首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complex [(NH3)5CoO3SCF3](CF3SO3)2 reacts with excess NaNCO in warm acetone solution to give, stereoselectively, a Schiff base complex (40%) which has been characterized by standard NMR techniques as one of the six isomers of [Co{NH2C(CH3)2CH2C(CH3)=NH}2(NH3)NCO](ClO4)2 · H2O, confirmed by a single crystal X-ray structural analysis. Schiff base formation in non-basic conditions for kinetically inert Co(III) complexes is unprecedented. Also, this is only the second cyanate complex of pentaaminecobalt(III) to be structurally characterized (CoNCO: Co–N, 1.908 Å; N–C, 1.152 Å; C–O, 1.206 Å; Co–N–C, 170°; N–C–O, 177°).  相似文献   

2.
The reactions of cadmium halides with the 15-membered macrocyclic crown ethers, 15-crown-5 and benzo-15-crown-5, have been carried out and six new complexes have been isolated and structurally characterized. Metal to ligand stoichiometries of 1:1, 2:1, 3:1 and 3:2 have been observed with a variety of different formulations. Examples of charge separated ion pairs ([(NH4)(benzo-15-crown-5)2]2[Cd2I6]), halogen bridged monomers, dimers or polymers ([Cd(15-crown-5)(OHMe)(μ-Br)CdBr3], [Cd(15-crown-5)(μ-Br)2CdBr(μ-Br)]2(isolated from the same reaction mixture) and [(CdCl2)2CdCl2(15-crown-5)]n), and hydrogen bonded finite chains or polymers ([(Cd(OH2)2(15-crown-5)][CdI3(OH2)]2·2(15-crown-5)·2CH3CN and [CdI2(OH2)2(THF)]·benzo-15-crown-5) have been isolated. Three different types of 15-crown-5 coordination modes have been observed in these complexes. In-cavity coordination resulting in pentagonal bipyramidal geometries about Cd2+ was observed in [(CdCl2)2CdCl2(15-crown-5)]n, [Cd(15-crown-5)(OHMe)(μ-Br)CdBr3], and [Cd(OH2)2(15-crown-5)][CdI3(OH2)]2·2(15-crown-5)·2CH3CN, [Cd(15-crown-5)(μ-Br)2CdBr(μ-Br)]2 displays out-of-cavity coordination with one etheric donor distorted into an axial position of a distorted pentagonal bipyramid. The third coordination mode is secondary sphere coordination via hydrogen bonding which is observed for [Cd(OH2)2(15-crown-5)][CdI3(OH2)]2·2(15-crown-5)·2CH3CN. The good fit of Cd2+ within the cavity of 15-crown-5 results in shorter bonding contacts and a more narrow distribution in Cd---O values (2.273(7)-2.344(6) Å) than observed for cadmium halide complexes of 18-crown-6 (Cd---O = 2.69(1)–2.81(1) Å).  相似文献   

3.
The preparation of N-, S- and O-donor ligand adducts with CuX+(HX=6-methyl-2-formylpyridinethiosemicarbazone (6HL); 2-formylpyridine-2-methylthiosemicarbazone (2′L); 2-formylpyridine-4′-methylthiosemicarbazone (4′HL)) is described. The N-donors, 2,2′-bipyridyl (bipy), 4-dimethylaminopyridine (dmap) give the complexes [Cu(6L)(bipy)]PF6, [Cu(6L)(bipy)]Cl·5H2O, [Cu(4′L)(bipy)]PF6, [Cu(6L)(dmap)2]PF6·2.5 H2O and [Cu(4′L)(dmap)2]PF6·H2O which have been characterized by physical and spectroscopic techniques. Pentafluorothiophenolate (pftp) gives S-donor complexes [CuX(pftp)] (X=6L and 4′L) and thiolato co-ordination is proposed on the basis of spectroscopic evidence. Paratritylphenolate (ptp) and HPO2−4 give O-donor complexes [Cu(6L)(ptp)], [Cu(4′L)(ptp)], [{Cu(6L)}2HPO4]·4H2O, and [{Cu(4L)}2HPO4]·5H2O which have been characterized by physical and spectroscopic techniques, as have the precursor complexes [Cu(6L)(CH3COO)]·H2O, [Cu(4′L)(CH3COO)], Cu(6HL)(CF3COO)](CF3COO)·0.5H2O, [Cu(4′HL)(CF3COO)](CF3COO), [Cu(2′L)Cl2] and [Cu(2′L)(NO3)2]. Protonation constants for the ligands and some of their complexes have been determined. 2-Formylpyridinethiosemicarbazone (HL) complexes of silver, gold, zinc, mercury, cadmium and lead are also discussed. Cytotoxicity against the human tumor cell line HCT-8 and antiviral data for selected compounds are presented.  相似文献   

4.
Unlike ZrCl4, ZrBr4 is not ammonolysed in liquid ammonia at temperatures up to −33 °C. The existence of ammoniates ZrBr4nH3 (n = 17, 12 and 9) at −36 °C has been established; at room temperature, the hexammine ZrBr4 · 6NH3 is the stable species which becomes ZrBr4 · 2NH3 at 200 °C. When treated with an excess of NH4CN in liquid ammonia, complete replacement of bromide ions by cyanide occurs to give an inseparable mixture of Zr(CN)4 · 2NH3 and NH4Br. The chloride and bromide of zirconium(III) also undergo no ammonolysis in liquid ammonia; the ammoniates stable at room temperature are ZrCl3 · 2.5NH3 and ZrBr3 · 6NH3.  相似文献   

5.
Carbonylation of the anionic iridium(III) methyl complex, [MeIr(CO)2I3] (1) is an important step in the new iridium-based process for acetic acid manufacture. A model study of the migratory insertion reactions of 1 with P-donor ligands is reported. Complex 1 reacts with phosphites to give neutral acetyl complexes, [Ir(COMe)(CO)I2L2] (L = P(OPh)3 (2), P(OMe)3 (3)). Complex 2 has been isolated and fully characterised from the reaction of Ph4As[MeIr(CO)2I3] with AgBF4 and P(OPh)3; comparison of spectroscopic properties suggests an analogous formulation for 3. IR and 31P NMR spectroscopy indicate initial formation of unstable isomers of 2 which isomerise to the thermodynamic product with trans phosphite ligands. Kinetic measurements for the reactions of 1 with phosphites in CH2Cl2 show first order dependence on [1], only when the reactions are carried out in the presence of excess iodide. The rates exhibit a saturation dependence on [L] and are inhibited by iodide. The reactions are accelerated by addition of alcohols (e.g. 18× enhancement for L = P (OMe)3 in 1:3 MeOH-CH2Cl2). A reaction mechanism is proposed which involves substitution of an iodide ligand by phosphite, prior to migratory CO insertion. The observed rate constants fit well to a rate law derived from this mechanism. Analysis of the kinetic data shows that k1, the rate constant for iodide dissociation, is independent of L, but is increased by a factor of 18 on adding 25% MeOH to CH2Cl2. Activation parameters for the k1 step are ΔH = 71 (±3) kJ mol, ΔS = −81 (±9) J mol−1 K−1 in CH2Cl2 and ΔH = 60(±4) kJ mol−1, ΔS = −93(± 12) J mol−1 K−1 in 1:3 MeOH-CH2Cl2. Solvent assistance of the iodide dissociation step gives the observed rate enhancement in protic solvents. The mechanism is similar to that proposed for the carbonylation of 1.  相似文献   

6.
Four complexes of the type [Cu4I4(CH3CN)2(L)2], L = aniline derivative: Cu4I4(CH3CN)2(2,6-dimethylaniline)2 (I), triclinic, , a = 12.449(3), B = 14.108(6), C = 10.606(4) Å, = 73.46(3), β = 95.00(2), γ = 73.42(3)°, V = 1682.3(10) Å3; Cu4I4(CH3CN)2(o-ethylaniline)2 (II), triclinic, , V = 1734.0(8) Å3; Cu4I4(CH3CN)2(6-ethyl-o-toluidine)2 (III), orthorhombic, Pnam, a = 14.976(6), b = 21.187(6), C = 12.545(2) Å, V = 3980.7(2) Å3; Cu4I4(CH3CN)2(p-anisidine)2 (IV), monoclinic, A2/a, A = 20.032(10), B = 7.863(1), C = 18.715(9) Å, β = 101.56(4)°, V = 2888.0(2) Å3; were examined by single crystal X-ray diffraction. Complexes I and II have no internal symmetry elements, III has an internal mirror and IV has a two-fold axis. Ab initio calculations based on the atomic positional parameters of complexes containing the three types of symmetry elements reveal HOMO orbitals to be dominated by the p orbitals of the iodine atoms whereas the LUMO orbitals contain major contributions from copper based p orbitals.  相似文献   

7.
Rapid reactions occur between [OsVI(tpy)(Cl)2(N)]X (X = PF6, Cl, tpy = 2,2′:6′,2″-terpyridine) and aryl or alkyl phosphi nes (PPh3, PPh2Me, PPhMe2, PMe3 and PEt3) in CH2Cl2 or CH3CN to give [OsIV(tpy)(Cl)2(NPPh3)]+ and its analogs. The reaction between trans-[OsVI(tpy)(Cl)2(N)]+ and PPh3 in CH3CN occurs with a 1:1 stoichiometry and a rate law first order in both PPh3 and OsVI with k(CH3CN, 25°C) = 1.36 ± 0.08 × 104 M s−1. The products are best formulated as paramagnetic d4 phosphoraniminato complexes of OsIV based on a room temperature magnetic moment of 1.8 μB for trans-[OsIV(tpy)(Cl)2(NPPh3)](PF6), contact shifted 1H NMR spectra and UV-Vis and near-IR spectra. In the crystal structures of trans-[OsIV(tpy)(Cl)2( NPPh3)](PF6)·CH3CN (monoclinic, P21/n with a = 13.384(5) Å, b = 15.222(7) Å, c = 17.717(6) Å, β = 103.10(3)°, V = 3516(2) Å3, Z = 4, Rw = 3.40, Rw = 3.50) and cis-[OsIV(tpy)(Cl)2(NPPh2Me)]-(PF6)·CH3CN (monoclinic, P21/c, with a = 10.6348(2) Å, b = 15.146(9) ÅA, c = 20.876(6) Å, β = 97.47(1)°, V = 3334(2) Å3, Z = 4, R = 4.00, Rw = 4.90), the long Os-N(P) bond lengths (2.093(5) and 2.061(6) Å), acute Os-N-P angles (132.4(3) and 132.2(4)°), and absence of a significant structural trans effect rule out significant Os-N multiple bonding. From cyclic voltammetric measurements, chemically reversible OsV/IV and OsIV/III couples occur for trans-[OsIV(tpy)(Cl)2(NPPh3)](PF6) in CH3CN at +0.92 V (OsV/IV) and −0.27 V (OsIV/III) versus SSCE. Chemical or electrochemical reduction of trans-[OsIV(tpy)(Cl)2(NPPh3)](PF6) gives isolable trans-OsIII(tpy)(Cl)2(NPPh3). One-electron oxidation to OsV followed by intermolecular disproportionation and PPh3 group transfer gives [OsVI(tpy)Cl2(N)]+, [OSIII(tpy)(Cl)2(CH3CN)]+ and [Ph3=N=PPh3]+ (PPN+). trans-[OsIV(tpy)(Cl)2(NPPh3)](PF6) undergoes reaction with a second phosphine under reflux to give PPN+ derivatives and OsII(tpy)(Cl)2(CH3CN) in CH3CN or OsII(tpy)(Cl)2(PR3) in CH2Cl2. This demonstrates that the OsVI nitrido complex can undergo a net four-electron change by a combination of atom and group transfers.  相似文献   

8.
A series of diplatinum(III) complexes derived from cis-(NH3)2PtII and the model nucleobase 1-methylcytosine (1-MeC) has been prepared and X-ray structurally characterized, all of which contain two anionic base ligands (1-MeC) in a head–tail (ht) arrangement: ht-cis-[(ONO2)(NH3)2Pt(1-MeC-N3,N4)2Pt(NH3)2(ONO2)](NO3)2·HNO3·3H2O (2b), ht-cis-[(NO2) (NH3)2 Pt(1-MeC-N3,N4)2Pt(NH3)2(OH2)](ClO4)3·3.5H2O (3), ht-cis-[(OH2)(NH3)2Pt(1-MeC-N3,N4)2Pt(NH3)2(OH2)](ClO4)4·H2O (4b), and ht-cis-[(9-EtGH-N7)(NH3)2Pt(1-MeC-N3,N4)2Pt (NH3)2(9-EtGH-N7)](NO3)4·9H2O (7b) (9-EtGH=9-ethylguanine). Several other compounds, differing in the nature of the axial ligands, have been isolated and or observed in solution by 1H and 195Pt NMR spectroscopy. The chemistry of these diplatinum(III) compounds is dominated by facile substitution reactions of the axial ligands. Of particular interest in this context is the ready reaction of 2b or 3 with guanine nucleobases. Since similar compounds are not obtained with any of the other common nucleobases, 2b and 3 can be considered guanine-specific chemical probes.  相似文献   

9.
The reaction of the monoalkyl complex trans-[Pt(DMSO)2Cl(CH3)] with a large variety of heterocyclic nitrogen bases L, in chloroform solution, leads to the formation of uncharged complexes of the type [Pt(DMSO)(L)Cl(CH3)], containing four different groups coordinated to the metal center. Only two out of the three different possible isomers were detected in solution. These two trans(C,N) and cis(C,N) species can be unambiguously identified through 1H NMR spectroscopy. For the trans(C,N) isomers, average values of 2JPtH=75±4 Hz and 3JPtH=36±4 Hz have been observed for the coordinated methyl and DMSO ligands, respectively. In the case of the cis(C,N) isomers, these values increase to 2JPtH=83±2 Hz, and decrease to 3JPtH=26±3 Hz due to the mutual exchange of ligands in trans position to CH3 and DMSO. In the case of bulky asymmetric ligands, such as quinoline, 2-quinolinecarboxaldehyde, 2-methylquinoline, 5-aminoquinoline, 2-phenylpyridine and 2-chloropyridine, slow rotation of the hindered group around the Pt---N bond makes the coordinated DMSO ligand prochiral. NMR experiments have shown that the first reaction product is the trans(C,N) isomer as a consequence of the very fast removal of one DMSO ligand by the nitrogen bases from the starting complex trans-[Pt(DMSO)2Cl(CH3)]. This trans kinetic product undergoes a geometrical conversion into the more stable cis(C,N) isomer through the intermediacy of fast exchanging aqua-species. The rate of isomerization and the relative stability of the two isomers depends essentially on the rate of aquation and on the steric congestion imposed by the new L ligand on the metal.  相似文献   

10.
The stepwise synthesis of mononuclear (4f) and heterodinuclear (3d–4f) Salen-like complexes has been investigated through structural determination of the intermediate and final products occurring in the process. In the first step, reactions of ligand H2L and Ln(NO3)3 · 6H2O give rise to three mononuclear lanthanide complexes Ln(H2L)(NO3)3 [H2L = N,N′-ethylene-bis(3-methoxysalicylideneimine), Ln = Nd (1), Eu (2) and Tb (3)], in which N,N′-ethylene-bis(3-methoxysalicylideneimine) acts as tetradentate ligands with the O2O2 set of donor atoms capable of effective coordination. These species are fairly stable and have been isolated. Then, addition of Cu(Ac)2 · H2O to the mononuclear lanthanide complex yields expected heterodinuclear (3d–4f) complexes Cu(L)Ln(NO3)3 · H2O [Ln = Nd (4) and Eu (5)] where the Cu(II) ion is inserted to the inner N2O2 cavity. Luminescent analysis reveals that complex 3 exhibits characteristic metal-centered fluorescence of Tb(III) ion. However, the characteristic luminescence of both Sm(III) and Eu(III) ions is not observed both in solution and solid state of the complexes.  相似文献   

11.
It is shown how 1D nOe and 2D COSY 1H NMR spectroscopy can be used to assign the stereochemistry of Co(III) amine complexes. By using d6-DMSO as solvent together with a small quantity of DCl all non-equivalent N---H hydrogens can be distinguished at 300 MHz. Through-space (nOe), and through-bond (COSY), associations with other N---H and C---H hydrogens can then be determined. This leads to a complete assignment of structure in solution. The technique is applied to the complexes syn(N), anti(N)-[Co(cyclen) (NH3)2] (ClO4)3, syn(N), anti(Cl)-[Co(cyclen) (NH3)Cl] (ClO4)2, anti(N), syn(Cl)-[Co(cyclen) (NH3)Cl](ClO4)2, syn(N), anti(O)-[Co(Mecyclen)-(GlyO)](ClO4)2 and Δ-cis-[Co(δ-en)2(NO2)2](NO2).  相似文献   

12.
The phosphinoalkenes Ph2P(CH2)nCH=CH2 (n= 1, 2, 3) and phosphinoalkynes Ph2P(CH2)n C≡CR (R = H, N = 2, 3; R = CH3, N = 1) have been prepared and reacted with the dirhodium complex (η−C5H5)2Rh2(μ−CO) (μ−η2−CF3C2CF3). Six new complexes of the type (ν−C5H5)2(Rh2(CO) (μ−η11−CF3C2CF3)L, where L is a P-coordinated phosphinoalkene, or phosphinoalkyne have been isolated and fully characterized; the carbonyl and phosphine ligands are predominantly trans on the Rh---Rh bond, but there is spectroscopic evidence that a small amount of the cis-isomer is formed also. Treatment of the dirhodium-phosphinoalkene complexes with (η−CH3C5H4)Mn(CO)2thf resulted in coordination of the manganese to the alkene function. The Rh2---Mn complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2P(CH2)3CH=CH2} (η−CH3C5H4)Mn(CO)2] was fully characterized. Simi treatment of the dirhodium-phosphinoalkyne complexes with Co2(CO)8 resulted in the coordination of Co2(CO)6 to the alkyne function. The Rh2---Co2 complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2PCH2C≡CCH3}Co2(CO)2], C37H25Co2F6O7PRh2, was fully characteriz spectroscopically, and the molecular structure of this complex was determined by a single crystal X-ray diffraction study. It is triclinic, space group (Ci1, No. 2) with a = 18.454(6), B = 11.418(3), C = 10.124(3) Å, = 112.16(2), β = 102.34(3), γ = 91.62(3)°, Z = 2. Conventional R on |F| was 0.052 fo observed (I > 3σ(I)) reflections. The Rh2 and Co2 parts of the molecule are distinct, the carbonyl and phosphine are mutually trans on the Rh---Rh bond, and the orientations of the alkynes are parallel for Rh2 and perpendicular for Co2. Attempts to induce Rh2Co2 cluster formation were unsuccessful.  相似文献   

13.
A series of borane and monoiodoborane derivatives of bis(diphenylphosphino)alkanes. (C6H5)2P--- (CH2)n---P(C6H5)2 in which n has values of 2 through 4 has been synthesized. Only compounds with the formulae [(C6H5)2P]2(CH2)n · (BH3)2 and (C6H5)2P]2CH2)n · BH2I were isolable, the latter being boronium iodides. The compounds were characterized by their melting points, elemental analyses, molar conductivities, infrared spectroscopy, and 1H and 11B nuclear magnetic resonance spectroscopy. The relationship between the length of the carbon chain and the 11B NMR chemical shift is discussed.  相似文献   

14.
Reaction of LaCl3·7H2O containing small amounts of La(NO3)3·7H2O as an impurity with 12-crown-4 or 18-crown-6 in 3:1 CH3CN:CH3OH resulted in the isolation of the mixed anion complexes [LaCl2(NO3)(12-crown-4)]2, [La(NO3)(OH2)4(12-crown-4)]Cl2·CH3CN and [LaCl2(NO3)(18-crown-6)]. The nine-coordinate dimer, [LaCl2(NO3)(12-crown-4)]2, has all of the anions in the inner coordination sphere and La3+ has a capped square antiprismatic geometry. It crystallizes in the orthorhombic space group Pbca with (at −150 °C) a = 12.938(6), B = 15.704(3), C = 13.962(2) Å, and Dcalc = 2.08 g cm−3 for Z = 4. The second complex isolated from the same reaction, [La(NO3)(OH2)4(12-crown-4)]Cl2·CH3CN, has the bidentate nitrate anion in the inner coordination sphere but the two chloride anions are in a hydrogen bonded outer sphere. This complex is ten-coordinate 4A,6B-expanded dodecahedral and crystallizes in the monoclinic space group P21 with (at 20 °C) A = 7.651(2), B = 11.704(7), C = 11.608(4) Å, β = 95.11(2)°, and Dcalc = 1.80 g cm−3 for Z = 2. The 18-crown-6 complex, [LaCl2(NO3)(18-crown-6)], has all inner sphere anions and has ten-coordinate 4A,6B-expanded dodecahedral La3+ centers. It crystallizes in the orthorhombic space group Pbca with (at 20 °C) a = 14.122(7), B = 13.563(5), C = 19.311(9) Å, and Dcalc = 1.89 g cm−3 for Z = 8.  相似文献   

15.
The reversible equilibrium conversion under H2 of [RuCl(dppb) (μ-Cl)]2 (1) to generate (η2-H2) (dppb) (μ-Cl)3RuCl(dppb) in CH2Cl2 (dppb = Ph2P(CH2)4PPh2) has been studied at 0–25 °C by UV-Vis and 31P{1H} NMR spectroscopy, and by stoppe kinetics; the equilibrium constant and corresponding thermodynamic parameters, and the forward and reverse rate constants at 25 °C have been determined. A measured ΔH° value of 0 kJ mol−1 allows for an estimation of an exothermicity of 60 kJ mol−1 for binding an η2-H2 at an Ru(II) centre; a ΔS° value of 60 J mol−1 K−1 indicates that in solution 1 contain s coordinated CH2Cl2. The kinetic and thermodynamic data are compared to those obtained from a previously studied hydrogenation of styrene catalyzed by 1. Preliminary findings on related systems containing Ph2P(CH2)3PPh2 and (C6H11)2P(C6H11)2 are also noted.  相似文献   

16.
Complexes RuCl3(PPh3)L2 (L = MeIm (1a, Im (1b)) and [RuCl2(PPh3)2(bipy)]Cl·4H2O (2) have been synthesized via the ruthenium(III) precursor RuCl3(PPh3)2 (DMA), and characterized, including an X-ray structural analysis for 1a (MeIm = N-methylimidazole, Im = imidazole, bipy = 2,2′-bipyridyl, and DMA = N, N′-dimethylacetamide). Crystals of 1a are monoclinic, space group P21/n, A = 10.5491(5), B = 20.4934(9), C = 12.8285(4) Å, β = 90.166(4)°, Z = 4. The structure, which reveals a mer configuration for the chlorides, and cis-methylimidazoles, was solved by conventional heavy atom methods and was refined by full-matrix least-square procedures to R = 0.041 and Rw = 0.042 for 3328 reflections with I 3σ(I). From the RuCl2(PPh3)3 precursor, the ruthenium(II) complexes RuCl2(PPh3)2L2 and [RuCl(PPh3)L4]Cl have been made (L = Im or MeIm), while [RuCl(dppb)Im3]Cl has been made from [RuCl2(dppb)]2(μ-dppb) (dppb = Ph2P(CH2)4PPh2).  相似文献   

17.
Reactions of [(PPh3)2Pt(η3-CH2CCPh)]OTf with each of PMe3, CO and Br result in the addition of these species to the metal and a change in hapticity of the η3-CH2CCPh to η1-CH2CCPh or η1-C(Ph)=C=CH2. Thus, PMe3 affords [(PMe3)3Pt(η1-C(Ph)=C=CH2)]+, CO gives both [trans-(PPh3)2Pt(CO)(η1-CH2CCPh)]+ and [trans-(PPh3)2Pt(CO)(η1-C(Ph)=C=CH2)]+, and LiBr yields cis-(PPh3)2PtBr(η1-CH2CCPh), which undergoes isomerization to trans-(PPh3)2PtBr(η1-CH2CCPh). Substitution reactions of cis- and trans-(PPh3)2PtBr(η1-CH2CCPh) each lead to tautomerization of η1-CH2CCPh to η1-C(Ph)=C=CH2, with trans-(PPh3)2PtBr(η1-CH2CCPh) affording [(PMe3)3Pt(η1-C(Ph)=C=CH2)]+ at ambient temperature and the slower reacting cis isomer giving [trans-(PPh3)(PMe3)2Pt(η1-C(Ph)=C=CH2)]+ at 54 °C . All new complexes were characterized by a combination of elemental analysis, FAB mas spectrometry and IR and NMR (1H, 13C{1H} and 31P{1H}) spectroscopy. The structure of [(PMe3)3Pt(η1-C(Ph)=C=CH2)]BPh4·0.5MeOH was determined by single-crystal X-ray diffraction analysis.  相似文献   

18.
The mixture of isomers of silylated cyclopentadiene derivative C5H5CH2CH2Si(OMe)3 (1) has been used for the syntheses of the mononuclear Rh(I) complexes [η5-C5H4(CH2)2Si(OMe)3]Rh(CO)2 (3). [η5-C5H4(CH2)2Si(OMe)3]Rh(COD) (4) and [η5-C5H4(CH2)2Si(OMe)3]Rh(CO)(PPh3) (5). Upon entrapment of 3–5 in silica sol-gel matrices, air stable, leach-proof and recyclable catalysts 6–8 resulted. Their catalytic activities in some hydrogenation processes were compared with those of the non-immobilized complexes 3–5, as well as with those of homogeneous and heterogenized non-silylated analogs, 9–14.  相似文献   

19.
Four 9,10-anthraquinones (AQ) mono- or bis-substituted with the -NH(CH2)2 NH(CH2)2OH group were studied. 1-AQ, 1,5-AQ and 1,8-AQ but not 1,4-AQ (100°M) generated pBR322 plasmid DNA single strand breaks in the presence of purified NADPH dependent cytochrome P450 reductase. 1-AQ, 1,5-AQ and 1,8-AQ (at 100 °M) stimulated hydroxyl radical formation in MCF-7 S9 cell fraction (as measured by dimethyl pyrolline N-oxide spin trapping) and MCF-7 DNA strand breaks as measured by alkaline filter elution. In contrast 1,4-AQ did not stimulate hydroxyl radical formation and produced considerably less strand breaks in MCF-7 cells compared to the other AQ's. It would appear that the position of the -NH(CH2)2 NH(CH2)2OH groups on the chromophore is an important determinant in the metabolic activation of cytotoxic anthraquinones. This may contribute to the cytotoxicity (ID50 values) of 1-AQ (0.06 °M), 1-8-AQ (0.5 °M) and 1,5-AQ (12.3 °M) but not the 1,4-AQ (1.2 °M).  相似文献   

20.
The seven-coordinate complexes [MI2(CO)3(NCMe)2] (M = Mo and W) react with one equivalent of BiPh3 in CH2Cl2 at room temperature to give the monoacetonitrile complexes [MI2(CO)3(NCMe)(BiPh3)]. The molybdenum complex [MoI2(CO)3(NCMe)(BiPh3)] after stirring in CH2Cl2 at room temperature for 5 h affords the iodide-bridged dimer [Mo(μ-I)I(CO)3(BiPh3)]2, whereas the tungsten complex [WI2(CO)3(NCMe)(BiPh3)] does not appear to dimerise even after stirring for 48 h in CH2Cl2 at room temperature. Reaction of [MI2(CO)3(NCMe)2] with two equivalents of BiPh3 gives the bistriphenylbismuth compounds [MI2(CO)3(BiPh3)2] in good yield. The new mixed ligand complexes [MI2(CO)3L(BiPh3)] were prepared either by reaction of [MI2(CO)3(NCMe)(BiPh3)]in situ with one equivalent of L(L = P(OPh)3), or an in situ reaction of [MI2(CO)3(NCMe)L] (L = PPh3 and SbPh3; and L = AsPh3 and PPh2Cy (for M = Mo only) with an equimolar quantity of BiPh3. Reaction of [MoI2(CO)3(NCMe)(BiPh3)] with one equivalent of 2,2′-bipyridyl (bipy) in CH2Cl2 at room temperature afforded the cationic complexes [MoI(CO)3(bipy)(BiPh3)]I in good yield. The complex [WI2(CO)3(NCMe)(BiPh3)] (prepared in situ) reacts with two equivalents of NaS2CNMe2·2H2O to eventually give the non-triphenylbismuth containing product [W(CO)3(S2CNMe2)2] in high yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号