首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Ethylphosphatidylcholines are positively charged membrane lipid derivatives, which effectively transfect DNA into cells and are metabolized by the cells. For this reason, they are promising nonviral transfection agents. With the aim of revealing the kinds of lipid phases that may arise when lipoplexes interact with cellular lipids during DNA transfection, temperature-composition phase diagrams of mixtures of the O-ethyldipalmitoylphosphatidylcholine with representatives of the major lipid classes (phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, cholesterol) were constructed. Phase boundaries were determined using differential scanning calorimetry and synchrotron x-ray diffraction. The effects of ionic strength and of DNA presence were examined. A large variety of polymorphic and mesomorphic structures were observed. Surprisingly, marked enhancement of the affinity for nonlamellar phases was observed in mixtures with phosphatidylethanolamine and cholesterol as well as with phosphatidylglycerol (previously reported). Because of the potential relevance to transfection, it is noteworthy that such phases form at close to physiological conditions, and in the presence of DNA. All four mixtures exhibit a tendency to molecular clustering in the gel phase, presumably due to the specific interdigitated molecular arrangement of the O-ethyldipalmitoylphosphatidylcholine gel bilayers. It is evident that a remarkably broad array of lipid phases could arise in transfected cells and that these could have significant effects on transfection efficiency. The data may be particularly useful for selecting possible "helper" lipids in the lipoplex formulations, and in searches for correlations between lipoplex structure and transfection activity.  相似文献   

2.
Behavior of spin labels in a variety of interdigitated lipid bilayers   总被引:2,自引:0,他引:2  
The behavior of a number of spin labels in several lipid bilayers, shown by X-ray diffraction to be interdigitated, has been compared in order to evaluate the ability of the spin label technique to detect and diagnose the structure of lipid bilayers. The main difference between interdigitated and non-interdigitated gel phase bilayers which can be exploited for determination of their structure using spin labels, is that the former have a much less steep fluidity gradient. Thus long chain spin labels with the nitroxide group near the terminal methyl of the chain, such as 16-doxylstearic acid, its methyl ester, or a phosphatidylglycerol spin label containing 16-doxylstearic acid (PG-SL), are more motionally restricted and/or ordered in the interdigitated bilayer than in the non-interdigitated bilayer. This difference is large enough to be of diagnostic value for all three spin labels in the interdigitated bilayers of dihexadecylphosphatidylcholine, dipalmitoylphosphatidylcholine/ethanol, and 1,3-dipalmitoylphosphatidylcholine. However, it is not large enough to be of diagnostic value at low temperatures. Use of probes with the nitroxide group closer to the apolar/polar interface reveals that these latter interdigitated bilayers are more disordered or less closely packed. As the temperature is increased, however, the motion of the PG-SL does not increase as much in these interdigitated bilayers as in non-interdigitated bilayers. The difference in the motion and/or order of PG-SL between interdigitated and non-interdigitated bilayers is large enough at higher temperatures to be of value in diagnosing the structure of the bilayers. Thus by choice of a suitable spin label and a suitable temperature, this technique should prove useful for detection and diagnosis of lipid bilayer structure with a good degree of reliability. Caution must, of course be exercised, as with any spectroscopic technique. Spin labels will also be invaluable for more detailed studies of known interdigitated bilayers, which would be time- and material-consuming, if carried out using X-ray diffraction solely.  相似文献   

3.
Differential scanning calorimetry was used to examine the lipid exchange between model lipid systems, including vesicles of the cationic lipoids ethyldimyristoylphosphatidylcholine (EDMPC), ethyldipalmitoylphosphatidylcholine (EDPPC) or their complexes with DNA (lipoplexes), and the zwitterionic lipids (DMPC, DPPC). The changes of the lipid phase transition parameters (temperature, enthalpy, and cooperativity) upon consecutive temperature scans was used as an indication of lipid mixing between aggregates. A selective lipid transfer of the shorter-chain cationic lipoid EDMPC into the longer-chain aggregates was inferred. In contrast, transfer was hindered when EDMPC (but not EDPPC) was bound to DNA in the lipoplexes. These data support a simple molecular lipid exchange mechanism, but not lipid bilayer fusion. Exchange via lipid monomers is considerably more facile for the cationic ethylphosphatidylcholines than for zwitterionic phosphatidylcholines, presumably due to the higher monomer solubility of the charged lipids. With the cationic liposomes, lipid transfer was strongly promoted by the presence of serum in the dispersing medium. Serum proteins are presumed to be responsible for the accelerated transfer, since the effect was strongly reduced upon heating the serum to 80 °C. The effect of serum indicates that even though much lipoplex lipid is inaccessible due to the multilayered structure, the barrier due to buried lipid can be easily overcome. Serum did not noticeably promote the lipid exchange of zwitterionic liposomes. The phenomenon is of potential importance for the application of cationic liposomes to nonviral gene delivery, which often involves the presence of serum in vitro, and necessarily involves serum contact in vivo.  相似文献   

4.
The influence of monovalent cations and anions on the structural parameters of dipalmitoylphosphatidylcholine (DPPC) bilayers was examined at 25 degrees C using X-ray diffraction. It was shown that monovalent salts, in general, have little effect on lipid packing within the bilayer. However, fully hydrated DPPC bilayers in 1 M KSCN pack in an interdigitated acyl chain phase. This is the first observation of an ion-induced interdigitated bilayer phase in a zwitterionic lipid. In addition, gel state DPPC bilayers in 1 M KBr imbibe approx. 10 A more solvent than bilayers in water. The influence of these same salts on the phase transitions of DPPC bilayers was also examined using high-resolution differential scanning calorimetry. These results are discussed in terms of ion-induced changes in solvent and solvent/bilayer structure.  相似文献   

5.
Glycerol and polymyxin have been shown by X-ray diffraction to induce interdigitated bilayers in phosphatidylcholine (PC) and phosphatidylglycerol (PG), respectively (McDaniel, R.V., et al. (1983) Biochim. Biophys. Acta 731, 97-108; Ranck, J.-L. and Tocanne, J.-F. (1982) FEBS Lett. 143, 175-178). In the present study we have investigated the phase behavior of PC and PG in the presence of glycerol and polymyxin by differential scanning calorimetry and the use of fatty acid spin labels. Interdigitation causes a large increase in the order parameter of a fatty acid spin labeled near the terminal methyl, 16-doxylstearate, so that it was similar to that of a fatty acid labeled much closer to the polar head group region, 5-doxylstearate. Thus interdigitation abolishes the fluidity gradient found in a non-interdigitated bilayer. 16-Doxylstearate may be useful in detecting interdigitation of lipid bilayers caused by other substances. The different samples all went through two transitions on heating or cooling, or both. However, use of the fatty acid spin label showed that the molecular events during these transitions varies for different samples. The results suggested that PC-glycerol freezes from the liquid-crystalline phase into a non-interdigitated gel phase. This subsequently becomes interdigitated upon lowering the temperature a few degrees, in a low enthalpy transition. PG-polymyxin shows a similar behavior except that the enthalpy of the non-interdigitated gel to interdigitated phase transition is greater and the transition is reversible on heating. Thus on heating PG-polymyxin first goes through a transition from the interdigitated phase to a non-interdigitated gel phase and then, in a separate transition, to the liquid-crystalline phase. This occurs because the fatty acid chains in the presence of polymyxin become too disordered with increase in temperature to maintain the interdigitated state. PG-glycerol goes into the interdigitated state less readily than the other mixtures. If cooled rapidly, PG-glycerol freezes into a metastable phase which is more disordered than the interdigitated phase. It goes into the interdigitated phase in an exothermic transition on heating. An increase in fatty acid chain length causes greater steric hindrance to interdigitation but also increases the stabilizing energy gained by interdigitation.  相似文献   

6.
We have determined the phase behavior of disaturated phosphatidylglycerols (PGs) of chain lengths n(CH2) = 14-18 at high pH and ionic strength using calorimetry, dilatometry, as well as x-ray diffraction. PGs with n(CH2) = 14 and 16 show thermotropic behavior similar to that of phosphatidylcholines (PCs). The area/lipid obtained in the gel phase is smaller than that reported for PCs despite the expected larger effective headgroup size. This can be explained by the tilting of the PG headgroup out of the bilayer plane, and we provide experimental evidence for a headgroup tilt transition. For distearoyl PG, we further find that the "usual" gel phase coexists with an interdigitated phase, which exhibits a transition from an orthorhombic into a hexagonal chain packing. The total amount of the interdigitated phase depends significantly on the temperature but is found to be largely independent of temperature equilibration time and different sample preparation protocols. Thus, the development of the interdigitated phase appears to be kinetically trapped. The formation of interdigitated phases in PGs at much smaller chain lengths than in PCs is of high relevance to interaction studies with antimicrobial peptides, as it provides a mechanism for the discrimination of membranes composed of different lipid species.  相似文献   

7.
The metastable phase behavior of semi-synthetic species of cerebroside sulfate (CBS), with hydroxy and non-hydroxy fatty acids from 16 to 26 carbons in length, was compared in Li+ and K+ using differential scanning calorimetry. The structure of the metastable and various stable phases formed in the presence of these two cations was investigated using a fatty acid spin label, 16-doxylstearate. A number of stable phases with successively higher phase transition temperatures and enthalpies occur in the presence of K+ (see the preceding paper). Li+ prevents formation of the most stable phases with the highest transition temperatures and enthalpies for all species of CBS. However, it does not prevent a transition from the metastable phase to the first stable phase of the longer chain C24 and C26 species. Furthermore, it allows C24:0h-CBS to undergo a similar transition, in contrast to a high K+ concentration, which prevents it. The spin label has anisotropic motion in the metastable gel phase formed by all species of CBS on cooling from the liquid crystalline phase. The spectra resemble those in gel phase phospholipids. The spin label is partially insoluble in the most stable phases formed by all the lipids, including the unsaturated C24:1 species, preventing further elucidation of their structure using this technique. However, the spin label is soluble in the first stable phase formed on cooling by the longer chain C24:0 and C26:0-CBS in Li+ and K+ and by C24:0h-CBS in Li+, and is motionally restricted in this phase. The motional restriction is similar to that observed in the mixed interdigitated bilayers of asymmetric species of phosphatidylcholine and fully interdigitated bilayers formed by symmetric phospholipids. It strongly suggests that the highly asymmetric long chain species of CBS form a mixed interdigitated bilayer in their first stable gel phases while the metastable phase of these and the shorter chain lipids may be partially interdigitated. The metastable phase of C24:1-CBS is more disordered suggesting that it may not be interdigitated at all. Thus the results suggest that (i) the hydroxy fatty acid inhibits but does not prevent formation of a mixed interdigitated bilayer by long chain species of CBS, (ii) an increase in non-hydroxy fatty acid chain length from 24 to 26 carbons promotes it, and (iii) a cis double bond probably prevents any form of interdigitation. These results may be relevant to the physiological and pathological roles of these structural modifications of CBS.  相似文献   

8.
A viewpoint now emerging is that a critical factor in lipid-mediated transfection (lipofection) is the structural evolution of lipoplexes upon interacting and mixing with cellular lipids. Here we report our finding that lipid mixtures mimicking biomembrane lipid compositions are superior to pure anionic liposomes in their ability to release DNA from lipoplexes (cationic lipid/DNA complexes), even though they have a much lower negative charge density (and thus lower capacity to neutralize the positive charge of the lipoplex lipids). Flow fluorometry revealed that the portion of DNA released after a 30-min incubation of the cationic O-ethylphosphatidylcholine lipoplexes with the anionic phosphatidylserine or phosphatidylglycerol was 19% and 37%, respectively, whereas a mixture mimicking biomembranes (MM: phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine /cholesterol 45:20:20:15 w/w) and polar lipid extract from bovine liver released 62% and 74%, respectively, of the DNA content. A possible reason for this superior power in releasing DNA by the natural lipid mixtures was suggested by structural experiments: while pure anionic lipids typically form lamellae, the natural lipid mixtures exhibited a surprising predilection to form nonlamellar phases. Thus, the MM mixture arranged into lamellar arrays at physiological temperature, but began to convert to the hexagonal phase at a slightly higher temperature, approximately 40-45 degrees C. A propensity to form nonlamellar phases (hexagonal, cubic, micellar) at close to physiological temperatures was also found with the lipid extracts from natural tissues (from bovine liver, brain, and heart). This result reveals that electrostatic interactions are only one of the factors involved in lipid-mediated DNA delivery. The tendency of lipid bilayers to form nonlamellar phases has been described in terms of bilayer "frustration" which imposes a nonzero intrinsic curvature of the two opposing monolayers. Because the stored curvature elastic energy in a "frustrated" bilayer seems to be comparable to the binding energy between cationic lipid and DNA, the balance between these two energies could play a significant role in the lipoplex-membrane interactions and DNA release energetics.  相似文献   

9.
A fatty acid spin label, 16-doxyl-stearic acid, was used to determine the percent interdigitated lipid in mixtures of a neutral phospholipid and an acidic phospholipid. Interdigitation of the acidic lipid was induced with polymyxin B (PMB) at a mole ratio of PMB to acidic lipid of 1:5. This compound does not bind significantly to neutral lipids or induce interdigitation of the neutral lipids by themselves. The neutral lipids used were dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), or dipalmitoylphosphatidylethanolamine (DPPE), and the acidic lipids were dipalmitoylphosphatidylglycerol (DPPG) or dipalmitoylphosphatidic acid (DPPA). The percent interdigitated lipid was determined from the percent of the spin label which is motionally restricted, assuming that the spin label is homogeneously distributed in the lipid. Assuming further that 100% of the acidic lipid is interdigitated at this saturating concentration of PMB, the percentage of the neutral lipid which can become interdigitated along with it was calculated. The results indicate that about 20 mole % DPPC can be incorporated into and become interdigitated in the interdigitated bilayer of PMB/DPPG at 4 degrees C. As the temperature approaches the phase transition temperature, the lipid becomes progressively less interdigitated; this occurs to a greater degree for the mixtures than for the single acidic lipid. Thus the presence of DPPC promotes transformation of the acidic lipid to a non-interdigitated bilayer at higher temperatures. At the temperature of the lipid phase transition little or none of the lipid in the mixture is interdigitated. Thus the lipid phase transition detected by calorimetry is not that of the interdigitated bilayer. The shorter chain length DMPC can be incorporated to a greater extent than DPPC, 30-50 mol%, in the interdigitated bilayer of PMB-DPPG. This may be a result of reduced exposure of the terminal methyl groups of the shorter myristoyl chains at the polar/apolar interface of the interdigitated bilayer. Less than 29% of the total lipid was interdigitated in a DPPC/DPPA/PMB 1:1:0.2 mixture indicating that none of the DPPC in this mixture becomes interdigitated. This is attributed to the lateral interlipid hydrogen bonding interactions of DPPA which inhibits formation of an interdigitated bilayer. DPPE was found to be incorporated into the interdigitated bilayer of PMB-DPPG to a similar extent as DPPC if the amount of PMB added is sufficient to bind to only the DPPG in the mixture. Differential scanning calorimetry showed that the remaining non-interdigitated DPPE-enriched mixture phase separates into its own domain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
High-pressure Fourier transform infrared (FT-IR) spectroscopy was used to study the effects of a local anesthetic, tetracaine, on the structural and dynamic properties of lipids in model membranes. The model membrane systems studied were multilamellar aqueous dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-di-O-hexadecyl-sn-glycero-3-phosphocholine (DHPC) in the absence and presence of a physiological concentration of cholesterol (30 mol %). The infrared spectra were measured at 28 degrees C in a diamond anvil cell as a function of pressure up to 25 kbar. The results indicate that the effects of tetracaine on the structure of pure DMPC bilayers in the gel state are dependent on the state of charge of the anesthetic. The uncharged tetracaine disorders the lipid acyl chains while the charged form induces the formation of an interdigitated gel phase. The presence of cholesterol in the latter system prevents the formation of the interdigitated phase, whereas in the former system it disorders the lipid acyl chains in the gel state. Moreover, it is shown that the addition of uncharged tetracaine to interdigitated DHPC bilayers does not alter the interdigitated state of the hydrocarbon chains.  相似文献   

11.
The interaction of cationic liposomes with supercoiled plasmid DNA results in a major rearrangement of each component to form compact multilamellar structures comprised of alternating layers of two-dimensional arrays of DNA sandwiched between lipid bilayers. Fluorescence resonance energy transfer was used to estimate the distance of closest approach of DNA to the lipid bilayers in these complexes. The effect of several compositional variables on this distance, including the ratio of cationic lipid to DNA, and the charge density, intrinsic curvature, and fluidity of the lipid bilayer were examined. Additionally, the effect of ionic strength was studied. For complexes prepared at or above a 3:1 charge ratio (+/-), the observed distance of closest approach was found to be in agreement with the intercalation of DNA between lipid bilayers. As the charge ratio was decreased, a monotonic increase in the distance was observed with a maximum observed at 0.5:1. Correlations between differences in the proximity of DNA to the lipid bilayer and the hydrodynamic size of the complexes were also found. A model based on these observations and previous reports suggests the formation of discrete populations of complexes below a charge ratio of 0.5:1 and above 3:1. The structure of the negatively charged complexes is consistent with DNA extending from the surface of the particles, whereas those possessing excess positive charge were multilamellar aggregates with the DNA effectively condensed between lipid bilayers. Complexes between these two states consist of weighted fractions of these two species.  相似文献   

12.
A viewpoint now emerging is that a critical factor in lipid-mediated transfection (lipofection) is the structural evolution of lipoplexes upon interacting and mixing with cellular lipids. Here we report our finding that lipid mixtures mimicking biomembrane lipid compositions are superior to pure anionic liposomes in their ability to release DNA from lipoplexes (cationic lipid/DNA complexes), even though they have a much lower negative charge density (and thus lower capacity to neutralize the positive charge of the lipoplex lipids). Flow fluorometry revealed that the portion of DNA released after a 30-min incubation of the cationic O-ethylphosphatidylcholine lipoplexes with the anionic phosphatidylserine or phosphatidylglycerol was 19% and 37%, respectively, whereas a mixture mimicking biomembranes (MM: phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine /cholesterol 45:20:20:15 w/w) and polar lipid extract from bovine liver released 62% and 74%, respectively, of the DNA content. A possible reason for this superior power in releasing DNA by the natural lipid mixtures was suggested by structural experiments: while pure anionic lipids typically form lamellae, the natural lipid mixtures exhibited a surprising predilection to form nonlamellar phases. Thus, the MM mixture arranged into lamellar arrays at physiological temperature, but began to convert to the hexagonal phase at a slightly higher temperature, ∼ 40-45 °C. A propensity to form nonlamellar phases (hexagonal, cubic, micellar) at close to physiological temperatures was also found with the lipid extracts from natural tissues (from bovine liver, brain, and heart). This result reveals that electrostatic interactions are only one of the factors involved in lipid-mediated DNA delivery. The tendency of lipid bilayers to form nonlamellar phases has been described in terms of bilayer “frustration” which imposes a nonzero intrinsic curvature of the two opposing monolayers. Because the stored curvature elastic energy in a “frustrated” bilayer seems to be comparable to the binding energy between cationic lipid and DNA, the balance between these two energies could play a significant role in the lipoplex-membrane interactions and DNA release energetics.  相似文献   

13.
The present study aims at a better understanding of the mechanism of transfection mediated by two sugar-based gemini surfactants GS1 and GS2. Previously, these gemini surfactants have been shown to be efficient gene vectors for transfection both in vitro and in vivo. Here, using Nile Red, a solvatochromic fluorescent probe, we investigated the phase behavior of these gemini surfactants in complexes with plasmid DNA, so-called lipoplexes. We found that these lipoplexes undergo a lamellar-to-non-inverted micellar phase transition upon decreasing the pH from neutral to mildly acidic. This normal (non-inverted) phase at acidic pH is confirmed by the colloidal stability of the lipoplexes as shown by turbidity measurements. We therefore propose a normal hexagonal phase, H(I), for the gemini surfactant lipoplexes at acidic endosomal pH. Thus, we suggest that besides an inverted hexagonal (H(II)) phase as reported for several transfection-potent cationic lipid systems, another type of non-inverted non-bilayer structure, different from H(II), may destabilize the endosomal membrane, necessary for cytosolic DNA delivery and ultimately, cellular transfection.  相似文献   

14.
Supported lipid bilayers composed of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) were assembled by the vesicle fusion technique on mica and studied by temperature-controlled atomic force microscopy. The role of different physical parameters on the main phase transition was elucidated. Both mixed (POPE/POPG 3:1) and pure POPE bilayers were studied. By increasing the ionic strength of the solution and the incubation temperature, a shift from a decoupled phase transition of the two leaflets, to a coupled transition, with domains in register, was obtained. The observed behavior points to a modulation of the substrate/bilayer and interleaflet coupling induced by the environment and preparation conditions of supported lipid bilayers. The results are discussed in view of the role of different interactions in the system. The influence of the substrate on the lipid bilayers, in terms of interleaflet coupling, can also help us in understanding the possible effect that submembrane elements like the cytoskeleton might have on the structure and dynamics of biomembranes.  相似文献   

15.

Background

Serum and high ionic strength solutions constitute important barriers to cationic lipid-mediated intravenous gene transfer. Preparation or incubation of lipoplexes in these media results in alteration of their biophysical properties, generally leading to a decrease in transfection efficiency. Accurate quantification of these changes is of paramount importance for the success of lipoplex-mediated gene transfer in vivo.

Results

In this work, a novel time-resolved fluorescence resonance energy transfer (FRET) methodology was used to monitor lipoplex structural changes in the presence of phosphate-buffered saline solution (PBS) and fetal bovine serum. 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)/pDNA lipoplexes, prepared in high and low ionic strength solutions, are compared in terms of complexation efficiency. Lipoplexes prepared in PBS show lower complexation efficiencies when compared to lipoplexes prepared in low ionic strength buffer followed by addition of PBS. Moreover, when serum is added to the referred formulation no significant effect on the complexation efficiency was observed. In physiological saline solutions and serum, a multilamellar arrangement of the lipoplexes is maintained, with reduced spacing distances between the FRET probes, relative to those in low ionic strength medium.

Conclusion

The time-resolved FRET methodology described in this work allowed us to monitor stability and characterize quantitatively the structural changes (variations in interchromophore spacing distances and complexation efficiencies) undergone by DOTAP/DNA complexes in high ionic strength solutions and in presence of serum, as well as to determine the minimum amount of potentially cytotoxic cationic lipid necessary for complete coverage of DNA. This constitutes essential information regarding thoughtful design of future in vivo applications.  相似文献   

16.
This study investigates the dynamic behavior of 1,6-diphenyl-1,3,5-hexatriene (DPH) in C(18):C(10)phosphatidylcholine [C(18):C(10)PC] bilayers. C(18):C(10)PC is an asymmetric mixed-chain phosphatidylcholine known to form mixed-interdigitated structures below the transition temperature and form partially interdigitated bilayers above the transition temperature. The rotation of DPH in C(18):C(10)PC has been described in terms of the thermal coefficient of rotation using the modified Y-plot method which takes into account the limiting anisotropy value. During the phase transition of C(18):C(10)PC, DPH exhibits a thermal coefficient b2M = 0.41 - 0.51 degrees C-1 which is similar to the b2M values obtained with noninterdigitated phosphatidylcholine bilayers. Differential polarized phase-modulation fluorometry has also been employed to study the dynamic behavior of DPH in C(18):C(10)PC in real time. The data show that DPH contains considerable motion in the highly ordered mixed interdigitated bilayers. The DPH motion steadily increases with an increase in temperature as shown by the rotational correlation time, and the wobbling diffusion constant. However, the limiting anisotropy, the order parameter, and the width of the lifetime distribution undergo an abrupt decrease, and a corresponding abrupt increase in the cone angle, at approximately 16 degrees C. This temperature range is near the onset temperature of the phase transition as determined by differential scanning calorimetry. The rotational parameters show strong hysteresis on heating and cooling. All the rotational parameters derived from DPH fluorescence in mixed interdigitated C(18):C(10)PC exhibit magnitudes similar to those obtained from noninterdigitated gel phases of symmetric diacylphosphatidylcholines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Phospholipids are a diverse group of biomolecules consisting of a hydrophilic headgroup and two hydrophobic acyl tails. The nature of the head and length and saturation of the acyl tails are important for defining the biophysical properties of lipid bilayers. It has recently been shown that the membranes of certain yeast species contain high levels of unusual asymmetric phospholipids consisting of one long and one medium-chain acyl moiety, a configuration not common in mammalian cells or other well-studied model yeast species. This raises the possibility that structurally asymmetric glycerophospholipids impart distinctive biophysical properties to the yeast membranes. Previously, it has been shown that lipids with asymmetric length tails form a mixed interdigitated gel phase and exhibit unusual endotherm behavior upon heating and cooling. Here, however, we address physiologically relevant temperature conditions and, using atomistic molecular dynamics simulations and environmentally sensitive fluorescent membrane probes, characterize key biophysical parameters (such as lipid packing, diffusion coefficient, membrane thickness, and area per lipid) in membranes composed of both length-asymmetric glycerophospholipids and ergosterol. Interestingly, we show that saturated but asymmetric glycerophospholipids maintain membrane lipid order across a wide range of temperatures. We also show that these asymmetric lipids can substiture of unsaturated symmetric lipids in the phase behaviour of ternary lipid bilayers. This may allow cells to maintain membrane fluidity, even in environments that lack oxygen, which is required for the synthesis of unsaturated lipids and sterols.  相似文献   

18.
Lipoplexes are complexes formed between cationic liposomes (L(+)) and polyanionic nucleic acids (P(-)). They are commonly used in vitro and in vivo as a nucleic acid delivery system. Our study aims are to investigate how DOTAP-based cationic liposomes, which vary in their helper lipid (cholesterol or DOPE) and in media of different ionic strengths affect the degree, mode of association and degree of condensation of pDNA. This was determined by ultracentrifugation and gel electrophoresis, methods based on different physical principles. In addition, the degree of pDNA condensation was also determined using the ethidium bromide (EtBr) intercalation assay. The results suggest that for cationic lipid compositions (DOTAP/DOPE and DOTAP/cholesterol), 1.5 M NaCl, but not 0.15 M NaCl, both prevent lipoplex formation and/or induce partial dissociation between lipid and DNA of preformed lipoplexes. The higher the salt concentration the greater is the similarity of DNA condensation (monitored by EtBr intercalation) between lipoplex DNA and free DNA. As determined by ultracentrifugation and agarose gel electrophoresis, 30-90% of the DNA is uncondensed. SDS below its critical micellar concentration (CMC) induced "de-condensation" of DNA without its physical release (assessed by ultracentrifugation) for both DOTAP/DOPE and DOTAP/cholesterol lipoplexes. As was assessed by agarose gel electrophoresis SDS induced release of 50-60% of DNA from the DOTAP/cholesterol lipoplex but not from the DOTAP/DOPE lipoplex. This study shows that there are conditions under which DNA is still physically associated with the cationic lipids but undergoes unwinding to become less condensed. We also proved that the helper lipid affects level and strength of the L(+) and DNA(-) electrostatic association; these interactions are weaker for DOTAP/cholesterol than for DOTAP/DOPE, despite the fact that the positive charge and surface pH of DOTAP/cholesterol and DOTAP/DOPE are similar.  相似文献   

19.
Y Xu  S W Hui  P Frederik    F C Szoka  Jr 《Biophysical journal》1999,77(1):341-353
Cationic lipid-nucleic acid complexes (lipoplexes) consisting of dioleoyltrimethylammoniumpropane (DOTAP) liposomes and plasmid DNA were prepared at various charge ratios (cationic group to nucleotide phosphate), and the excess component was separated from the lipoplex. We measured the stoichiometry of the lipoplex, noted its colloidal properties, and observed its morphology and structure by electron microscopy. The colloidal properties of the lipoplexes were principally determined by the cationic lipid/DNA charge ratio and were independent of the lipid composition. In lipoplexes, the lipid membranes as observed in freeze-fracture electron microscopy were deformed into high-radius-of-curvature features whose characteristics depended on the lipid composition. Lipoplexes prepared at a threefold or greater excess of either DOTAP or DNA could be resolved into complexes with a defined stoichiometry and the excess component by sedimentation to equilibrium on sucrose gradients. The separated, positively charged complex retained high transfection activity and had reduced toxicity. The negatively charged lipoplex showed increased transfection activity compared to the starting mixture. In cryoelectron micrographs the positively charged complex was spherical and contained a condensed but indistinct interior structure. In contrast, the separated negatively charged lipoplexes had a prominent internal 5.9 +/- 0.1-nm periodic feature with material projecting as spikes from the spherical structure into the solution. It is likely that these two lipoplexes represent structures with different lipid and DNA packing.  相似文献   

20.
We show that the activity of an ion channel is correlated with the phase state of the lipid bilayer hosting the channel. By measuring unitary conductance, dwell times, and open probability of the K+ channel KcsA as a function of temperature in lipid bilayers composed of POPE and POPG in different relative proportions, we obtain that all those properties show a trend inversion when the bilayer is in the transition region between the liquid-disordered and the solid-ordered phase. These data suggest that the physical properties of the lipid bilayer influence ion channel activity likely via a fine-tuning of its conformations. In a more general interpretative framework, we suggest that other parameters such as pH, ionic strength, and the action of amphiphilic drugs can affect the physical behavior of the lipid bilayer in a fashion similar to temperature changes resulting in functional changes of transmembrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号