首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Impaired flight ability during incubation in the pied flycatcher   总被引:3,自引:0,他引:3  
During the breeding season, many female passerine birds increase in body mass before egg laying, maintain a relatively high body mass during incubation, and then drop back to the original level during the chick-rearing period. The post-hatching reduction in body mass, which can be as large as 10–20%, has been suggested to represent an adaptive mass loss to reduce wing loading, thereby increasing parental flight efficiency when chicks have hatched and have to be fed. Here we present the first study of changes in flight ability from incubation to chick rearing in birds. Wild female pied flycatchers Ficedula hypoleuca flew more slowly during incubation than during chick rearing; a 7% reduction in body mass after the chicks had hatched was associated with a 10% increase in vertical take-off speed. Furthermore, the flight muscle size of the females tracked the reduction in wing load, suggesting that muscle size was adaptively reduced when no longer needed. Since incubation-feeding by males reduces the time females have to spend outside the nest foraging, our results suggest that in addition to increasing female nutritional status and reducing incubation time, incubation-feeding will also reduce predation risk during the period when females face impaired flight ability.  相似文献   

2.
The rapid growth and reabsorption of the avian ovary is thought to be adaptive, as it reduces predation risk and the metabolic cost of flight. In this paper, we use an extreme case of parental investment to show how the survival of gravid birds may be impaired by reduced take-off ability. In still air, temporary flightlessness is regularly observed in female Common Eiders Somateria mollissima preparing for breeding. From a sample of pre-laying females collected in the Baltic Sea, we quantified the relationships among body reserves, organ mass and take-off ability using a general model of take-off performance. Average body mass at the beginning and end of follicular growth was, respectively, 32% and 43% higher than winter body mass. Wing-loading increased significantly during ovary development whereas the relative mass of flight muscles decreased. In contrast, organ mass and somatic body mass were constant from early follicular growth until laying, indicating that the observed increase in body mass was caused by ovary growth. The average specific lift production of individuals collected at the beginning of follicular growth was 9.7 N/kg, which is similar to the lift required to become airborne (9.8 N/kg). As ovary mass increased, lift production decreased to 9.2 N/kg at the onset of laying. These results indicate that temporary flightlessness results from the accumulation of large body reserves and subsequent ovarian growth. Predators of Common Eiders are diverse and may come from air, water and land. We suggest that temporary flightlessness may decrease adult survival through predation, and may represent an important cost of reproduction.  相似文献   

3.
Flight performance is crucial in determining whether a smallbird will survive an attack by a predator. Given the importanceof body mass in determining flight performance, it has beensuggested that birds should strategically regulate body massas a response to predation risk. However, all experiments upto now have been carried out with captive birds, comparing experimental to control birds. Here we present data from thefirst experiment in the field using a within-individuals experimentaldesign. The wing area of wild great tits, Parus major, wasreduced by reversibly taping primaries five to seven. Thisallowed for the same individual to alternatively act as controlor experimental bird. Great tits reduced body mass (but not pectoral muscle width) during episodes of wing area reduction,lending support to the view that the reduction in body massexperienced by birds during molt is a strategy rather thanthe result of energetic stress. Theoretical models establishingthe different trade-offs that determine optimal body mass should therefore take into account this important life-history episode.  相似文献   

4.
A female blue tit lays a large clutch that is commonly heavier than her own body weight. Body reserves cannot provide for the entire clutch and little is known of the importance of these reserves during the breeding season. This study reports on weight changes in adult female blue tits during the breeding season, observed by the use of electronic balances. In addition, data from dissecting 67 adult female blue tits, at different stages of the breeding cycle, were used to investigate the changes in body weight. There was a rapid increase in body weight during a period of 4–5 days before the first egg was laid, which was explained mostly by the development of the oviduct and the production of an egg on the final day. Body weight remained constant during the laying period, before decreasing by approximately one gram after clutch completion, owing to the absence of an egg and the absorption of the oviduct. Body reserves increased during the day after clutch completion, were maintained throughout the incubation period and were mobilized during the first five days of the nestling period. Breeding female blue tits appear to deposit small body reserves to act as a short-term buffer against adverse conditions or to support the brooding phase.  相似文献   

5.
We analysed the effects of forest fragmentation on the flock structure of insectivorous forest passerines (Parus, Aegithalos, Certhia, Regulus, etc.), and on the anti‐predator behaviour and energy management of blue tits in these flocks. We surveyed flocks in Central Spain during two winters. Flocks in fragments comprised fewer individuals and species than flocks in unfragmented forests. The most abundant species in forest flocks (blue tit, Parus caeruleus, and firecrest, Regulus ignicapillus) were also the most abundant in fragments, while the rarest species in the area never occurred in small woodlots. We investigated how fragmentation and related changes in flock structure affect anti‐predator behaviour of blue tits, a widely distributed species in the area. In fragments but not in forests, blue tits increased scanning rates with decreasing flock size. Vigilance was relaxed when great tits, Parus major, were abundant as flock mates, suggesting that the absence of this dominant species in fragments could intensify anti‐predator behaviour of blue tits. Blue tits enhanced anti‐predator behaviour in the second winter parallel to an increase in the abundance of raptors. This behavioural change was stronger in fragments, where blue tits foraged deeper in the canopy and increased scanning and hopping rates. Under increased predation risk, birds are expected to reduce body mass to improve predator avoidance. On average, blue tits weighed similar in fragments and forests the second winter. However, they accumulated fat along the day in fragments only, and adjusted body mass to body size more closely in that habitat type. This suggests that blue tits perceived fragments as unpredictable habitats where fattening would help avoid starvation, but also as dangerous sites where overweight would further increase the risk of predation. In summary, our results support that fragmentation affects individual behaviour of blue tits, and show the potential of behavioural approaches to unravel how different species face the advancing fragmentation of their habitats.  相似文献   

6.
Age-dependent changes in flight performance, biochemical composition of flight muscles, and fresh mass of the flight muscles and ovaries were analysed in adult female two-spotted crickets, Gryllus bimaculatus. After the final moult the flight muscle mass increased significantly to a maximum at days 2 and 3. On day 2 the highest flight activity was also observed. Between days 2 and 3 the ovary weight started to rapidly increase due to vitellogenic egg growth, which continued at a high rate until day 10. With the onset of ovarial growth, flight performance decreased and the flight muscles started to histolyse. A high correlation between flight muscle mass and the content of protein, lipid, glycogen, and free carbohydrate in the flight muscle indicated that energy-rich substrates from the degrading flight muscles were used to fuel oogenesis, although flight muscle histolysis can provide only a small fraction of the substrates needed for egg production. In general, there was a clear trade-off between egg production and flight ability. Surprisingly, however, some females possessed well-developed ovaries but displayed no signs of flight muscle histolysis. This observation was corroborated by flight experiments which revealed that, although most flying females had small ovaries, some of them carried an appreciable amount of mature eggs, and thus, somehow managed to evade the oogenesis-flight syndrome.  相似文献   

7.
Adult fitness components may strongly depend on variation in locomotory performance such as flight; this variation can be sex specific. Fast take-off to intercept females and competing males is an essential behavioral component of the territorial perching behavior in male speckled wood butterflies (Pararge aegeria L.). Females on the other hand avoid frequent take-offs particularly under suboptimal temperatures, typically showing fewer but longer flights than males. We estimated the heritability of take-off acceleration performance under suboptimal body temperatures by a restricted maximum-likelihood model. We calculated genetic correlations between this performance and a selection of morphological traits: size (body mass), flight muscle investment (relative thorax mass), and wing shape (forewing aspect ratio). Our results show significant additive genetic variation for mean acceleration performance and a similar but nonsignificant trend (P= 0.08) for maximal acceleration performance during take-off in males (h(2)= 0.15). In females, heritability was not significantly different from zero for either of the acceleration performance measures. Morphological traits and take-off performance were genetically linked in a sex-specific way. In males, relative thorax mass and forewing aspect ratio were positively genetically correlated with acceleration performance. In females, there was a negative genetic correlation between acceleration performance and abdomen mass, but not with residual abdomen mass (i.e., regressed on total body mass). To fully understand the evolution of sexual differences in flight performances and morphology, several other flight performances will have to be included. This multifunctional nature of flight and its consequences for the evolutionary study of flight has not yet been fully appreciated in the literature.  相似文献   

8.
When birds are attacked by predators the initial take-off is crucial for survival. The strategy in the initial phase of predator evasion is probably affected by factors such as body mass and presence of cover and conspecifics, but it may also be a response to the character of the predator''s attack. In choosing an angle of flight, birds face a trade-off between climbing from the ground and accelerating across the ground. This is, to our knowledge, the first study investigating whether the attack trajectory of a raptor affects the take-off strategy of the prey bird. First-year male great tits (Parus major) adjusted take-off angle to a model predator''s angle of attack. Birds attacked from a steep angle took off at a lower angle than birds attacked from a low angle. We also compared take-offs at dawn and dusk but could not find any measurable effect of the diurnal body mass gain (on average 7.9%) in the great tits on either flight velocity or angle of ascent.  相似文献   

9.
Birds should store body reserves if starvation risk is anticipated; this is known as an ‘interrupted foraging response’. If foraging remains unrestricted, however, body mass should remain low to limit the predation risk that gaining and carrying body reserves entails. In temperate environments mass gain in female birds during breeding is often attributed to egg formation and mass loss after incubation to flight adaptation or the effect of reproductive workload, rather than as a result of an adaptive interrupted foraging response to the limited foraging time or unpredictable foraging conditions that breeding demands. In tropical environments, foraging conditions vary more within the breeding season than in temperate environments, and so studies in tropical environments are more suited to decouple the potentially confounded effects of increase in body reserves versus egg formation on the body mass of breeding birds. In this study, we test whether breeding results in an interrupted foraging response in a tropical savannah system using body mass data collected over a 15‐year period from female common bulbuls Pycnonotus barbatus. This species breeds both in the wet and dry season, despite fewer resources being available in the dry season. Breeding stage predicted female body mass: body mass peaked abruptly during incubation, but was not closely associated with the egg‐laying stage, and declined during brood rearing. Breeding females were heavier in the dry season than in the wet season. In the dry season, heavier birds were more likely to incubate eggs or brood chicks. These observations suggest that increased body reserves are required to buffer the consequence of limited foraging time or impoverished foraging conditions, which may be most pronounced during incubation and in the dry season, respectively. Such mass increases are consistent with an interrupted foraging response, which may apply to temperate zone birds experiencing foraging restrictions during breeding.  相似文献   

10.
Conditions experienced in early life have been shown to affect the development or programming of physiological processes. While animals may recover from earlier periods of adversity, this process can carry long-term costs. Such long-term effects are likely to be most evident when individuals are placed in demanding situations that require high performance. Escape flight speed in passerine birds is crucial to predator evasion and requires very rapid take-off. Here, we examine whether the ability to maintain escape flight performance during the immediate post-breeding period is influenced by conditions in early life. We manipulated the early life conditions experienced by zebra finches (Taeniopygia guttata) by rearing them on either low or high quality food through the growth period, or by changing conditions halfway through the nestling period, moving from high to low or vice versa. While there was no difference amongst the treatment groups in body size attained by adulthood, amongst the birds that experienced low quality food, the body size of those that were switched to a high quality diet halfway through the nestling growth period recovered faster than those that had low quality food until fledging. We found no differences amongst the dietary groups in flight performance at adulthood prior to breeding, and all groups showed a decline in average escape flight performance over the breeding period. However, the magnitude of the post-breeding decline in flight performance for a given level of reproductive output was significantly greater for those females that had experienced a switch from a low to a high quality diet during the nestling phase. These results suggest that this diet-induced rapid recovery of body size, which may have immediate competitive advantages, nonetheless carries locomotory costs in later life manifest in the capacity to sustain the high performance escape response during the post-reproductive recovery phase.  相似文献   

11.
The density of great tit Parus major L. and blue tit Parus caeruleus L. was artificially increased by placing nest-box colonies for these species in the vicinity of the nests of breeding tawny owls during 1993–1997. Bird prey composition in the owl nests, the proportion of parents disappearing from the breeding tit populations and the reproductive performance of the widowed parents were analysed. The frequency of predation on tits by tawny owls was greater in areas where tit density had been artificially increased. Owls preyed more on tits during the feeding period of owlets than during the incubation period and more in years when snow covered the ground during the incubation period than when it did not. Mortality due to predation was male biased and more females lost their mates in populations breeding near tawny owl nests. Reproductive performance of the widowed parents was lower and their body weights were lighter at the end of the nestling period than those found in birds rearing youngs with their mates. Predation by owls increased the between-year turnover in the breeding tit population: widowed parents did not return to the nesting site for the next breeding season.  相似文献   

12.
ABSTRACT Many birds lose mass when feeding dependent young and multiple hypotheses have been proposed to explain this loss. The reproductive‐stress hypothesis suggests that mass loss results from an energy deficit. The flight‐efficiency hypothesis suggests that breeders lose mass in advance of feeding young to save energy during flight. The reserve‐mobilization hypothesis suggests that female breeders accumulate energy reserves during egg production and incubation and mobilize those reserves to meet their own energy needs after eggs hatch. Finally, birds may lose mass due to gonadal regression. From 1999 to 2001, we attracted Florida Scrub‐Jays (Aphelocoma coerulescens), sedentary cooperative breeders, to a portable electronic balance. Our objective was to determine which hypotheses might best explain mass variation during breeding. Both male and female Florida Scrub‐Jays lost mass during the period of nestling care (males, 3.2%; females, 6.5%), but not when feeding fledglings, despite this being the period of peak effort. Such results are consistent with both the flight‐efficiency and reserve‐mobilization (females only) hypotheses. We also found a significant negative influence of brood size on mass change in males, providing support for the reproductive‐stress hypothesis, and we conclude that, for males, both the flight‐efficiency and reproductive‐stress hypotheses apply. For female scrub‐jays, our results were consistent with the flight‐efficiency and energy‐reserve mobilization hypotheses, both of which view mass loss as beneficial.  相似文献   

13.
Large body size, small wings and relatively low flight muscle mass are general attributes of flightlessness in birds, but a general analysis is lacking when considering these factors simultaneously. Common Eiders Somateria mollissima are large sea ducks characterized by short, pointed wings of low surface area. Because females fast throughout incubation, they need to accumulate large body reserves prior to laying. During this pre‐laying period, many females cannot take off, and dive when approached under still‐air conditions, whereas males take off readily when disturbed. In this paper, we examine how pre‐laying female Common Eiders fit the maximum wing‐loading ratio of Meunier, the marginal flight muscle ratio (FMR) of Marden and predictions of a general model of take‐off performance (also by Marden). Wing morphology was recorded and flight muscles were dissected from specimens collected during the pre‐laying period near one breeding colony. In addition, take‐off ability, as observed during collection, was compared with the proposed thresholds for flightlessness and outputs from the general model of take‐off performance. The results indicated that half of the pre‐laying females exceeded the wing‐loading ratio of Meunier, although all females had values above 0.160, the flight muscle ratio below which take‐off would be impossible. We suggest that wing‐loading and flight muscle ratio interact in Eiders, with higher FMR compensating for excessive wing‐loading. Nevertheless, the model of take‐off performance predicted, with reasonable accuracy, the behavioural observations under still‐air conditions. Indeed, females that were predicted to be temporarily flightless could produce a specific lift of 8.8 N/kg on average (less than the 9.8 N/kg required to overcome gravity). In contrast, the average specific lift predicted for males capable of flight was estimated to be 11.4 N/kg. These results agree with our observations that female Common Eiders are at the limit of flight capability in vertebrates.  相似文献   

14.
To cope with changes in the environment, organisms not only show behavioural but also phenotypic adjustments. This is well established for the digestive tract. Here we present a first case of birds adjusting their flight machinery in response to predation risk. In an indoor experiment, ruddy turnstones Arenaria interpres were subjected to an unpredictable daily appearance of either a raptor or a small gull (as a control). Ruddy turnstones experiencing threat induced by a flying raptor model, longer than after similar passage by the gull model, refrained from feeding after this disturbance. Pectoral muscle mass, but not lean mass, responded in a course of a few days to changes in the perceived threat of predation. Pectoral muscle mass increased after raptor scares. Taking the small increases in body mass into account, pectoral muscle mass was 3.6% higher than aerodynamically predicted for constant flight performance. This demonstrates that perceived risk factors may directly affect organ size.  相似文献   

15.
Like British great tits, Belgian blue tits have a lower winter body mass when sparrowhawks are present. Since body mass affects manoeuvrability in small birds, tits may balance the risks of starvation and the risk of hawk predation by varying the amount of extra fat carried during winter. Predation pressure by sparrowhawks on young and inexperienced fledglings is at least as intense as that on the adults during winter. We therefore expected that tit fledgling body mass could also be reduced in the presence of sparrowhawks. In the years after one pair of sparrowhawks settled in a study plot, the mean body mass of blue tit fledglings was lower compared with that in years when there were no sparrowhawks. Furthermore, the shape of the curve relating juvenile survival to fledging mass changed, because the survival of the heaviest fledglings was reduced, which altered the selection differential of juvenile survival as a function of body mass from directional to stabilizing. Of seven published studies on the fledgling body mass–survival relation in tits, all three of the studies conducted in the absence of sparrowhawks showed the highest survival rates for the heaviest young, whereas in all four studies with sparrowhawks present this was no longer the case.  相似文献   

16.
We show that in a long-distance migrant shorebird species with outspoken seasonal changes in body mass and composition, the red knot Calidris canutus , the ratio between the masses of the small flight muscle ( musculus supracoracoideus , powering twists and active upstrokes of the wings) and the larger flight muscle ( musculus pectoralis , for the downstrokes) is far from constant. During an annual cycle the supracoracoideus / pectoralis ratio varied more than twofold between values of 0.058 (±0.005 SE) in early winter period and of 0.124 (±0.05 SE) on the High Arctic tundra breeding grounds. The ratios thus spanned a range from those typical of soaring raptors and seabirds to those of fast and agile fliers and birds with rapid take-offs. The overall average ratio was 0.102 (±0.001 SE, for non-starved knots, and 0.103±0.001 including starved knots) and did not differ between males and females. As predicted from the known functions of supracoracoideus and pectoralis , the ratio was a negative function of body mass. However, after arrival on the breeding grounds (0.124) and during winter starvation (0.135) particularly high ratios were reached: these may be times when wing-manoeuvrability (in flight display and during the evasive 'rodent run' away from predators at the nest) and an ability for rapid take-off and active up-strokes (from –near– the nest, and in times of depletion of flight muscle mass during winter starvation) may be at premium. The particularly low ratio of 0.06 in early winter is puzzling. Many aspects of avian phenotypes have recently been shown to be intraindividually variable. To a twofold seasonal variation in flight muscle mass ( Dietz et al. 2007 ), we can now add the twofold variation in the ratio between the muscles for the upstroke and the downstroke.  相似文献   

17.
Changes in tissue masses associated with egg production were investigated in female Zebra Finches Taeniopygia gutatta using dietary and hormonal manipulations. We tested three hypotheses: that changes in organ masses, (a) reflect utilisation of endogenous nutrient stores due to inadequate daily dietary intake, (b) involve changes in organ structure or 'functional capacity', and (c) are initiated by onset of reproductive development (e.g. elevated plasma estrogen or yolk precursor levels, oviduct growth). Pectoral muscle lean dry mass was 18–22% lower in breeding females at the 1-egg stage compared to non-breeders, and this was independent of nutritional plane, i.e. similar changes occurred in birds provided with supplemental protein or egg food. Heart lean dry mass was also lower (16%) in breeding females, but only in birds on a low-quality seed diet, not in birds on supplemented diets. Decreases in total liver mass (14%) were due to changes in lipid content not lean dry mass, and were diet-dependent. These results demonstrate that changes in organ masses associated with egg production are complex, and do not simply reflect a general mobilisation of stored protein. We discuss why there is no hypertrophy of biosynthetic or metabolic 'machinery' associated with egg production in birds (cf. reproducing mammals). Exogenous 17β-estradiol induced plasma levels of yolk precursors typical of breeding birds, and initiated oviduct growth (to 31% of mature size). However, estradiol treatment caused no change in mass of pectoral muscle, heart or liver, demonstrating that there is no simple relationship between onset of reproductive development and associated tissue mass changes.  相似文献   

18.
The theory of trade-off between starvation and predation risks predicts a decrease in body mass in order to improve flight performance when facing high predation risk. To date, this trade-off has mainly been validated in passerines, birds that store limited body reserves for short-term use. In the largest avian species in which the trade-off has been investigated (the mallard, Anas platyrhynchos), the slope of the relationship between mass and flight performance was steeper in proportion to lean body mass than in passerines. In order to verify whether the same case can be applied to other birds with large body reserves, we analyzed the response to this trade-off in two other duck species, the common teal (Anas crecca) and the tufted duck (Aythya fuligula). Predation risk was simulated by disturbing birds. Ducks within disturbed groups were compared to non-disturbed control birds. In disturbed groups, both species showed a much greater decrease in food intake and body mass during the period of simulated high risk than those observed in the control group. This loss of body mass allows reaching a more favourable wing loading and increases power for flight, hence enhancing flight performances and reducing predation risk. Moreover, body mass loss and power margin gain in both species were higher than in passerines, as observed in mallards. Our results suggest that the starvation-predation risk trade-off is one of the major life history traits underlying body mass adjustments, and these findings can be generalized to all birds facing predation. Additionally, the response magnitude seems to be influenced by the strategy of body reserve management.  相似文献   

19.
The use of biologging and tracking devices is widespread in avian behavioral and ecological studies. Carrying these devices rarely has major behavioral or fitness effects in the wild, yet it may still impact animals in more subtle ways, such as during high power demanding escape maneuvers. Here, we tested whether or not great tits (Parus major) carrying a backpack radio‐tag changed their body mass or flight behavior over time to compensate for the detrimental effect of carrying a tag. We tested 18 great tits, randomly assigned to a control (untagged) or one of two different types of a radio‐tag as used in previous studies in the wild (0.9 g or 1.2 g; ~5% or ~6–7% of body mass, respectively), and determined their upward escape‐flight performance 1, 7, 14, and 28 days after tagging. In between experiments, birds were housed in large free‐flight aviaries. For each escape‐flight, we used high‐speed 3D videography to determine flight paths, escape‐flight speed, wingbeat frequency, and actuator disk loading (ratio between the bird weight and aerodynamic thrust production capacity). Tagged birds flew upward with lower escape‐flight speeds, caused by an increased actuator disk loading. During the 28‐day period, all groups slightly increased their body mass and their in‐flight wingbeat frequency. In addition, during this period, all groups of birds increased their escape‐flight speed, but tagged birds did so at a lower rate than untagged birds. This suggests that birds may increase their escape‐flight performance through skill learning; however, tagged birds still remained slower than controls. Our findings suggest that tagging a songbird can have a prolonged effect on the performance of rapid flight maneuvers. Given the absence of tag effects on reproduction and survival in most songbird radio‐tagging studies, tagged birds in the wild might adjust their risk‐taking behavior to avoid performing rapid flight maneuvers.  相似文献   

20.
Winter acclimatization in birds is a complex of several strategies based on metabolic adjustment accompanied by long-term management of resources such as fattening. However, wintering birds often maintain fat reserves below their physiological capacity, suggesting a cost involved with excessive levels of reserves. We studied body reserves of roosting great tits in relation to their dominance status under two contrasting temperature regimes to see whether individuals are capable of optimizing their survival strategies under extreme environmental conditions. We predicted less pronounced loss of body mass and body condition and lower rates of overnight mortality in dominant great tits at both mild and extremely low ambient temperatures, when ambient temperature dropped down to ?43 °C. The results showed that dominant great tits consistently maintained lower reserve levels than subordinates regardless of ambient temperature. However, dominants responded to the rising risk of starvation under low temperatures by increasing their body reserves, whereas subdominant birds decreased reserve levels in harsh conditions. Yet, their losses of body mass and body reserves were always lower than in subordinate birds. None of the dominant great tits were found dead, while five young females and one adult female were found dead in nest boxes during cold spells when ambient temperatures dropped down to ?43 °C. The dead great tits lost up to 23.83 % of their evening body mass during cold nights while surviving individuals lost on average 12.78 % of their evening body mass. Our results show that fattening strategies of great tits reflect an adaptive role of winter fattening which is sensitive to changes in ambient temperatures and differs among individuals of different social ranks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号