首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Site preparation designed to exhaust the soil seedbank of adventive species can improve the success of tallgrass prairie restoration. Despite these efforts, increased rates of atmospheric nitrogen (N) deposition over the next century could potentially promote the growth of nitrophilic, adventive species in tallgrass restoration projects. We used a field experiment to examine how N addition affected species composition and plant productivity over the first 3 years of a tallgrass prairie restoration that was preceded by the planting of glyphosate‐resistant crops and multiple applications of glyphosate to exhaust the pre‐existing seedbank. We predicted that N addition would increase the percent cover of adventive plant species not included in the original seeding. Contrary to our prediction, only the cover of native species increased with N addition; native non‐leguminous forbs increased substantially, with Conyza canadensis (a weedy native species not part of the restoration seed mix) exploiting the combination of high N and bare ground in the first year, and non‐leguminous forbs (in particular Monarda fistulosa) and native C3 grasses, all of which were seeded, increasing with N addition by the third year. Native legumes was the only functional group that exhibited lower cover in N addition plots than in control plots. There was no significant response by native C4 grasses to N addition, and adventive grasses remained mostly absent from the plots. Overall, our results suggest that site pre‐treatment with herbicide may continue to be effective in minimizing adventive grasses in restored tallgrass prairie, despite future increases in atmospheric N deposition.  相似文献   

2.
A study was conducted on a Coastal Plain flatwoods site in Florida to determine the effects of common forestry herbicides on Longleaf pine seedling survival and growth and on the understory vegetation. Following removal of the overstory slash pine, five low‐rate herbicide treatments were applied over the top of planted Longleaf pine seedlings to provide short‐term understory vegetation control and accelerate seedling growth. The objective was to increase Longleaf pine growth by reducing the shrub competition while increasing the herbaceous ground cover. Despite causing reduction in seedling survival over the control treatment, imazapyr (0.21 ae kg/ha) resulted in the highest seedling growth (height and volume). The significant reduction of shrub cover, density, and height by imazapyr was believed to be responsible for the improved seedling growth in this treatment. Both hexazinone (0.56 ai kg/ha) and sulfometuron methyl (0.26 ai kg/ha) + hexazinone (0.56 ai kg/ha) treatments also reduced cover of Runner oak, a major shrub species, but the response was evident only 8 months after treatment. Although sulfometuron methyl (0.26 ai kg/ha) and sulfometuron methyl + hexazinone treatments did not result in any significant change in overall grass, forb, and shrub cover, both treatments resulted in greater Longleaf pine growth compared to the control. None of the herbicides significantly affected the major understory grasses and forbs. Overall, imazapyr provided the best desired results with significant increase in seedling growth and better control of shrub species with no significant effects on grass and other herbaceous species cover.  相似文献   

3.
Non‐native plant species often colonize retired agricultural lands, creating monocultures with low species diversity that provide poor wildlife habitat. We assessed whether sowing a mix of 29 locally adapted native species reduced invasion of non‐native plant species compared to allowing vegetation to colonize naturally following tillage. There was a sampling date × treatment interaction for canopy cover of perennial exotic plant species. Plots that were not sown to natives had two to six times greater canopy cover of exotic species than did plots with both preparation (woody vegetation removed, plowed, and disked) and control (no preparation or sowing) plots. Canopy cover of exotic plants was similar in prepared‐only and control treatments from October 2008 to June 2010, ranging from 8 to 40%. Percent absolute canopy cover of native vegetation was 10–20 times greater on prepared and planted plots than on prepared‐only plots during March 2009 to June 2010. Sowing a mix of locally adapted native species may inhibit encroachment by non‐native species for up to two years after sowing on retired agricultural land in the Lower Rio Grande Valley of Texas.  相似文献   

4.
Abstract Cades Cove, Great Smoky Mountains National Park, U.S.A. was historically cleared largely for pastoral purposes; it is now comprised of recently abandoned pastures dominated by non‐native pasture species. To investigate the potential for reducing non‐native species relative to native species, park managers initiated an experiment in 1995 that included mowing, herbicide application, planting of seed, and burning of replicate 20 × 50–m plots at each of two sites within Cades Cove. Between 1995 and 2001 we evaluated the response of the plant community (i.e., species‐specific cover and frequency, biomass, diversity) to this suite of treatments and compared it with unmanipulated control plots at each site. Four years after treatment initiation abundance measures of Plantago lanceolata, Setaria geniculata, and Trifolium spp. averaged one‐third lower in treated than control plots. Frequency of Festuca pratensis was lower in treated than in control plots for 2 years, but after 4 years its frequency, cover, and biomass did not differ between treated and control plots. By 2000 the cover of Sorghastrum nutans in treated plots increased to 23–47%, depending on the site. Total biomass and diversity increased in treated plots. The dominance of Lespedeza cuneata at one site apparently reduced planting success, biomass production, and diversity and evenness. Post‐treatment lags in response for several species, coupled with interannual variation in response to environmental conditions, suggest that evaluations of treatment success would differ greatly depending on when the evaluation was conducted.  相似文献   

5.
Invasive non‐native plants pose a ubiquitous threat to native plant communities and have been blamed for the decline of many endangered species. Endangered species legislation provides legal instruments for protection, but identifying a general method for protecting endangered species by managing non‐natives is confounded by multiple factors. We compared non‐native management methods aimed at increasing populations of an endangered forb, Ambrosia pumila, and associated native plants. We compared the effects of a grass‐specific herbicide (Fusilade II), hand‐pulling, and mowing in two degraded coastal sage scrub sites in southern California, U.S.A. At both sites, hand‐pulling had the greatest effect on non‐native cover, and correspondingly resulted in the greatest increase in A. pumila stems. Fusilade II application also led to an increase in A. pumila, but was not as effective in controlling non‐native plants as hand‐pulling and its effect varied with the dominant non‐native species. Mowing was not effective at promoting A. pumila, and its effect on non‐native cover seemed to be related to rainfall patterns. Although some methods increased A. pumila, none of our treatments simultaneously increased cover of other native plants. Hand‐pulling, the most effective treatment, is labor intensive and thus only feasible at small spatial scales. At larger scales, managers should take an experimental approach to identifying the most appropriate method because this can vary depending on the specific management objective (endangered species or whole native community), the dominant non‐natives, yearly variation in weather, and the timing of treatment application.  相似文献   

6.
Restoration often includes control of invasive plants, but little is known about how native plant communities respond to this control. The biennial Alliaria petiolata (M. Bieb.) Cavara and Grande (garlic mustard) is one of the most prevalent invasive plants in forests of eastern North America. We investigated the effects of the herbicide Round‐up (glyphosate) on Alliaria and the response of the forest floor plant community to the herbicide and the subsequent decline of Alliaria. In an old‐growth Acer–Fagus stand and a second‐growth Liriodendron‐dominated stand in Hueston Woods State Nature Preserve, Ohio, United States, we spot applied Round‐up in November 2000 and 2001 in 25 1 × 1–m plots and maintained 25 control plots. Herbicide decreased Alliaria density in both stands and reduced the density of other species in leaf during treatment (mostly exotic winter annuals) in the old‐growth stand. Treatment did not affect the initial density of the Alliaria cohort that germinated in the spring of 2001, but decreased the 2002 cohort. Community differences were found in the old‐growth stand after Alliaria reduction, specifically greater cover of spring ephemerals in the herbicide treatment. In the second‐growth stand, herbicide treatment increased reproduction of the late‐summer perennial, Phryma leptostachya. These results indicate that glyphosate reduces Alliaria without negatively impacting native species and that some native species respond positively to a single‐year reduction in this invasive biennial.  相似文献   

7.
Abstract Introduced perennial grasses are one of the greatest constraints to prairie restoration. Herbicides suppress but do not eliminate introduced grasses, so we explored the interaction of herbicide with two additional controls: heavy clipping (to simulate grazing) and competition from native species. A 50‐year‐old stand of the introduced perennial grass Agropyron cristatum (crested wheatgrass) in the northern Great Plains was seeded with native grasses and treated with herbicide annually for 7 years in a factorial experiment. Clipping was applied as a subplot treatment in the final 3 years. Both herbicide and clipping significantly reduced the cover of A. cristatum, but clipping produced an immediate and consistent decrease, whereas herbicide control varied among years. The cover of A. cristatum decreased significantly with increasing cover of a seeded native grass, Bouteloua gracilis (blue grama), suggesting that both top‐down (i.e., grazing) and bottom‐up (i.e., resource competition) strategies can contribute to A. cristatum control. No treatment had any effect on the seed bank of A. cristatum. Even in the most effective control treatments, A. cristatum persisted at low amounts (approximately 5% cover) throughout the experiment. The cover of B. gracilis increased significantly with seed addition and herbicide, and, after 7 years, was similar to that in undisturbed prairie. The total cover of native species increased significantly with clipping and herbicide, and species richness was significantly higher in plots receiving herbicide. Clipping season had no effect on any variable. In summary, no method extirpated A. cristatum, but clipping reduced its cover by 90% and doubled the cover of native species. Extirpation might not be a realistic goal, but relatively simple management allowed coexistence of native species.  相似文献   

8.
Weed invasion is a major threat to Australian tropical savannas, and controlling weeds is essential for successful re‐establishment of native species on disturbed sites. Gamba Grass (Andropogon gayanus) is an African grass which has invaded large areas of tropical savanna across northern Australia. Current management strategies in northern Australia focus on fire and glyphosate to effectively control mature plants; however, re‐establishment of infestations from the soil seed bank remains a major challenge to eradication efforts. This study focused on the effects of soil seed bank treatments on Gamba Grass recruitment on a mine site in northern Australia. Adult Gamba Grass plants within test plots were killed with glyphosate to exclude resource competition. Chemical, physical and biological treatments were then applied, and the treatment effects on subsequent Gamba Grass seedling emergence and survival quantified. Seedling emergence was significantly reduced by three of the four residual herbicide treatments tested. The most effective herbicide treatments, dalapon and sulfometuron, reduced emergence by 90% compared to the standard glyphosate treatment alone. This equated to a reduction in Gamba Grass seedling emergence from 1 seedling/m2 to 1 seedling 10 m?2, a major improvement for Gamba Grass management. These residual herbicide treatments significantly reduced the population density of Gamba Grass for at least 5 months after emergence. The physical and biological treatments did not have a significant effect on seedling emergence. This significant reduction in Gamba Grass seedling emergence and survival can substantially improve Gamba Grass management. Reducing re‐colonisation from the soil seed bank using residual herbicides provides a valuable management tool for land managers, integrating readily with established strategies for controlling the mature plants.  相似文献   

9.
Ecological restoration often attempts to promote native species while managing for disturbances such as fire and non‐native invasions. The goal of this research was to investigate whether restoration of a non‐native, invasive Megathyrsus maximus (guinea grass) tropical grassland could simultaneously promote native species and reduce fire potential. Megathyrsus maximus was suppressed with herbicide, and three suites of native species—each including the same groundcover and shrub, and one of three tree species—were outplanted in a randomized, complete block design that also included herbicide control (herbicide with no outplantings) and untreated control treatments. Fuels were quantified 27 months after outplanting, and potential fire behavior (rate of spread and flame length) was modeled with BehavePlus. Compared with untreated controls, native outplant treatments reduced M. maximus cover by 76–91% and M. maximus live and dead fuel loads by greater than 92 and 68%, respectively. Despite reductions in M. maximus fuels, neither treatment‐level (grass + native) total fuel loads and fuel moistures, nor modeled fire behavior differed between outplant treatments and controls. The best performing native woody species (Dodonaea viscosa) had significantly lower average individual plant live fuel moisture (84%) than M. maximus (156%) or other native woody outplant species (201–328%), highlighting the need for careful species selection. These results demonstrate that restoring native species to degraded tropical dry forests is possible, but that ecological restoration will not necessarily alter the potential for fire, at least in the short term, making selection of species with beneficial fuel properties and active fire management critical components of ongoing restoration.  相似文献   

10.
Prescribed fire has become a common tool of natural area managers for removal of non‐indigenous invasive species and maintenance of barrens plant communities. Certain non‐native species, such as tall fescue (Festuca arundinacea), tolerate fire and may require additional removal treatments. We studied changes in soil N and C dynamics after prescribed fire and herbicide application in remnant barrens in west central Kentucky. The effects of a single spring burn post‐emergence herbicide, combined fire and herbicide treatments, and an unburned no‐herbicide control were compared on five replicate blocks. In fire‐plus‐herbicide plots, fescue averaged 8% at the end of the growing season compared with 46% fescue cover in control plots. The extent of bare soil increased from near 0 in control to 11% in burned plots and 25% in fire‐plus‐herbicide plots. Over the course of the growing season, fire had little effect on soil N pools or processes. Fire caused a decline in soil CO2 flux in parallel to decreased soil moisture. When applied alone, herbicide increased plant‐available soil N slightly but had no effect on soil respiration, moisture, or temperature. Fire‐plus‐herbicide significantly increased plant‐available soil N and net N transformation rates; soil respiration declined by 33%. Removal of non‐native plants modified the chemical, physical, and biological soil conditions that control availability of plant nutrients and influence plant species performance and community composition.  相似文献   

11.
Lonicera maackii (Amur honeysuckle) is a non‐native species that has invaded forest stands throughout the eastern United States. This research examined using aerially applied glyphosate in autumn 2013 to control L. maackii in oak‐hickory forest stands in Missouri, U.S.A. We targeted the spraying time period when L. maackii was still green and most native plants were dormant. Across treatment units, the mean difference in L. maackii stem density significantly declined (p = 0.004) by 5.4 stems per plot from spring 2013 to summer 2014 when compared to control units which increased by 1.8 stems per plot. Treated units with a high initial infestation level of L. maackii (>50% cover) had a significant (p = 0.004) decline in the mean difference in L. maackii cover of ?50.0% per plot between spring 2013 and summer 2014 compared to an average increase of 9.2% in the controls. Similar results were found for treated units with a low initial infestation level of L. maackii (10–50% cover). Mortality of native overstory and understory trees post‐treatment was negligible. In the ground layer of forest stands with a low initial L. maackii infestation level, native non‐spray‐sensitive forb cover per plot significantly increased (p = 0.023) relative to controls between summer 2013 and summer 2014 while native spray‐sensitive species cover significantly decreased (p = 0.021) during the same period. These results suggest that an aerial application of glyphosate can provide an L. maackii control option, but with trade‐offs in compositional shifts in the native ground‐layer vegetation.  相似文献   

12.
One of the major challenges confronting grassland restoration of highly invaded communities is increasing the diversity of native species. There is surprisingly little research investigating how reconstructed native grasslands respond to common management techniques and how these techniques influence the relative establishment of both native grasses and forbs. Despite the diversity and wide distribution of native clovers in California, few practitioners incorporate them into grassland restoration plans. Conversely, non‐native clovers have been seeded extensively onto California rangelands. This study addresses the following questions: (1) Using readily available management tools, is there a strategy that can benefit the growth of both planted native bunchgrasses and seeded clovers? (2) Do native bunchgrasses compete with establishing clovers and non‐native grasses? (3) Do native and non‐native clovers differ in their response to management treatments or in their productivity? Plots were established to test three factors in different combinations over 3 years: (1) early spring clipping, (2) initial broadleaf herbicide, and (3) native bunchgrass planting density. Native and non‐native clovers were seeded in years 2 and 3. Early spring clipping did not have a significant effect on native bunchgrass cover, yet it did result in greater growth of native and non‐native clovers. The direction of the response to broadleaf herbicide changed between years for native bunchgrasses and was consistently negative for native clovers. Plots with higher native grass densities did not adversely affect the seeded clovers, yet non‐native grass cover was reduced. Native and non‐native clovers exhibited similar responses to clipping and established at similar densities.  相似文献   

13.
Pastures dominated by tall fescue (Schedonorus phoenix (Scop.) Holub) cover much of the eastern United States, and there are increasing efforts to restore native grassland plant species to some of these areas. Prescribed fire and herbicide are frequently used to limit the growth of tall fescue and other non‐natives, while encouraging native grasses and forbs. A fungal endophyte, commonly present in tall fescue, can confer competitive advantages to the host plant, and may play a role in determining the ability of tall fescue plants to persist in pastures following restoration practices. We compared vegetation composition among four actively restored subunits of a tall fescue pasture (each receiving different combinations of prescribed fire and/or herbicide) and a control. We also measured the rate of endophyte infection in tall fescue present within each restoration treatment and control to determine if restoration resulted in lower tall fescue cover but higher endophyte infection rates (i.e. selected for endophyte‐infected individuals). Tall fescue cover was low in all restoration treatments and the control (1.1–17.9%). The control (unmanaged) had higher species richness than restoration treatments and plant community composition was indicative of succession to forest. Restoration practices resulted in higher cover of native warm season grasses, but in some cases also promoted a different undesirable species. We found no evidence of higher fungal endophyte presence in tall fescue following restoration, as all subunits had low endophyte infection rates (2.2–9.3%). Restoration of tall fescue systems using prescribed fire and herbicide may be used to promote native grassland species.  相似文献   

14.
Prairies in the Pacific Northwest have been actively restored for over a decade. Competition from non‐native woody and herbaceous species has been presumed to be a major cause for the failure of restoration projects. In this research, plugs of the native prairie bunchgrass, Festuca idahoensis Elmer var. roemeri (Pavlick), were grown from seed in a nursery and transplanted into a grassland site dominated by non‐native pasture grasses. The growth of the plants was followed for three years, and biomass of all volunteer plants was measured. Before planting, five treatments were applied to the plots: removal of vegetation by burning, removal of vegetation by an herbicide‐and‐till procedure, soil impoverishment by removal of organic matter, fertilizer application, and compost mulch application. Initial growth of Idaho fescue plugs was greatest with fertilizer and compost mulch. Plants grown in mulched plots were also able to photosynthesize later into the dry summer season. After the first year, plots initially fertilized or composted had the lowest survival rate of Idaho fescue. Impoverished and herbicide‐and‐till plots had the greatest 3‐year survival. Mulched plots supported the greatest weed growth after three years. Stressful environments give a competitive advantage to Idaho fescue in prairie restoration projects. As weedy species increase, growth and survival of Idaho fescue decreases.  相似文献   

15.
Invasive plants, such as Phragmites australis, are a global threat to plant diversity and are commonly controlled using herbicide management. The purpose of this study was to evaluate the plant community response 6–10 years after large‐scale herbicide management to remove Phragmites from Great Lakes coastal wetlands along the shores of western Lake Erie. Vegetation surveys were conducted in nine wetlands undergoing herbicide management and four unmanaged Phragmites‐dominated wetlands. The relative percent cover of Phragmites was dramatically lower in the managed (1.3%) compared to unmanaged wetlands (93.0%; p < 0.001), although relative percent cover of other non‐natives following herbicide management averaged 39.2% (ranging from 6.4 to 67.6%). The cover‐weighted floristic quality index was significantly higher in managed wetlands (p < 0.01), with the highest indices (12.4–17.0) at sites that received prescribed fire after herbicide treatment (p < 0.05). Species richness and diversity were significantly higher in managed wetlands (p < 0.001); however, there was no significant difference between wetlands treated only with herbicide and those treated with herbicide and prescribed fire. Our results indicate that herbicide management is effective in reducing Phragmites and improving floristic quality over timescales of 6–10 years. However, continued spot‐treatment and management of new invasive species may be required, and the return of high‐quality plant communities may be unrealistic in the study region.  相似文献   

16.
Four genetically modified (GM) maize (Zea mays L.) hybrids (coleopteran resistant, coleopteran and lepidopteran resistant, lepidopteran resistant and herbicide tolerant, coleopteran and herbicide tolerant) and its non‐GM control maize stands were tested to compare the functional diversity of arthropods and to determine whether genetic modifications alter the structure of arthropods food webs. A total number of 399,239 arthropod individuals were used for analyses. The trophic groups’ number and the links between them indicated that neither the higher magnitude of Bt toxins (included resistance against insect, and against both insects and glyphosate) nor the extra glyphosate treatment changed the structure of food webs. However, differences in the average trophic links/trophic groups were detected between GM and non‐GM food webs for herbivore groups and plants. Also, differences in characteristic path lengths between GM and non‐GM food webs for herbivores were observed. Food webs parameterized based on 2‐year in‐field assessments, and their properties can be considered a useful and simple tool to evaluate the effects of Bt toxins on non‐target organisms.  相似文献   

17.
Phragmites australis (common reed) has expanded in many wetland habitats. Its ability to exclude other plant species has led to both control and eradication programs. This study examined two control methods—herbicide application or a herbicide‐burning combination—for their efficacy and ability to restore plant biodiversity in non‐tidal wetlands. Two Phragmites‐dominated sites received the herbicide glyphosate. One of these sites was burned following herbicide application. Plant and soil macroinvertebrate abundance and diversity were evaluated pre‐treatment and every year for four years post‐treatment using belt transects. The growth of Phragmites propagules—seeds, rhizomes, and rooted shoots—was examined in the greenhouse and under bare, burned, or vegetated soil conditions. Both control programs greatly reduced Phragmites abundance and increased plant biodiversity. Plant re‐growth was quicker on the herbicide‐burn site, with presumably a more rapid return to wetland function. Re‐growth at both sites depended upon a pre‐existing, diverse soil seed bank. There were no directed changes in soil macroinvertebrate abundance or diversity and they appeared unaffected by changes in the plant community. Phragmites seeds survived only on bare soils, while buried rhizomes survived under all soil conditions. This suggests natural seeding of disturbed soils and inadvertent human planting of rhizomes as likely avenues for Phragmites colonization. Herbicide control, with or without burning, can reduce Phragmites abundance and increase plant biodiversity temporarily. These changes do not necessarily lead to a more diverse animal community. Moreover, unless Phragmites is eradicated and further human disturbance is prohibited, it will likely eventually re‐establish dominance.  相似文献   

18.
Abstract Interest in restoring native ecosystems is resulting in conversion of marginal agricultural lands to bottomland hardwood‐dominated forests in the midwestern and midsouthern United States. Growing stock for these efforts typically consists of planted oak (Quercus spp.) and volunteer vegetation. Reports of mixed reforestation success and the lack of post‐establishment tree growth data prompted this evaluation of vegetation characteristics of 5‐ to 7‐year‐old operational restorations in the Lower Cache River Watershed in southernmost Illinois, U.S.A. Fraxinus pennsylvanica (green ash), Acer negundo (box‐elder), and Liquidambar styraciflua (sweetgum) together comprised 77% of all tree stems observed. Full stocking of overstory tree species can be expected to produce a closed canopy stand within 160 m of a forested edge, due primarily to the abundance of rapidly growing volunteer‐origin trees. Planted oaks contributed minimally to total tree stocking but were present in sufficient numbers to eventually improve wildlife habitat, and therefore satisfied restoration objectives. Oak height was 23% greater when in the presence of a non‐oak tree species. Herbaceous cover was dominated by Solidago gigantea (late goldenrod) and Juncus spp. (rushes). Solidago gigantea was associated with poor growth and low density of non‐oak stems, whereas Juncus dudleyi (Dudley's rush) was associated with taller non‐oak stems. These results suggest that the presence of volunteer‐origin trees is crucial for the creation of full stand stocking that will result in rapid development of a closed canopy forest. Improved success of future reforestation efforts will require more intensive methods to establish adequate stocking beyond 160 m of a forest edge. Methods described here could be adapted for agricultural field to forest restorations in other regions to predict critical distances from volunteer seed sources within which supplemental planting would be unnecessary to meet tree stocking objectives.  相似文献   

19.
The removal of invasive species is often one of the first steps in restoring degraded habitats. However, studies evaluating effectiveness of invasive species removal are often limited in spatial and temporal scale, and lack evaluation of both aboveground and belowground effects on diversity and key processes. In this study, we present results of a large 3‐year removal effort of the invasive species, Gypsophila paniculata, on sand dunes in northwest Michigan (USA). We measured G. paniculata abundance, plant species richness, plant community diversity, non‐native plant cover, abundance of Cirsium pitcheri (a federally threatened species endemic to this habitat), sand movement, arbuscular mycorrhizal spore abundance, and soil nutrients in fifteen 1000 m2 plots yearly from 2007 to 2010 in order to evaluate the effectiveness of manual removal of this species on dune restoration. Gypsophila paniculata cover was greatly reduced by management, but was not entirely eliminated from the area. Removal of G. paniculata shifted plant community composition to more closely resemble target reference plant communities but had no effect on total plant diversity, C. pitcheri abundance, or other non‐native plant cover. Soil properties were generally unaffected by G. paniculata invasion or removal. The outlook is good for this restoration, as other non‐native species do not appear to be staging a “secondary” invasion of this habitat. However, the successional nature of sand dunes means that they are already highly invasible, stressing the need for regular monitoring to ensure that restoration progresses.  相似文献   

20.
During recent work examining the effects of Bitou Bush (Chrysanthemoides monilifera ssp. rotundata) invasion on native reptile assemblages in coastal heathland vegetation in Eastern Australia, unplanned spot‐spraying of glyphosate occurred at some of our experimental sites invaded by Bitou Bush. We used this unexpected herbicide application as an opportunity to provide a preliminary assessment of the short‐term impacts on reptiles of glyphosate spot‐spraying of Bitou Bush. Using an M‐BARCI design, we compared reptile assemblages among uninvaded (reference) sites, invaded (control) sites and invaded and sprayed (impact) sites before and after spraying. We found no significant short‐term (7 – 10 months) differences in reptile abundance, species richness or assemblage composition among invaded, uninvaded and sprayed sites before and after glyphosate application. We cautiously interpret our results to generate a preliminary finding that spot‐spraying of Bitou Bush with glyphosate appears not to have a deleterious effect on reptile assemblages at seven and ten months following herbicide application. While we would not recommend basing management decisions on the outcomes of our study alone, we suggest that our findings can be used to assist in the development of strategic analyses of glyphosate impacts on native flora and fauna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号