首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Triterpene derivatives were analyzed for anti-HIV-1 activity and for cellular toxicity. Betulinic aldehyde, betulinic nitrile, and morolic acid derivatives were identified to have anti-HIV-1 activity. These derivatives inhibit a late step in virus replication, likely virus maturation.  相似文献   

2.
The peptidyl-prolyl isomerase cyclophilin A (CypA) increases the kinetics by which human immunodeficiency virus type 1 (HIV-1) spreads in tissue culture. This was conclusively demonstrated by gene targeting in human CD4(+) T cells, but the role of CypA in HIV-1 replication remains unknown. Though CypA binds to mature HIV-1 capsid protein (CA), it is also incorporated into nascent HIV-1 virions via interaction with the CA domain of the Gag polyprotein. These findings raised the possibility that CypA might act at multiple steps of the retroviral life cycle. Disruption of the CA-CypA interaction, either by the competitive inhibitor cyclosporine (CsA) or by mutation of CA residue G89 or P90, suggested that producer cell CypA was required for full virion infectivity. However, recent studies indicate that CypA within the target cell regulates HIV-1 infectivity by modulating Ref1- or Lv1-mediated restriction. To examine the relative contribution to HIV-1 replication of producer cell CypA and target cell CypA, we exploited multiple tools that disrupt the HIV-1 CA-CypA interaction. These tools included the drugs CsA, MeIle(4)-CsA, and Sanglifehrin; CA mutants exhibiting decreased affinity for CypA or altered CypA dependence; HeLa cells with CypA knockdown by RNA interference; and Jurkat T cells homozygous for a deletion of the gene encoding CypA. Our results clearly demonstrate that target cell CypA, and not producer cell CypA, is important for HIV-1 CA-mediated function. Inhibition of HIV-1 infectivity resulting from virion production in the presence of CsA occurs independently of the CA-CypA interaction or even of CypA.  相似文献   

3.
Misumi S 《Uirusu》2005,55(2):273-279
It is well-known that a peptidyl-prolyl cis-trans isomerase cyclophilin A (CyPA) is incorporated into Human immunodeficiency virus type 1 (HIV-1) particle. The proteome analysis of the purified HIV-1 strain LAV-1 (HIV-1(LAV-1)) reveals that three isoforms of CyPA with an isoelectric point (pI) of 6.00, 6.40, and 6.53 are inside the viral membrane and another isoform with a pI of 6.88 is outside the viral membrane; and that the CyPA isoform with a pI of 6.53 is N-acetylated. The mechanisms that permit the redistribution of CyPA with a pI of 6.88 on the viral surface have not yet been clarified, but it penetrates the viral membrane after budding.  相似文献   

4.
5.
Sayah DM  Luban J 《Journal of virology》2004,78(21):12066-12070
Capsid (CA)-specific restrictions are determinants of retroviral tropism in mammalian cells. One such restriction, human Ref1, targets strains of murine leukemia virus bearing an arginine at CA residue 110 (N-MLV), resulting in decreased accumulation of viral cDNA. The cellular factors accounting for Ref1 activity are unknown. As(2)O(3) increases N-MLV titer in Ref1-positive cells, possibly by counteracting Ref1. Restriction factor saturation experiments suggest that Ref1 may also target human immunodeficiency virus type 1 (HIV-1), but only if its CA is not bound to the cellular protein cyclophilin A (CypA). As a step towards understanding the genetic determinants of Ref1, we subjected Ref1-positive TE671 cells to three sequential rounds of selection with N-MLV reporter viruses. We isolated a subclone, 17H1, that was permissive for N-MLV infection and therefore deficient in Ref1 activity. Stimulation of N-MLV replication by As(2)O(3) was attenuated in 17H1, confirming that the drug acts by overcoming Ref1 activity. HIV-1 infection of 17H1 cells was resistant to disruption of the CA-CypA interaction, demonstrating that Ref1 restricts CypA-free HIV-1. Our results suggest that interaction with CypA evolved to protect HIV-1 from this human antiviral activity.  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1) incorporates the cellular peptidyl-prolyl cis-trans isomerase cyclophilin A (CyPA), the cytosolic receptor for the immunosuppressant cyclosporin A (CsA). CsA inhibits the incorporation of CyPA and reduces HIV-1 virion infectivity but is inactive against closely related primate lentiviruses that do not interact with CyPA. The incorporation of CyPA into HIV-1 virions is mediated by a specific interaction with a proline-containing, solvent-exposed loop in the capsid (CA) domain of the Gag polyprotein. CsA, which disrupts the interaction with CA, binds at the active site of CyPA. To test whether active-site residues are also involved in the interaction with HIV-1 CA, we used a panel of previously characterized active-site mutants of human CyPA. Expression vectors for epitope-tagged wild-type and mutant CyPA were transfected into COS-gamma cells along with HIV-1 proviral DNA, and the virions produced were analyzed for the presence of tagged proteins. Cotransfection of the wild-type expression vector led to the incorporation of readily detectable amounts of epitope-tagged CyPA into HIV-1 virions. One CyPA mutant with a substantially decreased sensitivity to CsA was incorporated with wild-type efficiency, demonstrating that the requirements for binding to CsA and to HIV-1 CA are not identical. The remaining six CyPA mutants were incorporated with markedly reduced efficiency, providing in vivo evidence that HIV-1 CA interacts with the active site of CyPA.  相似文献   

7.
8.
9.
10.
Cyclophilin A (CypA) is a member of a family of cellular proteins that share a peptidyl prolyl cis-trans isomerase (PPIase) activity. CypA was previously reported to be required for the biochemical stability and function (specifically, induction of G2 arrest) of the human immunodeficiency virus type 1 (HIV-1) protein R (Vpr). In the present study, we examine the role of the Vpr-CypA interaction on Vpr-induced G2 arrest. We find that Vpr coimmunoprecipitates with CypA and that this interaction is disrupted by substitution of proline-35 of Vpr as well as incubation with the CypA inhibitor cyclosporine A (CsA). Surprisingly, the presence of CypA or its binding to Vpr is dispensable for the ability of Vpr to induce G2 arrest. Vpr expression in CypA-/- cells leads to induction of G2 arrest in a manner that is indistinguishable from that in CypA+ cells. CsA abolished CypA-Vpr binding but had no effect on induction of G2 arrest or Vpr steady-state levels. In view of these results, we propose that the interaction with CypA is independent of the ability of Vpr to induce cell cycle arrest. The interaction between Vpr and CypA is intriguing, and further studies should examine its potential effects on other functions of Vpr.  相似文献   

11.
D Braaten  H Ansari    J Luban 《Journal of virology》1997,71(3):2107-2113
Completion of an early step in the human immunodeficiency virus type 1 (HIV-1) life cycle requires incorporation into virions of the cellular peptidyl-prolyl isomerase cyclophilin A (CyPA) by the Gag polyprotein. Elucidation of the biochemical role of CyPA would be aided by a detailed analysis of the genetic requirements for the formation of the Gag-CyPA complex; previous experiments have demonstrated the requirement for a critical proline and the immediately preceding glycine, located within the capsid domain of Gag, but nothing is known about the necessary CyPA residues. Cyclophilins possess a hydrophobic pocket where proline-containing peptide substrates and the immunosuppressive drug cyclosporine A bind. In this study, we engineered five CyPA mutations, each of which alters a residue that contributes to the hydrophobic pocket. Compared with the wild-type protein, all of the mutants drastically reduced CyPA binding to HIV-1 Gag and similarly inhibited CyPA incorporation into virions. In addition, we demonstrated that previously reported differences between the Gag-binding properties of CyPA and CyPB are due to adventitious association involving residues in the signal sequence of CyPB and that the core domain of CyPB interacts with Gag in a fashion which is indistinguishable from that of CyPA. These studies indicate that, as with other proline-containing peptides or cyclosporine A, HIV-1 Gag directly contacts residues in the hydrophobic pocket of CyPA.  相似文献   

12.
13.
Generation of RNA dimeric form of the human immunodeficiency virus type 1 (HIV-1) genome is crucial for viral replication. The dimerization initiation site (DIS) has been identified as a primary sequence that can form a stem-loop structure with a self-complementary sequence in the loop and a bulge in the stem. It has been reported that HIV-1 RNA fragments containing the DIS form two types of dimers, loose dimers and tight dimers. The loose dimers are spontaneously generated at the physiological temperature and converted into tight dimers by the addition of nucleocapsid protein NCp7. To know the biochemical process in this two-step dimerization reaction, we chemically synthesized a 39-mer RNA covering the entire DIS sequence and also a 23-mer RNA covering the self-complementary loop and its flanking stem within the DIS. Electrophoretic dimerization assays demonstrated that the 39-mer RNA reproduced the two-step dimerization process, whereas the 23-mer RNA immediately formed the tight dimer. Furthermore, deletion of the bulge from the 39-mer RNA prevented the NCp7-assisted tight-dimer formation. Therefore, the whole DIS sequence is necessary and sufficient for the two-step dimerization. Our data suggested that the bulge region regulates the stability of the stem and guides the DIS to the two-step dimerization process.  相似文献   

14.
Mutational analysis of the nonstructural protein 1 (NS1) of yellow fever virus (YF) has implicated it in viral RNA replication. To further explore this observation, we sought a method for uncoupling NS1 function from NS1 expression and processing as part of the large YF polyprotein. Here we describe a strategy for providing NS1 in trans, utilizing a noncytopathic Sindbis virus vector. Replication of a defective YF genome containing a large in-frame deletion of NS1 was dependent on functional expression of NS1. Recovered mutant virus was shown to contain the deletion and was neutralized by YF-specific antiserum. Complemented mutant virus increased in titer with kinetics similar to those of parental YF 17D but peaked at lower titers. trans-complementation has allowed us to derive high-titer, helper-free stocks of YF defective in NS1 with which to further characterize the role of this gene product in RNA replication. The first cycles of RNA replication were analyzed by using a sensitive strand-specific RNase protection assay. We document these events for mutant and wild-type viruses in the presence or absence of complementation. These data strongly suggest a role for NS1 prior to or at initial minus-strand synthesis.  相似文献   

15.
Dendritic cells (DCs) enhance human immunodeficiency virus type 1 (HIV-1) infection of CD4(+) T lymphocytes in trans. The C-type lectin DC-SIGN, expressed on DCs, binds to the HIV-1 envelope glycoprotein gp120 and confers upon some cell lines the capacity to enhance trans-infection. Using a short hairpin RNA approach, we demonstrate that DC-SIGN is not required for efficient trans-enhancement by DCs. In addition, the DC-SIGN ligand mannan and an anti-DC-SIGN antibody did not inhibit DC-mediated enhancement. HIV-1 particles were internalized and were protected from protease treatment following binding to DCs, but not from binding to DC-SIGN-expressing Raji cells. Thus, DC-SIGN is not required for DC-mediated trans-enhancement of HIV infectivity.  相似文献   

16.
17.
A recent report sought to demonstrate that acetylation of specific lysines within integrase (IN) by the histone acetyltransferase (HAT) p300 regulates human immunodeficiency virus type 1 (HIV-1) integration and is essential for viral replication (A. Cereseto, L. Manganaro, M. I. Gutierrez, M. Terreni, A. Fittipaldi, M. Lusic, A. Marcello, and M. Giacca, EMBO J. 24:3070-3081, 2005). We can corroborate the efficient and specific acetylation of the IN carboxyl-terminal domain (CTD) (amino acids 212 to 288) by p300 using purified recombinant components. Although arginine substitution mutagenesis of the isolated CTD confirms that the majority of p300 acetylation occurs at lysine residues 264, 266, and 273, the pattern of acetylation is not uniform and a hierarchy of reactivity can be established. Several combinatorial mutations of the CTD lysines modified by p300 in vitro were reconstructed into an otherwise infectious proviral plasmid clone and examined for viral growth and frequency of productive chromosomal integration. In contrast to the findings of Cereseto and coworkers, who used epitope-tagged viruses for their experiments, we find that an untagged mutant virus, IN K(264/266/273)R, is fully replication competent. This discrepancy may be explained by the use of an acidic epitope tag placed at the extreme carboxyl terminus of integrase, near the target site for acetylation. Although the tagged, wild-type virus is viable, the combination of this epitope tag with the RRR substitution mutation results in a replication-defective phenotype. Although IN belongs to the very small set of nonhistone proteins modified by HAT-mediated activity, an obligate role for acetylation at the reactive CTD lysines in HIV-1 IN cannot be confirmed.  相似文献   

18.
19.
The alpha-chemokine SDF-1 binds CXCR4, a coreceptor for human immunodeficiency virus type 1 (HIV-1), and inhibits viral entry mediated by this receptor. Since chemokines are potent chemoattractants and activators of leukocytes, we examined whether the stimulation of HIV target cells by SDF-1 affects the replication of virus with different tropisms. We observed that SDF-1 inhibited the entry of X4 strains and increased the infectivity of particles bearing either a CCR5-tropic HIV-1 envelope or a vesicular stomatitis virus G envelope. In contrast to the inhibitory effect of SDF-1 on X4 strains, which is at the level of entry, the stimulatory effect does not involve envelope-receptor interactions or proviral DNA synthesis. Rather, we observed an increased ability of Tat to transactivate the HIV-1 long terminal repeat in the presence of the chemokine. Therefore, the effects of SDF-1 on the HIV-1 life cycle can be multiple and opposite, including both an inhibition of viral entry and a stimulation of proviral gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号