) and Leu-2+, 9.3+ lymphocytes (cytolytic T-cell phenotype), the MLN T cells were predominantly Leu-2+, 9.3+. Furthermore, the Leu-3/Leu-2 ratio was significantly higher in MLN compared to other sites. In pokeweed mitogen-stimulated cultures, the highest helper function for Ig synthesis was found in MLN. Cells from none of the sites studied showed evidence of increased suppressor cell activity. These results show that MLN and LPL T cells in normal nonhuman primates differ from T cells in peripheral blood and spleen. While both MLN and LPL have a high proportion of T cells with the helper-inducer phenotype, cells with the suppressor-effector phenotype are infrequent in MLN, while cells with the suppressor-inducer phenotype are infrequent in LPL.  相似文献   

12.
The acute and residual (or long-term) bone marrow (BM) injury induced by ionizing radiation (IR) is a major clinic concern for patients receiving conventional radiotherapy and victims accidentally exposed to a moderate-to-high dose of IR. In this study, we investigated the effects of the treatment with the p38 inhibitor SB203580 (SB) and/or granulocyte colony-stimulating factor (G-CSF) on the hematoimmune damage induced by IR in a mouse model. Specifically, C57BL/6 mice were exposed to a sublethal dose (6 Gy) of total body irradiation (TBI) and then treated with vehicle, G-CSF, SB, and G-CSF plus SB. G-CSF (1 µg/mouse) was administrated to mice by intraperitoneal (ip) injection twice a day for six successive days; SB (15 mg/kg) by ip injection every other day for 10 days. It was found that the treatment with SB and/or G-CSF significantly enhanced the recovery of various peripheral blood cell counts and the number of BM mononuclear cells 10 and 30 days after the mice were exposed to TBI compared with vehicle treatment. Moreover, SB and/or G-CSF treatment also increased the clonogenic function of BM hematopoietic progenitor cells (HPCs) and the frequency of BM lineageSca1+c-kit+ cells (LSK cells) and short-term and long term hematopoietic stem cells (HSCs) 30 days after TBI, in comparison with vehicle treated controls. However, the recovery of peripheral blood B cells and CD4+ and CD8+ T cells was not significantly affected by SB and/or G-CSF treatment. These results suggest that the treatment with SB and/or G-CSF can reduce IR-induced BM injury probably in part via promoting HSC and HPC regeneration.  相似文献   

13.

Background

Lactobacillus rhamnosus CRL1505 (Lr) administered during the repletion of immunocompromised-malnourished mice improves the resistance against intestinal and respiratory infections. This effect is associated with an increase in the number and functionality of immune cells, indicating that Lr could have some influence on myeloid and lymphoid cell production and maturation.

Objective

This study analyzed the extent of the damage caused by malnutrition on myeloid and lymphoid cell development in the spleen and bone marrow (BM). We also evaluated the impact of immunobiotics on the recovery of hematopoiesis affected in malnourished mice.

Methods

Protein malnourished mice were fed on a balanced conventional diet for 7 or 14 consecutive d with or without supplemental Lr or fermented goat''s milk (FGM). Malnourished mice and well-nourished mice were used as controls. Histological and flow cytometry studies were carried out in BM and spleen to study myeloid and lymphoid cells.

Results

Malnutrition induced quantitative alterations in spleen B and T cells; however, no alteration was observed in the ability of splenic B cells to produce immunoglobulins after challenge with LPS or CpG. The analysis of BM B cell subsets based on B220, CD24, IgM and IgD expression showed that malnutrition affected B cell development. In addition, BM myeloid cells decreased in malnourished mice. On the contrary, protein deprivation increased BM T cell number. These alterations were reverted with Lr or FGM repletion treatments since normal numbers of BM myeloid, T and B cells were observed in these groups.

Conclusions

Protein malnutrition significantly alters B cell development in BM. The treatment of malnourished mice with L. rhamnosus CRL1505 was able to induce a recovery of B cells that would explain its ability to increase immunity against infections. This work highlights the possibility of using immunobiotics to accelerate the recovery of lymphopoyesis in immunocompromised-malnourished hosts.  相似文献   

14.
Autoimmune-prone (NZB X NZW)F1 (B/W) mice have been shown to have a variety of immunologic perturbations. However, most studies have been performed with spleen cells. By using the Mishell-Dutton culture system, we examined the in vitro immune response of the various lymphoid tissue to determine whether an imbalance at a selective lymphoid site may exist in B/W mice. It was shown that the ability of mesenteric lymph node (MLN) cells of B/W mice to generate plaque-forming cells (PFC) in response to sheep red blood cells was consistently less than that of the spleen cells. This relationship held true in the aged mice. In contrast, the ability of the MLN cells of other strains not prone to develop autoimmunity to generate PFC was higher than that of the spleen cells. No significant difference in the mitogenic response of the lymphoid cells from various lymphoid tissue in the young B/W mice was seen, as compared with normal lymphoid cells from control mice. However, it was demonstrated that a relative decrease of B cells and immunoregulatory Lyt-123+ cells in the MLN in the B/W mice occurred early in life, and it was concluded that this abnormality may account for the low PFC response observed.  相似文献   

15.
Numerous red blood cells are generated every second from proliferative progenitor cells under a homeostatic state. Increased erythropoietic activity is required after myelo-suppression as a result of chemo-radio therapies. Our previous study revealed that the endothelial cell-selective adhesion molecule (ESAM), an authentic hematopoietic stem cell marker, plays essential roles in stress-induced hematopoiesis. To determine the physiological importance of ESAM in erythroid recovery, ESAM-knockout (KO) mice were treated with the anti-cancer drug, 5-fluorouracil (5-FU). ESAM-KO mice experienced severe and prolonged anemia after 5-FU treatment compared to wild-type (WT) mice. Eight days after the 5-FU injection, compared to WT mice, ESAM-KO mice showed reduced numbers of erythroid progenitors in bone marrow (BM) and spleen, and reticulocytes in peripheral blood. Megakaryocyte-erythrocyte progenitors (MEPs) from the BM of 5-FU-treated ESAM-KO mice showed reduced burst forming unit-erythrocyte (BFU-E) capacities than those from WT mice. BM transplantation revealed that hematopoietic stem/progenitor cells from ESAM-KO donors were more sensitive to 5-FU treatment than that from WT donors in the WT host mice. However, hematopoietic cells from WT donors transplanted into ESAM-KO host mice could normally reconstitute the erythroid lineage after a BM injury. These results suggested that ESAM expression in hematopoietic cells, but not environmental cells, is critical for hematopoietic recovery. We also found that 5-FU treatment induces the up-regulation of ESAM in primitive erythroid progenitors and macrophages that do not express ESAM under homeostatic conditions. The phenotypic change seen in macrophages might be functionally involved in the interaction between erythroid progenitors and their niche components during stress-induced acute erythropoiesis. Microarray analyses of primitive erythroid progenitors from 5-FU-treated WT and ESAM-KO mice revealed that various signaling pathways, including the GATA1 system, were impaired in ESAM-KO mice. Thus, our data demonstrate that ESAM expression in hematopoietic progenitors is essential for erythroid recovery after a BM injury.  相似文献   

16.
Glycosylation-enhancing factor (GEF) and IgE-potentiating factor were detected in culture supernatants of rat mesenteric lymph nodes (MLN) cells obtained 14 days after infection with Nippostrongylus brasiliensis (Nb), but not in supernatants of MLN cells of 8-day Nb-infected rats. Both factors were also released from T cells upon antigenic stimulation of KLH + alum-primed spleen cells. The GEF from the Nb-infected rats and KLH + alum-primed spleen cells had affinity for p-aminobenzamidine agarose and were inactivated by phenylmethylsulfonylfluoride, an inhibitor of serine proteases. These results indicate that the GEF obtained in the two systems is a serine protease and is identical to that obtained by stimulation of normal T cells with lymphocytosis-promoting factor (LPF) from Bordetella pertussis. The concomitant formation of IgE-potentiating factor and GEF by Nb infection, by antigenic simulation of KLH + alum-primed spleen cells, and by treatment of rats with Bordetella pertussis vaccine suggests that the serine protease is involved in a common pathway leading to the selective formation of IgE-potentiating factor. In contrast, glycosylation-inhibiting factor (GIF) is always found during the selective formation of IgE-suppressive factor. IgE-suppressive factor and GIF were formed by MLN cells of 8-day Nb-infected rats and KLH-CFA-primed spleen cells. GIF was detected in culture supernatants of T cell hybridomas 23A4 and 23B6, which form unglycosylated IgE-binding factors upon incubation with IgE. GIF obtained from all of these sources bound to monoclonal anti-lipomodulin. These findings indicate that GIF or lipomodulin is involved in all systems, which leads to the selective formation of IgE-suppressive factor. However, the formation of GIF was not restricted to those conditions in which IgE-suppressive factor was selectively formed. The culture supernatants of MLN cells of 14-day Nb-infected rats and antigen-stimulated KLH + alum-primed spleen cells contained a small amount of GIF, which could be detected after inactivation of GEF. It appears that T cells from these sources formed GEF and GIF, but that GEF overcame the effect of GIF on glycosylation of IgE-binding factors. The results indicate that the nature and biologic activities of IgE-binding factors are decided by the balance between GEF and GIF formed by T cells.  相似文献   

17.
Newly hatched F1 hybrid chicks isogenic for the strong B histocompatibility locus were rendered immunologically incompetent by cyclophosphamide treatment and x-irradiation. They were then injected intravenously with thymus, bone marrow, or bursa cells together with sheep erythrocytes (SE) and received another iv injection of SE 3 days later. Splenic plaque-forming cells (PFC) and serum hemagglutinins were assayed 7 days after transfer. At donor ages of 14–26 days, cells from thymus (T) and bone marrow (BM) showed synergism when injected together, as indicated by a significantly higher geometric mean of PFC per recipient spleen in the BM + T group than in the BM group. The response of the T group was extremely low. With thymus and bursa cells from 6- to 28-day-old donors, significant synergism was demonstrated in 3 of 9 individual experiments. However, almost all the other 6 experiments showed marked differences in the same direction, and the combined probability for all experiments was < 0.001. The most striking demonstration of thymus + bursa synergism was made in 2 experiments using 1-week-old donors. Bone marrow cells from 1-week-old donors failed to cooperate with thymus, as did BM cells from older bursectomized agammaglobulinemic donors. This suggests that B cells from bone marrow originate in the bursa. Thymus-bursa cooperation was somewhat difficult to demonstrate in individual experiments using donors over 1 week of age, owing to the occurrence of some responses with bursal cells alone and to variability of response within bursa or bursa + thymus recipient groups. Synergism between thymus and bursa cells was more consistently demonstrable when irradiated normal spleen or low doses of bone marrow cells were added. These additions led to an increased response and a lowered coefficient of variation in the thymus + bursa recipient groups. The ‘third’ cell type needed for optimal response by the thymus and bursa cells together was tentatively identified as a macrophage.  相似文献   

18.
19.
Natural killer cells generated from bone marrow culture   总被引:3,自引:0,他引:3  
By using anti-Nk-1 antiserum, we detected a significant proportion of Nk-1+ cells in bone marrow (BM) with low lytic activity that can be slightly enhanced with interferon (IF). These BM Nk-1+ cells also bind to YAC-1 cells. Because Nk-1 antigen has been found to mark NK cells, BM appears to harbor immature precursors to natural killer (NK) cells. We therefore used concanavalin A (Con A)-conditioned medium to culture BM cells to induce differentiation of the putative NK precursors. After 3 to 4 days in culture, cytotoxic activity to YAC, that peaked at 6 to 7 days, was consistently generated, and the activity still could be detected after 10 to 14 days in culture. In contrast, experiments using spleen cultures, performed in a similar manner, showed peak activity after 4 to 5 days and the activity declined thereafter. The cytotoxic activity of cultured BM cells was also higher than that of cultured spleen cells. Cultures of BM cells from old mice have good cytotoxic activity. The cytotoxic cells generated were Nk-1+ and Qa-5+. Furthermore, these culture conditions did not maintain the proliferation of CFU-C cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号