首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here the Resonance Raman spectrum of a 'pink' membrane (lambda max approximately 495 nm) photochemically generated from the deionized 'blue' membrane (Chang et al., 1985). Comparison of the Raman spectrum of the pink membrane with that of the model compounds, as well as the chromophore extraction data, indicate that the chromophore in the pink membrane is in the 9-cis configuration. The Schiff base peak at approximately 1,652 cm-1 shifts to approximately 1,622 cm-1 upon deuteration of the pink membrane, showing that the chromophore is bound to the bacterio-opsin by a protonated Schiff base linkage. The location of the Schiff base peak, as well as the 30 cm-1 shift that it undergoes upon deuteration, are quite different from the corresponding values for the native bacteriorhodopsin, suggesting differences in the local environment for the Schiff base in these pigments.  相似文献   

2.
The absolute direction of the retinal chromophore of bacterio-rhodopsin relative to the membrane plane is investigated by using an optical second-harmonic interference technique. Compared with the known adsorbed geometry of free retinylidene Schiff base on a glass substrate, our data indicate the β-ionone ring of the chromophore of bacteriorhodopsin points away from the cytoplasmic surface of the purple membrane. The implication of this finding is discussed in light of other chemical and structural results on bacteriorhodopsin.  相似文献   

3.
A S Ulrich  M P Heyn  A Watts 《Biochemistry》1992,31(42):10390-10399
The orientation and conformation of retinal within bacteriorhodopsin of the purple membrane of Halobacterium halobium was established by solid-state deuterium NMR spectroscopy, through the determination of individual chemical bond vectors. The chromophore ([2,4,4,16,16,17,17,17,18,18-2H11]retinal) was specifically deuterium-labeled on the cyclohexene ring and incorporated into the protein. A uniaxially oriented sample of purple membrane patches was prepared and measured at a series of inclinations relative to the spectrometer field. 31P NMR was used to characterize the mosaic spread of the oriented sample, and computer simulations were applied in the analysis of the 2H NMR and 31P NMR spectral line shapes. From the deuterium quadrupole splittings, the specific orientations of the three labeled methyl groups on the cyclohexene ring could be calculated. The two adjacent methyl groups (on C1) of the retinal were found to lie approximately horizontal in the membrane and make respective angles of 94 degrees +/- 2 degrees and 75 degrees +/- 2 degrees with the membrane normal. The third group (on C5) points toward the cytoplasmic side with an angle of 46 degrees +/- 3 degrees. These intramolecular constraints indicate that the cyclohexene ring lies approximately perpendicular to the membrane surface and that it has a (6S)-trans conformation. From the estimated angle of the tilt of the chomophore long axis, it is concluded that the polyene chain is slightly curved downward to the extracellular side of the membrane.  相似文献   

4.
Linear dichroism experiments are performed on light-adapted bacteriorhodopsin (BR568) films containing native retinal (A1) and its 3,4-dehydroretinal (A2) analogue to measure the angle between the chromophore transition dipole moment and the membrane normal. QCFF/pi calculations show that the angle between the transition moment and the long axis of the polyene is changed by 3.4 degrees when the C3-C4 bond is unsaturated. The difference vector between the two transition moments points in the same direction as the Schiff base (N----H) bond for the all-trans BR568 chromophore. Because the plane of the chromophore is perpendicular to the membrane plane, a comparison of the transition moment orientations in the A1- and A2-pigments enables us to determine the orientation of the N----H bond with respect to the absolute chromophore (N----C5 vector) orientation. The angles of the transition moments are 70.3 degrees +/- 0.4 degrees and 67.8 degrees +/- 0.4 degrees for the A1- and A2-pigments, respectively. The fact that the change in the transition moment angle (2.5 degrees) is close to the predicted 3.4 degrees supports the idea that the chromophore plane is nearly perpendicular to the membrane plane. The decreased transition moment angle in the A2-analogue requires that the N----H bond and the N----C5 vector point toward the same membrane surface. Available results indicate that the N----C5 vector points toward the exterior in BR568. With this assignment, we conclude that the N----H bond points toward the exterior surface and its most likely counterion Asp-212. This information makes possible the construction of a computer graphics model for the active site in BR568.  相似文献   

5.
From our earlier extensive protein-lipid reconstitution studies, the conditions under which bacteriorhodopsin forms organised 2D arrays in large unilamellar vesicles have been established using freeze-fracture electron microscopy. In a background bilayer matrix of phosphatidylcholine (diC(14:0)), the protein can form arrays only when the anionic purple membrane lipid, phosphatidylglycerol phosphate (or the sulphate derivative) is present. Here we have now extended this work to investigate the effect of bilayer thickness on array formation. Phosphatidylcholines with various chain lengths (diC(12:0), diC(14:0) and diC(16:0)) and which form bilayers of well defined bilayer thickness, have been used as the matrix into which bacteriorhodopsin, together with minimal levels (c. 4-10 lipids per bacteriorhodopsin) of diphytanyl phosphatidyl-glycerol phosphate, has been reconstituted. Arrays are formed in all complexes and bhickness appears only to alter the type of array formed, either as an orthogonal or as an hexagonal array. Secondly, we have previously deduced the entire conformation of retinal within the bacteriorhodopsin binding pocket in oriented purple membrane fragments. Using solid state deuterium NMR of the specifically deutero-methylated retinal labelled at each of the methyl positions in the molecule, the C-CD(3) bond vectors of the chromophore have been resolved to +/- 2 degrees . The ring conformation is 6-S-trans, but the polyene chain is slightly curved when in the protein binding site. Here, we describe studies on the protein in both the ground state and the trapped M(412)-state of the photocycle, to show that the orientation of the central methyl group (C(19)) on the polyene chain, which is at 40 degrees +/- 1 degrees with respect to the membrane normal, only changes its orientation by approximately 4 degrees upon 13-cis-isomerization. Thus, it is the Schiff base end of the chromophore which moves upon light incidence acting as a local switch on the protein in the photocycle, whilst the ring end of the chromophore moves rather less.  相似文献   

6.
Detergent solubilization and subsequent delipidation of bacteriorhodopsin (bR) results in the formation of a new species absorbing maximally at 480 nm (bR480). Upon lowering the pH, its absorption shifts to 540 nm (bR540). The pK of this equilibrium is 2.6, with the higher pH favoring bR480 (Baribeau, J. and Boucher, F. (1987) Biochim. Biophysica Acta, 890, 275-278). Resonance Raman spectroscopy shows that bR480, like the native bR, contains a protonated Schiff base (PSB) linkage between the chromophore and the protein. However, the Schiff base vibrational frequency in bR480, and its shift upon deuteration, are quite different from these in the native bR, suggesting changes in the Schiff base environment upon delipidation. Infrared absorption and circular-dichroism (CD) spectral studies do not show any net change in the protein secondary structure upon formation of bR480. It is shown that deprotonation of the Schiff base is not the only mechanism of producing hypsochromic shift in the absorption maximum of bR-derived pigments, subtle changes in the protein tertiary structure, affecting the Schiff base environment of the chromophore, may play an equally significant role in the color regulation of bR-derived pigments.  相似文献   

7.
By elevating the pH to 9.5 in 3 M KCl, the concentration of the N intermediate in the bacteriorhodopsin photocycle has been enhanced, and time-resolved resonance Raman spectra of this intermediate have been obtained. Kinetic Raman measurements show that N appears with a half-time of 4 +/- 2 ms, which agrees satisfactorily with our measured decay time of the M412 intermediate (2 +/- 1 ms). This argues that M412 decays directly to N in the light-adapted photocycle. The configuration of the chromophore about the C13 = C14 bond was examined by regenerating the protein with [12,14-2H]retinal. The coupled C12-2H + C14-2H rock at 946 cm-1 demonstrates that the chromophore in N is 13-cis. The shift of the 1642-cm-1 Schiff base stretching mode to 1618 cm-1 in D2O indicates that the Schiff base linkage to the protein is protonated. The insensitivity of the 1168-cm-1 C14-C15 stretching mode to N-deuteriation establishes a C = N anti (trans) Schiff base configuration. The high frequency of the C14-C15 stretching mode as well as the frequency of the 966-cm-1 C14-2H-C15-2H rocking mode shows that the chromophore is 14-s-trans. Thus, N contains a 13-cis, 14-s-trans, 15-anti protonated retinal Schiff base.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Light-induced isomerization leads to orientational changes of the retinylidene chromophore of bacteriorhodopsin in its binding pocket. The chromophore reorientation has been characterized by the following methods: polarized absorption spectroscopy in the visible, UV and IR; polarized resonance Raman scattering; solid-state deuterium nuclear magnetic resonance; neutron and X-ray diffraction. Most of these experiments were performed at low temperatures with bacteriorhodopsin trapped in one or a mixture of intermediates. Time-resolved measurements at room temperature with bacteriorhodopsin in aqueous suspension can currently only be carried out with transient polarized absorption spectroscopy in the visible. The results obtained to date for the initial state and the K, L and M intermediates are presented and discussed. The most extensive data are available for the M intermediate, which plays an essential role in the function of bacteriorhodopsin. For this intermediate the various methods lead to a consistent picture: the curved all-trans polyene chain in the initial state straightens out in the M intermediate (13-cis) and the chain segment between C(5) and C(13) tilts upwards in the direction of the cytoplasmic surface. The kink at C(13) allows the positions of beta-ionone ring and Schiff base nitrogen to remain approximately fixed.  相似文献   

9.
The resonance Raman spectrum of photolyzed bacteriorhodopsin under conditions known to increase the concentration of the bO640 intermediate in both H2O and D2O is presented. By use of computer subtraction techniques and a knowledge of the Raman spectra of the unphotolyzed bacteriorhodopsin as well as the other intermediates in the cycle, a qualitative spectrum of bO640 is determined. The shift of a band at 1630 cm-1 in H2O to 1616 cm-1 in D2O suggests that the Schiff base of bO640 is protonated. Additional bands at 947, 965, and 992 cm-1 that appear only in D2O suspensions confirm that a proton is coupled to the retinal chromophore of bO640. The reprotonation of the Schiff base thus occurs during the bM412 to bO640 step. The fingerprint region, sensitive to the isomeric configuration of the retinal chromophore of bO640, is dissimilar to the fingerprint regions of published model compounds and other forms of bacteriorhodopsin.  相似文献   

10.
Magic angle sample spinning (MASS) 13C NMR spectra have been obtained of bovine rhodopsin regenerated with retinal prosthetic groups isotopically enriched with 13C at C-5 and C-14. In order to observe the 13C retinal chromophore resonances, it was necessary to employ low temperatures (-15-----35 degrees C) to restrict rotational diffusion of the protein. The isotropic chemical shift and principal values of the chemical shift tensor of the 13C-5 label indicate that the retinal chromophore is in the twisted 6-s-cis conformation in rhodopsin, in contrast to the planar 6-s-trans conformation found in bacteriorhodopsin. The 13C-14 isotropic shift and shift tensor principal values show that the Schiff base C = N bond is anti. Furthermore, the 13C-14 chemical shift (121.2 ppm) is within the range of values (120-123 ppm) exhibited by protonated (C = N anti) Schiff base model compounds, indicating that the C = N linkage is protonated. Our results are discussed with regard to the mechanism of wavelength regulation in rhodopsin.  相似文献   

11.
Neutron diffraction is used to localize water molecules and/or exchangeable hydrogen ions in the purple membrane by H2O/2H2O exchange experiments at different values of relative humidity. At 100% relative humidity, differences in the hydration between protein and lipid areas are observed, accounting for an excess amount of about 100 molecules of water in the lipid domains per unit cell. A pronounced isotope effect was observed, reproducibly showing an increase in the lamellar spacing from 60 A in 2H2O to 68 A in H2O. At 15% relative humidity, the positions of exchangeable protons became visible. A dominant difference density peak corresponding to 11 +/- 2 exchangeable protons was detected in the central part of the projected structure of bacteriorhodopsin at the Schiff's base end of the chromophore. A difference density map obtained from data on purple membrane films at 15% relative humidity in 2H2O, and the same sample after complete drying in vacuum, revealed that about eight of these protons belong to four water molecules. This is direct evidence for tightly bound water molecules close to the chromophore binding site of bacteriorhodopsin, which could participate in the active steps of H+ translocation as well as in the proton pathway across this membrane protein.  相似文献   

12.
Structure of the retinal chromophore in the hR578 form of halorhodopsin   总被引:1,自引:0,他引:1  
Halorhodopsin is a retinal-containing pigment that is thought to function as a light-driven chloride ion pump in the cell membrane of Halobacterium halobium. To address the role of the retinal chromophore in chloride ion transport, resonance Raman spectra have been obtained of the hR578 form of chromatographically purified halorhodopsin (hR). The close similarity of the frequencies and intensities of the hR578 Raman bands with those of light-adapted bacteriorhodopsin (bR568) shows that the chromophore in hR578 has an all-trans configuration and that the protein environment around the chromophore in these two pigments is very similar. In addition, hR578 exhibits a Raman line at 1633 cm-1 which is assigned as the stretching vibration of a protonated Schiff base linkage to the protein based on its shift to 1627 cm-1 in D2O. The reduced frequency of the Schiff base stretching vibration compared with bR568 (1640 cm-1) is shown to result from a reduction of its coupling with the NH in-plane rock. This may be due to a reduction in hydrogen-bonding between the Schiff base proton and an electronegative counterion in halorhodopsin.  相似文献   

13.
By varying the pH, the D85N mutant of bacteriorhodopsin provides models for several photocycle intermediates of the wild-type protein in which D85 is protonated. At pH 10.8, NMR spectra of [zeta-(15)N]lys-, [12-(13)C]retinal-, and [14,15-(13)C]retinal-labeled D85N samples indicate a deprotonated, 13-cis,15-anti chromophore. On the other hand, at neutral pH, the NMR spectra of D85N show a mixture of protonated Schiff base species similar to that seen in the wild-type protein at low pH, and more complex than the two-state mixture of 13-cis,15-syn, and all-trans isomers found in the dark-adapted wild-type protein. These results lead to several conclusions. First, the reversible titration of order in the D85N chromophore indicates that electrostatic interactions have a major influence on events in the active site. More specifically, whereas a straight chromophore is preferred when the Schiff base and residue 85 are oppositely charged, a bent chromophore is found when both the Schiff base and residue 85 are electrically neutral, even in the dark. Thus a "bent" binding pocket is formed without photoisomerization of the chromophore. On the other hand, when photoisomerization from the straight all-trans,15-anti configuration to the bent 13-cis,15-anti does occur, reciprocal thermodynamic linkage dictates that neutralization of the SB and D85 (by proton transfer from the former to the latter) will result. Second, the similarity between the chromophore chemical shifts in D85N at alkaline pH and those found previously in the M(n) intermediate of the wild-type protein indicate that the latter has a thoroughly relaxed chromophore like the subsequent N intermediate. By comparison, indications of L-like distortion are found for the chromophore of the M(o) state. Thus, chromophore strain is released in the M(o)-->M(n) transition, probably coincident with, and perhaps instrumental to, the change in the connectivity of the Schiff base from the extracellular side of the membrane to the cytoplasmic side. Because the nitrogen chemical shifts of the Schiff base indicate interaction with a hydrogen-bond donor in both M states, it is possible that a water molecule travels with the Schiff base as it switches connectivity. If so, the protein is acting as an inward-driven hydroxyl pump (analogous to halorhodopsin) rather than an outward-driven proton pump. Third, the presence of a significant C [double bond] N syn component in D85N at neutral pH suggests that rapid deprotonation of D85 is necessary at the end of the wild-type photocycle to avoid the generation of nonfunctional C [double bond] N syn species.  相似文献   

14.
Archaeal rhodopsins possess a retinal molecule as their chromophores, and their light energy and light signal conversions are triggered by all-trans to 13-cis isomerization of the retinal chromophore. Relaxation through structural changes of the protein then leads to functional processes, proton pump in bacteriorhodopsin and transducer activation in sensory rhodopsins. In the present paper, low-temperature Fourier transform infrared spectroscopy is applied to phoborhodopsin from Natronobacterium pharaonis (ppR), a photoreceptor for the negative phototaxis of the bacteria, and infrared spectral changes before and after photoisomerization are compared with those of bacteriorhodopsin (BR) at 77 K. Spectral comparison of the C--C stretching vibrations of the retinal chromophore shows that chromophore conformation of the polyene chain is similar between ppR and BR. This fact implies that the unique chromophore-protein interaction in ppR, such as the blue-shifted absorption spectrum with vibrational fine structure, originates from both ends, the beta-ionone ring and the Schiff base regions. In fact, less planer ring structure and stronger hydrogen bond of the Schiff base were suggested for ppR. Similar frequency changes upon photoisomerization are observed for the C==N stretch of the retinal Schiff base and the stretch of the neighboring threonine side chain (Thr79 in ppR and Thr89 in BR), suggesting that photoisomerization in ppR is driven by the motion of the Schiff base like BR. Nevertheless, the structure of the K state after photoisomerization is different between ppR and BR. In BR, chromophore distortion is localized in the Schiff base region, as shown in its hydrogen out-of-plane vibrations. In contrast, more extended structural changes take place in ppR in view of chromophore distortion and protein structural changes. Such structure of the K intermediate of ppR is probably correlated with its high thermal stability. In fact, almost identical infrared spectra are obtained between 77 and 170 K in ppR. Unique chromophore-protein interaction and photoisomerization processes in ppR are discussed on the basis of the present infrared spectral comparison with BR.  相似文献   

15.
In recent years, structural information about bacteriorhodopsin has grown substantially with the publication of several crystal structures. However, precise measurements of the chromophore conformation in the various photocycle states are still lacking. This information is critical because twists about the chromophore backbone chain can influence the Schiff base nitrogen position, orientation, and proton affinity. Here, we focus on the C14-C15 bond, using solid-state nuclear magnetic resonance spectroscopy to measure the H-C14-C15-H dihedral angle. In the resting state (bR(568)), we obtain an angle of 164 +/- 4 degrees, indicating a 16 degrees distortion from a planar all-trans chromophore. The dihedral angle is found to decrease to 147 +/- 10 degrees in the early M intermediate (M(o)) and to 150 +/- 4 degrees in the late M intermediate (M(n)). These results demonstrate changes in the chromophore conformation undetected by recent X-ray diffraction studies.  相似文献   

16.
Solid-state 13C magic-angle spinning NMR spectroscopy has been employed to study the conformation of the 11-cis-retinylidene Schiff base chromophore in bovine rhodopsin. Spectra were obtained from lyophilized samples of bovine rhodopsin selectively 13C-labeled at position C-5 or C-12 of the retinyl moiety, and reconstituted in the fully saturated branched-chain phospholipid diphytanoyl glycerophosphocholine. Comparison of the NMR parameters for carbon C-5 presented in this paper with those published for retinyl Schiff base model compounds and bacteriorhodopsin by Harbison and coworkers [Harbison et al. (1985) Biochemistry 24, 6955-6962], indicate that in bovine rhodopsin the C-6-C-7 single bond has the unperturbed cis conformation. This is in contrast to the 6-S-trans conformation found in bacteriorhodopsin. The NMR parameters for bovine [12-13C]rhodopsin present evidence for the presence of a negative charge interacting with the retinyl moiety near C-12, in agreement with the model for the opsin shift presented by Honig and Nakanishi and coworkers [Kakitani et al. (1985) Photochem. Photobiol. 41, 471-479].  相似文献   

17.
The surface potential of the purple membrane was measured by a novel method by using an artificial bacteriorhodopsin whose chromophore was 13-CF3 retinal instead of retinal. When attached to the apoprotein by a Schiff base, the intrinsic pK of the 13-CF3 chromophore is around 7.3. The apparent pK of this pigment depends on the surface potential and thus on the electrolyte concentration. This allowed us to determine the surface charge density using the Gouy-Chapman equation. The surface charge density was found to be −1.65 ± 0.15 × 10−3 electronic charges per Å2 or about 2 negative charges/bacteriorhodopsin. This large value for the surface potential probably explains both part of the strong apparent association of divalent cations with the membrane and the effect of low salt concentrations on light-induced proton release from the purple membrane.  相似文献   

18.
Retinochrome is a photoisomerase of the invertebrate visual system, which converts all-trans-retinal to the 11-cis configuration and supplies it to visual rhodopsin. In this paper, we studied light-induced structural changes in squid retinochrome by means of low-temperature UV-visible and Fourier transform infrared (FTIR) spectroscopy. In PC liposomes, lumi-retinochrome was stable in the wide temperature range between 77 and 230 K. High thermal stability of the primary intermediate in retinochrome is in contrast to the case in rhodopsins. FTIR spectroscopy suggested that the chromophore of lumi-retinochrome is in a relaxed planar 11-cis form, being consistent with its high thermal stability. The chromophore binding pocket of retinochrome appears to accommodate both all-trans and 11-cis forms without a large distortion, and limited protein structural changes between all-trans and 11-cis chromophores may be suitable for the function of retinochrome as a photoisomerase. The analysis of N-D and O-D stretching vibrations in D(2)O revealed that the hydrogen bond of the Schiff base is weaker in retinochrome than in bovine rhodopsin and bacteriorhodopsin, while retinochrome has a water molecule under strongly hydrogen-bonded conditions (O-D stretch at 2334 cm(-)(1)). The hydrogen bond of the water is further strengthened in lumi-retinochrome. The formation of meta-retinochrome accompanies deprotonation of the Schiff base, together with the peptide backbone alterations of alpha-helices, and possible formation of beta-sheets. It was found that the Schiff base proton is not transferred to its counterion, Glu181, but directly released to the aqueous phase in PC liposomes (pH 7.5). This suggests that the Schiff base environment is exposed to solvent in meta-retinochrome, which may be advantageous for the hydrolysis reaction of the Schiff base in the transport of 11-cis-retinal to its shuttle protein.  相似文献   

19.
The secondary structure of bacteriorhodopsin has been investigated by polarized Fourier transform infrared spectroscopy combined with hydrogen/deuterium exchange, isotope labeling and resolution enhancement methods. Oriented films of purple membrane were measured at low temperature after exposure to H2O or D2O. Resolution enhancement techniques and isotopic labeling of the Schiff base were used to assign peaks in the amide I region of the spectrum. alpha-helical structure, which exhibits strong infrared dichroism, undergoes little H/D exchange, even after 48 h of D2O exposure. In contrast, non-alpha-helical structure, which exhibits little dichroism, undergoes rapid H/D exchange. A band at 1,640 cm-1, which has previously been assigned to beta-sheet structure, is found to be due in part to the C = N stretching vibration of protonated Schiff base of the retinylidene chromophore. We conclude that the membrane spanning regions of bR consist predominantly of alpha-helical structure whereas most beta-type structure is located in surface regions directly accessible to water.  相似文献   

20.
In recent years, significant progress has been made in elucidating the structure of bacteriorhodopsin. However, the molecular mechanism by which vectorial proton motion is enforced remains unknown. Given the advantages of a protonated Schiff base for both photoisomerization and thermal reisomerization of the chromophore, a five-state proton pump can be rationalized in which the switch in the connectivity of the Schiff base between the two sides of the membrane is decoupled from double bond isomerization. This decoupling requires tight control of the Schiff base until it is deprotonated and decisive release after it is deprotonated. NMR evidence has been obtained for both the tight control and the decisive release: strain develops in the chromophore in the first half of the photocycle and disappears after deprotonation. The strain is associated with a strong interaction between the Schiff base and its counterion, an interaction that is broken when the Schiff base deprotonates. Thus the counterion appears to play a critical role in energy transduction, controlling the Schiff base in the first half of the photocycle by 'electrostatic steering'. NMR also detects other events during the photocycle, but it is argued that these are secondary to the central mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号