首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca(2+)-dependent transmitter release is the most important signaling mechanism for fast information transfer between neurons. Transmitter release takes places at highly specialized active zones with sub-micrometer dimension, which contain the molecular machinery for vesicle docking and -fusion, as well as a high density of voltage-gated Ca(2+) channels. In the absence of direct evidence for the ultrastructural localization of Ca(2+) channels at CNS synapses, important insights into Ca(2+) channel-vesicle coupling has come from functional experiments relating presynaptic Ca(2+) current and transmitter release, at large and accessible synapses like the calyx of Held. First, high slope values in log-log plots of transmitter release versus presynaptic Ca(2+) current indicate that multiple Ca(2+) channels are involved in release control of a single vesicle. Second, release kinetics in response to step-like depolarizations revealed fast- and slowly releasable sub-pools of vesicles, FRP and SRP, which, according to the "positional" model, are distinguished by a differential proximity to Ca(2+) channels. Considering recent evidence for a rapid conversion of SRP- to FRP vesicles, however, we highlight that multivesicular release events and clearance of vesicle membrane from the active zone must be taken into account when interpreting kinetic release data. We conclude that the careful kinetic analysis of transmitter release at presynaptically accessible and molecularly targeted synapses has the potential to yield important insights into the molecular physiology of transmitter release.  相似文献   

2.
Ca(2+)-induced Ca(2+) release (CICR) enhances a variety of cellular Ca(2+) signaling and functions. How CICR affects impulse-evoked transmitter release is unknown. At frog motor nerve terminals, repetitive Ca(2+) entries slowly prime and subsequently activate the mechanism of CICR via ryanodine receptors and asynchronous exocytosis of transmitters. Further Ca(2+) entry inactivates the CICR mechanism and the absence of Ca(2+) entry for >1 min results in its slow depriming. We now report here that the activation of this unique CICR markedly enhances impulse-evoked exocytosis of transmitter. The conditioning nerve stimulation (10-20 Hz, 2-10 min) that primes the CICR mechanism produced the marked enhancement of the amplitude and quantal content of end-plate potentials (EPPs) that decayed double exponentially with time constants of 1.85 and 10 min. The enhancement was blocked by inhibitors of ryanodine receptors and was accompanied by a slight prolongation of the peak times of EPP and the end-plate currents estimated from deconvolution of EPP. The conditioning nerve stimulation also enhanced single impulse- and tetanus-induced rises in intracellular Ca(2+) in the terminals with little change in time course. There was no change in the rate of growth of the amplitudes of EPPs in a short train after the conditioning stimulation. On the other hand, the augmentation and potentiation of EPP were enhanced, and then decreased in parallel with changes in intraterminal Ca(2+) during repetition of tetani. The results suggest that ryanodine receptors exist close to voltage-gated Ca(2+) channels in the presynaptic terminals and amplify the impulse-evoked exocytosis and its plasticity via CICR after Ca(2+)-dependent priming.  相似文献   

3.
Membrane potential was recorded intracellularly near presynaptic terminals of the excitor axon of the crayfish opener neuromuscular junction (NMJ), while transmitter release was recorded postsynaptically. This study focused on the effects of a presynaptic calcium-activated potassium conductance, gK(Ca), on the transmitter release evoked by single and paired depolarizing current pulses. Blocking gK(Ca) by adding tetraethylammonium ion (TEA; 5-20 mM) to a solution containing tetrodotoxin and aminopyridines caused the relation between presynaptic potential and transmitter release to steepen and shift to less depolarized potentials. When two depolarizing current pulses were applied at 20-ms intervals with gK(Ca) not blocked, the presynaptic voltage change to the second (test) pulse was inversely related to the amplitude of the first (conditioning) pulse. This effect of the conditioning prepulse on the response to the test pulse was eliminated by 20 mM TEA and by solutions containing 0 mM Ca2+/1 mM EGTA, suggesting that the reduction in the amplitude of the test pulse was due to activation of gK(Ca) by calcium remaining from the conditioning pulse. In the absence of TEA, facilitation of transmitter release evoked by a test pulse increased as the conditioning pulse grew from -40 to -20 mV, but then decreased with further increase in the conditioning depolarization. A similar nonmonotonic relationship between facilitation and the amplitude of the conditioning depolarization was reported in previous studies using extracellular recording, and interpreted as supporting an additional voltage-dependent step in the activation of transmitter release. We suggest that this result was due instead to activation of a gK(Ca) by the conditioning depolarization, since facilitation of transmitter release increased monotonically with the amplitude of the conditioning depolarization, and the early time course of the decay of facilitation was prolonged when gK(Ca) was blocked. The different time courses for decay of the presynaptic potential (20 ms) and facilitation (greater than 50 ms) suggest either that residual free calcium does not account for facilitation at the crayfish NMJ or that the transmitter release mechanism has a markedly higher affinity or stoichiometry for internal free calcium than does gK(Ca). Finally, our data suggest that the calcium channels responsible for transmitter release at the crayfish NMJ are not of the L, N, or T type.  相似文献   

4.
1. In the present paper we review some presynaptic aspects of the mode of action of botulinal toxins (BoTxs) at vertebrate neuromuscular junctions with emphasis on studies carried out in our laboratories using electrophysiological and morphological techniques. 2. Spontaneous quantal transmitter release recorded as miniature end-plate potentials is drastically affected by BoTxs. The low probability of release at poisoned terminals can be enhanced by carbonyl cyanide m-chlorophenylhydrazone (CCCP), Cd2+ and La3+. However, CCCP and La3+ which drastically deplete clear synaptic vesicles from unpoisoned terminals failed to markedly affect the density of synaptic vesicles at poisoned terminals. It is concluded that poisoned terminals have a reduced sensitivity to the release-promoting action of Ca2+, Cd2+ and La3+. 3. When comparing the effect of the various BoTxs on nerve-impulse evoked transmitter release it appears that increasing phasic Ca2+ entry into the terminals enhances evoked synchronized quantal release only from terminals poisoned with serotypes A and E. In contrast, enhanced Ca2+ entry into terminals poisoned with serotypes B, D and F induced a period of high frequency asynchronous release suggesting that these BoTxs may affect a presynaptic step beyond the influx of Ca2+, that may be involved in the synchronization of transmitter quanta. These data suggest that the actions of BoTxs involve several steps of the acetylcholine release process. 4. The analysis of presynaptic currents which depend on both Ca2+ entry and intraterminal background Ca2+ levels strongly suggests that neither Ca2+ entry nor intraterminal Ca2+ levels are altered by BoTxs. Furthermore, poisoned terminals are no more efficient than unpoisoned ones in dealing with Ca2+ overloads. 5. Finally, the morphological examination of junctions paralysed by BoTx-A indicates that the toxin triggers a particularly important overgrowth of the nerve terminals and suggests that the in vivo functional recovery may occur from an extension of the original nerve terminal arborization and the concomitant remodelling of postsynaptic structures.  相似文献   

5.
In a physiological medium the resting membrane potential of synaptosomes from guinea-pig cerebral cortex, estimated from rhodamine 6G fluorescence measurements, was nearly -50mV. This agreed with calculations using the Goldman-Hodgkin-Katz equation. With external [Ca2+] less than or equal to 3 mM veratridine depolarisation (to -30 mV) was accompanied by increases in intrasynaptosomal free calcium concentrations (monitored by entrapped quin2) and parallel increases in total acetylcholine release. With external [Ca2+] greater than 3 mM both intrasynaptosomal free calcium concentrations and transmitter release were paradoxically reduced, providing further evidence for a close correlation between the two events. To support an explanation of these findings based on divalent cation screening of membrane surface charge (increasing the voltage gradient within the membrane and closing voltage-inactivated channels) surface potential measurements were made on synaptic lipid liposomes by using a fluorescent surface-bound pH indicator. These experiments provided evidence for the presence of screenable surface charge on synaptosomes, and it was further shown in depolarised synaptosomes themselves that total external [Ca2+ + Mg2+], and not [Ca2+] alone, set the observed peak in intrasynaptosomal free calcium.  相似文献   

6.
Urinary bladder smooth muscle (UBSM) elicits depolarizing action potentials, which underlie contractile events of the urinary bladder. The resting membrane potential of UBSM is approximately -40 mV and is critical for action potential generation, with hyperpolarization reducing action potential frequency. We hypothesized that a tonic, depolarizing conductance was present in UBSM, functioning to maintain the membrane potential significantly positive to the equilibrium potential for K(+) (E(K); -85 mV) and thereby facilitate action potentials. Under conditions eliminating the contribution of K(+) and voltage-dependent Ca(2+) channels, and with a clear separation of cation- and Cl(-)-selective conductances, we identified a novel background conductance (I(cat)) in mouse UBSM cells. I(cat) was mediated predominantly by the influx of Na(+), although a small inward Ca(2+) current was detectable with Ca(2+) as the sole cation in the bathing solution. Extracellular Ca(2+), Mg(2+), and Gd(3+) blocked I(cat) in a voltage-dependent manner, with K(i) values at -40 mV of 115, 133, and 1.3 microM, respectively. Although UBSM I(cat) is extensively blocked by physiological extracellular Ca(2+) and Mg(2+), a tonic, depolarizing I(cat) was detected at -40 mV. In addition, inhibition of I(cat) demonstrated a hyperpolarization of the UBSM membrane potential and decreased the amplitude of phasic contractions of isolated UBSM strips. We suggest that I(cat) contributes tonically to the depolarization of the UBSM resting membrane potential, facilitating action potential generation and thereby a maintenance of urinary bladder tone.  相似文献   

7.
Intracellular recordings were taken from the smooth muscle of the guinea pig trachea, and the effects of intrinsic nerve stimulation were examined. Approximately 50% of the cells had stable resting membrane potentials of -50 +/- 1 mV. The remaining cells displayed spontaneous oscillations in membrane potential, which were abolished either by blocking voltage-dependent Ca(2+) channels with nifedipine or by depleting intracellular Ca(2+) stores with ryanodine. In quiescent cells, stimulation with a single impulse evoked an excitatory junction potential (EJP). In 30% of these cells, trains of stimuli evoked an EJP that was followed by oscillations in membrane potential. Transmural nerve stimulation caused an increase in the frequency of spontaneous oscillations. All responses were abolished by the muscarinic-receptor antagonist hyoscine (1 microM). In quiescent cells, nifedipine (1 microM) reduced EJPs by 30%, whereas ryanodine (10 microM) reduced EJPs by 93%. These results suggest that both the release of Ca(2+) from intracellular stores and the influx of Ca(2+) through voltage-dependent Ca(2+) channels are important determinants of spontaneous and nerve-evoked electrical activity of guinea pig tracheal smooth muscle.  相似文献   

8.
Whole cell patch clamp and intracellular Ca(2+) transients in trout atrial cardiomyocytes were used to quantify calcium release from the sarcoplasmic reticulum (SR) and examine its dependency on the Ca(2+) trigger source. Short depolarization pulses (2-20 ms) elicited large caffeine-sensitive tail currents. The Ca(2+) carried by the caffeine-sensitive tail current after a 2-ms depolarization was 0.56 amol Ca(2+)/pF, giving an SR Ca(2+) release rate of 279 amol Ca(2+). pF(-1). s(-1) or 4.3 mM/s. Depolarizing cells for 10 ms to different membrane potentials resulted in a local maximum of SR Ca(2+) release, intracellular Ca(2+) transient, and cell shortening at 10 mV. Although 100 microM CdCl(2) abolished this local maximum, it had no effect on SR Ca(2+) release elicited by a depolarization to 110 or 150 mV, and the SR Ca(2+) release was proportional to the membrane potential in the range -50 to 150 mV with 100 microM CdCl(2). Increasing the intracellular Na(+) concentration ([Na(+)]) from 10 to 16 mM enhanced SR Ca(2+) release but reduced cell shortening at all membrane potentials examined. In the absence of TTX, SR Ca(2+) release was potentiated with 16 mM but not 10 mM pipette [Na(+)]. Comparison of the total sarcolemmal Ca(2+) entry and the Ca(2+) released from the SR gave a gain factor of 18.6 +/- 7.7. Nifedipine (Nif) at 10 microM inhibited L-type Ca(2+) current (I(Ca)) and reduced the time integral of the tail current by 61%. The gain of the Nif-sensitive SR Ca(2+) release was 16.0 +/- 4.7. A 2-ms depolarization still elicited a contraction in the presence of Nif that was abolished by addition of 10 mM NiCl(2). The gain of the Nif-insensitive but NiCl(2)-sensitive SR Ca(2+) release was 14.8 +/- 7.1. Thus both reverse-mode Na(+)/Ca(2+) exchange (NCX) and I(Ca) can elicit Ca(2+) release from the SR, but I(Ca) is more efficient than reverse-mode NCX in activating contraction. This difference may be due to extrusion of a larger fraction of the Ca(2+) released from the SR by reverse-mode NCX rather than a smaller gain for NCX-induced Ca(2+) release.  相似文献   

9.
The effects of membrane depolarization and divalent cations on histamine release have been studied in sensitized mast cells. Membrane potential of these cells has been measured with intracellular microelectrodes. Our results show that mast cells have a large resting potential (-61 +/- 12 mV) however they do not generate active membrane electrical responses when are depolarized by passing current through the recording microelectrode. High external K+ does not increase histamine release. Histamine secretion is supported by alkali-earth divalent cations (Ca2+ greater than Sr2+ greater than Ba2+) but strongly inhibited by transition metals. Ca2+ concentrations above 1 mM inhibit histamine release, however, this effect is not mimicked by Sr2+ and Ba2+.  相似文献   

10.
The mechanism of mediator secretion from mast cells in disease is likely to include modulation of ion channel activity. Several distinct Ca(2+), K(+), and Cl(-) conductances have been identified in rodent mast cells, but there are no data on human mast cells. We have used the whole-cell variant of the patch clamp technique to characterize for the first time macroscopic ion currents in purified human lung mast cells and human peripheral blood-derived mast cells at rest and following IgE-dependent activation. The majority of both mast cell types were electrically silent at rest with a resting membrane potential of around 0 mV. Following IgE-dependent activation, >90% of human peripheral blood-derived mast cells responded within 2 min with the development of a Ca(2+)-activated K(+) current exhibiting weak inward rectification, which polarized the cells to around -40 mV and a smaller outwardly rectifying Ca(2+)-independent Cl(-) conductance. Human lung mast cells showed more heterogeneity in their response to anti-IgE, with Ca(2+)-activated K(+) currents and Ca(2+)-independent Cl(-) currents developing in approximately 50% of cells. In both cell types, the K(+) current was blocked reversibly by charybdotoxin, which along with its electrophysiological properties suggests it is carried by a channel similar to the intermediate conductance Ca(2+)-activated K(+) channel. Charybdotoxin did not consistently attenuate histamine or leukotriene C(4) release, indicating that the Ca(2+)-activated K(+) current may enhance, but is not essential for, the release of these mediators.  相似文献   

11.
The mechanism by which protein kinase C (PKC) activates transmitter release from guinea pig cerebrocortical synaptosomes was investigated by employing parallel fluorescent assays of glutamate release, cytoplasmic free Ca2+, and plasma membrane potential. 4 beta-Phorbol dibutyrate (4 beta-PDBu) enhances the Ca(2+)-dependent, 4-aminopyridine (4AP)-evoked release of glutamate from synaptosomes, the 4AP-evoked elevation of cytoplasmic free Ca2+, and the 4AP-evoked depolarization of the plasma membrane. 4 beta-PDBu itself causes a slow depolarization, which may underlie the small effect of 4 beta-PDBu on spontaneous, KCl-evoked, and Ca(2+)-independent/4AP-evoked glutamate release. Because 4AP (but not KCl) generates spontaneous, tetrodotoxin-sensitive action potentials in synaptosomes, a major locus of presynaptic PKC action is to enhance these action potentials, perhaps by inhibiting delayed rectifier K+ channels.  相似文献   

12.
The action of the polyether antibiotic monensin on the release of gamma-[3H]amino-n-butyric acid [( 3H]GABA) from mouse brain synaptosomes is characterized. Monensin enhances the release of this amino acid transmitter in a dose-dependent manner and does not modify the efflux of the nontransmitter amino acid alpha-[3H]aminoisobutyrate. The absence of external Ca2+ fails to prevent the stimulatory effect of monensin on [3H]GABA release. Furthermore, monensin is less effective in stimulating [3H]GABA release in the presence of Ca2+. The releasing response to monensin is absolutely dependent on external Na+. The blockade of voltage-sensitive Na+ or Ca2+ channels does not modify monensin-induced release of the transmitter. Also, the blockade of the GABA uptake pathway fails to prevent the stimulatory effect of monensin on [3H]GABA release. Although monensin markedly increases Na+ permeability in synaptosomes, these data indicate that the Ca2+-independent monensin-stimulated transmitter release is not mediated by the Na+-dependent uptake pathway. It is concluded that the entrance of Na+ through monensin molecules inserted in the presynaptic membrane might be sufficient to initiate the intraterminal molecular events underlying transmitter release.  相似文献   

13.
The Ca(2+) permeability of N-methyl-D-aspartate receptor (NMDA-R) channels was studied in human embryonic kidney cells transfected with the NR1-NR2A subunit combination. To determine the fractional Ca(2+) current (P(f)), measurements of fura-2-based Ca(2+) influx and whole-cell currents were made in symmetrical monovalent ion concentrations at membrane potentials between -50 mV and the reversal potential. The ratios of Ca(2+) flux over net whole-cell charge at 2, 5, and 10 mM external Ca(2+) concentrations ([Ca](o)) were identical at a membrane potential close to the reversal potential of the monovalent current component. Assuming unity of P(f) at this potential, the percentage of current carried by Ca(2+) was found to be 18.5 +/- 1.3% at 2 mM [Ca](o) and -50 mV. This value, which is higher than the ones reported previously, was confirmed in independent experiments in which a pure flux of Ca(2+) through NMDA-R channels was used to calibrate the Ca(2+) influx signals. The measured values of fractional Ca(2+) currents, which agree with the predictions of the Goldman-Hodgkin-Katz equations, are also compatible with a two-barrier model for ion permeation, in which the differences between the energy barriers for Ca(2+) and monovalent ions are similar on the external and internal membrane sides.  相似文献   

14.
In low or absence of glucose, alpha-cells generate rhythmic action potentials and secrete glucagon. alpha-Cell T-type Ca(2+) channels are believed to be pacemaker channels, which are expected to open near the resting membrane potential (around -60 mV) to initiate a small depolarization. A previous publication, however, showed that alpha-cell T-type Ca(2+) channels have an activation threshold of -40 mV, which does not appear to fulfill their role as pacemakers. In this work, we investigated the Ca(2+) channel characteristics in alpha-cells of mouse-insulin-promoter green-fluorescent-protein (MIP-GFP) mouse. The beta-cells of MIP-GFP were conveniently distinguished as green cells, while immunostaining indicated that the majority of non-green cells were alpha-cells. We found that majority of alpha-cells possessed T-type Ca(2+) channels having an activation threshold of -40 mV; these cells also had high-voltage-activated (HVA) Ca(2+) channels (activation threshold of -20 mV). A novel finding here is that a minority of alpha-cells had T-type Ca(2+) channels with an activation threshold of -60 mV. This minor population of alpha-cells was, surprisingly, devoid of HVA Ca(2+) channels. We suggest that this alpha-cell subpopulation may act as pacemaker cells in low or absence of glucose.  相似文献   

15.
16.
Ca2+ influx via voltage-dependent Ca2+ channels is known to be elicited during action potentials but possibly also occurs at the resting potential. The steady-state current through voltage-dependent Ca2+ channels and its role for the electrical activity was, therefore, investigated in pituitary GH3 cells. Applying the recently developed 'nystatin-modification' of the patch-clamp technique, most GH3 cells (18 out of 23 cells) fired spontaneous action potentials from a baseline membrane potential of 43.7 +/- 4.6 mV (mean +/- s.d., n = 23). The frequency of action potentials was stimulated about twofold by Bay K 8644 (100 nM), a Ca(2+)-channel stimulator, and action potentials were completely suppressed by the Ca(2+)-channel blocker PN 200-110 (100 nM). Voltage clamping GH3 cells at fixed potentials for several minutes and with 1 mM Ba2+ as divalent charge carrier, we observed steady-state Ca(2+)-channel currents that were dihydropyridine-sensitive and displayed a U-shaped current-voltage relation. The results strongly suggest that the observed long lasting, dihydropyridine-sensitive Ca(2+)-channel currents provide a steady-state conductivity for Ca2+ at the resting potential and are essential for the generation of action potentials in GH3 pituitary cells.  相似文献   

17.
The relation of changes in internal, free Ca2+, measured with arsenazo III, to the membrane potential, measured with the cyanine dye di-S-C2(5) or 86Rb+ distribution ratio, was studied in isolated guinea pig cortical nerve endings. Depolarization of the plasma membrane with veratridine or gramicidin as well as addition of ionophore A23187 led to an increase in cytosolic Ca2+. Only the response to veratridine was inhibited by tetrodotoxin. The dependence of the depolarization-induced increase in intraterminal, free Ca2+ on the membrane potential between about -50 to 0 mV was sigmoidal. A maximal increase in cytosolic Ca2+ was reached when the membrane potential was depolarized from the resting level, about -64 mV, to about -40 mV. These results show that in isolated nerve endings the activation of voltage-sensitive Ca2+ channels concomitantly leads to an increase in cytosolic, free Ca2+. Comparison of the results of the present study with the previous electrophysiological observations indicate that Ca2+ channels in synaptosomes, presynaptic nerve terminals of the squid giant synapse and cardiac cells have essentially similar voltage dependency.  相似文献   

18.
A mechanism of the long-term potentiation of transmitter release induced by adrenaline (ALTP) was studied by recording intracellularly the fast excitatory postsynaptic potentials (fast EPSPs). The ALTP was produced during the blockade of K+ channels at the presynaptic terminals by tetraethylammonium (TEA). The synaptic delay, possibly reflecting a relative change in the duration of an action potential at the presynaptic terminal, was not changed during the course of the ALTP. By contrast, it was significantly lengthened by TEA and other K+ channel inhibitors (4-aminopyridine and Cs+) that markedly enhanced the evoked release of transmitter. The magnitude of facilitation of the fast EPSP, induced by a conditional stimulus to the preganglionic nerve, was decreased during the generation of the ALTP, but was unchanged during the potentiation of transmitter release caused by TEA. These results, together with theoretical considerations applying the residual Ca2+ hypothesis to the facilitation, suggest that the enhancement of transmitter release during the ALTP is not caused by an increased Ca2+ influx during a presynaptic impulse owing to the blockade of K+ channel or the modulation of Ca2+ channel, but presumably is induced by a rise in the basal level of free Ca2+ in the presynaptic terminal.  相似文献   

19.
Insect olfactory receptor neurons (ORNs) grown in primary cultures were studied using the patch-clamp technique in both conventional and amphotericin B perforated whole-cell configurations under voltage-clamp conditions. After 10-24 days in vitro, ORNs had a mean resting potential of -62 mV and an average input resistance of 3.2 GOmega. Five different voltage-dependent ionic currents were isolated: one Na(+), one Ca(2+) and three K(+) currents. The Na(+) current (35-300 pA) activated between -50 and -30 mV and was sensitive to 1 microM tetrodotoxin (TTX). The sustained Ca(2+) current activated between -30 and -20 mV, reached a maximum amplitude at 0 mV (-4.5 +/- 6.0 pA) that increased when Ba(2+) was added to the bath and was blocked by 1 mM Co(2+). Total outward currents were composed of three K(+) currents: a Ca(2+)-activated K(+) current activated between -40 and -30 mV and reached a maximum amplitude at +40 mV (605 +/- 351 pA); a delayed-rectifier K(+) current activated between -30 and -10 mV, had a mean amplitude of 111 +/- 67 pA at +60 mV and was inhibited by 20 mM tetraethylammonium (TEA); and, finally, more than half of ORNs exhibited an A-like current strongly dependent on the holding potential and inhibited by 5 mM 4-aminopyridine (4-AP). Pheromone stimulation evoked inward current as measured by single channel recordings.  相似文献   

20.
Mb1 bipolar cells (ON-type cells) of the goldfish retina have exceptionally large (approximately 10 microns in diameter) presynaptic terminals, and thus, are suitable for investigating presynaptic mechanisms for transmitter release. Using enzymatically dissociated Mb1 bipolar cells under whole-cell voltage clamp, we measured the Ca2+ current (ICa), the intracellular free Ca2+ concentration ([Ca2+]i), and membrane capacitance changes associated with exocytosis and endocytosis. Release of transmitter (glutamate) was monitored electrophysiologically by a glutamate receptor-rich neuron as a probe. L-type Ca2+ channels were localized at the presynaptic terminals. The presynaptic [Ca2+]i was strongly regulated by cytoplasmic Ca2+ buffers, the Na(+)-Ca2+ exchanger and the Ca2+ pump in the plasma membrane. Once ICa was activated, a steep Ca2+ gradient was created around Ca2+ channels; [Ca2+]i increased to approximately 100 microM at the fusion sites of synaptic vesicles whereas up to approximately 1 microM at the cytoplasm. The short delay (approximately 1 ms) of exocytosis and the lack of prominent asynchronous release after the termination of ICa suggested a low-affinity Ca2+ fusion sensor for exocytosis. Depending on the rate of Ca2+ influx, glutamate was released in a rapid phasic mode as well as a tonic mode. Multiple pools of synaptic vesicles as well as vesicle cycling seemed to support continuous glutamate release. Activation of protein kinase C increased the size of synaptic vesicle pool, resulting in the potentiation of glutamate release. Goldfish Mb1 bipolar cells may still be an important model system for understanding the molecular mechanisms of transmitter release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号