首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For many enveloped viruses, cellular multivesicular body (MVB) sorting machinery has been reported to be utilized for efficient viral budding. Matrix and Gag proteins have been shown to contain one or two L-domain motifs (PPxY, PT/SAP, YPDL, and FPIV), some of which interact specifically with host cellular proteins involved in MVB sorting, which are recruited to the viral budding site. However, for many enveloped viruses, L-domain motifs have not yet been identified and the involvement of MVB sorting machinery in viral budding is still unknown. Here we show that both Sendai virus (SeV) matrix protein M and accessory protein C contribute to virus budding by physically interacting with Alix/AIP1. A YLDL sequence within the M protein showed L-domain activity, and its specific interaction with the N terminus of Alix/AIP1(1-211) was important for the budding of virus-like particles (VLPs) of M protein. In addition, M-VLP budding was inhibited by the overexpression of some deletion mutant forms of Alix/AIP1 and depletion of endogenous Alix/AIP1 with specific small interfering RNAs. The YLDL sequence was not replaceable by other L-domain motifs, such as PPxY and PT/SAP, and even YPxL. C protein was also able to physically interact with the N terminus of Alix/AIP1(212-357) and enhanced M-VLP budding independently of M-Alix/AIP1 interaction, although it was not released from the transfected cells itself. Our results suggest that the interaction of multiple viral proteins with Alix/AIP1 may enhance the efficiency of the utilization of cellular MVB sorting machinery for efficient SeV budding.  相似文献   

2.
Mammalian Alix is a multifunctional adaptor protein involved in cell death, receptor endocytosis, endosomal protein sorting and cell adhesion by associating with various proteins such as ALG-2, CIN85/Rukl/SETA, endophilins, CHMP4s and TSG101. HD-PTP is a paralog of Alix and a putative protein tyrosine phosphatase (PTP) that contains a Bro1 domain, coiled-coils, a proline-rich region (PRR) in addition to a PTP domain. We investigated interactions between HD-PTP and Alix-binding proteins. In the yeast two-hybrid assay, HD-PTP showed positive interactions with CHMP4b/Shax1, TSG101, endophilin A1 and ALG-2 but not with either RabGAPLP or CIN85. We confirmed the interactions in a mammalian system by Strep-pulldown assays in which pulldown products from the lysates of HEK293T cells expressing either Strep-tagged HD-PTP alone or co-expressing with epitope-tagged proteins were analyzed by Western blotting using specific antibodies. While Alix associated with both ALG-2 and TSG101 in a Ca2+-dependent manner, HD-PTP interacted with ALG-2 Ca2+-dependently but with TSG101 Ca2+-independently.  相似文献   

3.
The C protein, an accessory protein of Sendai virus (SeV), has anti-interferon capacity and suppresses viral RNA synthesis. In addition, it is thought that the C protein is involved in virus budding because of the low efficiency of release of progeny virions from C-knockout virus-infected cells and because of the requirement of the C protein for efficient release of virus-like particles. Here, we identified AIP1/Alix, a host protein involved in apoptosis and endosomal membrane trafficking, as an interacting partner of the C protein using a yeast two-hybrid system. The amino terminus of AIP1/Alix and the carboxyl terminus of the C protein are important for the interaction in mammalian cells. Mutant C proteins unable to bind AIP1/Alix failed to accelerate the release of virus-like particles from cells. Furthermore, overexpression of AIP1/Alix enhanced SeV budding from infected cells in a C-protein-dependent manner, while the release of nucleocapsid-free empty virions was also enhanced. Finally, AIP1/Alix depletion by small interfering RNA resulted in suppression of SeV budding. The results of this study suggest that AIP1/Alix plays a role in efficient SeV budding and that the SeV C protein facilitates virus budding through interaction with AIP1/Alix.  相似文献   

4.
Alix/AIP1 (ALG-2-interacting protein X/apoptosis-linked-gene-2-interacting protein 1) is an adaptor protein that was first described for its capacity to bind to the calcium-binding protein ALG-2 (apoptosis-linked gene 2), the expression of which seemed necessary for cell death. Over-expression of truncated forms of Alix blocks caspase-dependent and -independent mechanisms of cell death. Numerous observations in yeast and in mammalian cells suggest that Alix controls the making of and trafficking through endosomes called MVBs (multivesicular bodies), which are crucial intermediates within the endolysosomal system. In particular, deletion of Bro1, one of the yeast homologues of Alix, leads to an impairment in the function of MVBs, leading to mis-sorting of proteins normally destined to the vacuole. Mammalian Alix may have a similar function and has been shown to bind to lyso(bis)phosphatidic acid, ESCRT (endosomal sorting complex required for transport) proteins, endophilins and CIN85 (Cbl-interacting protein of 85 kDa), which are all main regulators of the endosomal system. EIAV (equine infectious anaemia virus) and HIV late domains use Alix to recruit the ESCRT machinery in order to bud from the cell surface, underscoring the crucial role of the protein in orchestrating membrane deformation. In this review I develop the hypothesis that the normal function of Alix in the endolysosomal system may be deviated by ALG-2 towards a destructive role during active cell death.  相似文献   

5.
Alix/AIP1 regulates cell death in a way involving interactions with the calcium-binding protein ALG-2 and with proteins of ESCRT (endosomal sorting complex required for transport). Using mass spectrometry we identified caspase-8 among proteins co-immunoprecipitating with Alix in dying neurons. We next demonstrated that Alix and ALG-2 interact with pro-caspase-8 and that Alix forms a complex with the TNFalpha receptor-1 (TNF-R1), depending on its capacity to bind ESCRT proteins. Thus, Alix and ALG-2 may allow the recruitment of pro-caspase-8 onto endosomes containing TNF-R1, a step thought to be necessary for activation of the apical caspase. In line with this, expression of Alix deleted of its ALG-2-binding site (AlixDeltaALG-2) significantly reduced TNF-R1-induced cell death, without affecting endocytosis of the receptor. In a more physiological setting, we found that programmed cell death of motoneurons, which can be inhibited by AlixDeltaALG-2, is regulated by TNF-R1. Taken together, these results highlight Alix and ALG-2 as new actors of the TNF-R1 pathway.  相似文献   

6.
Alix/AIP1 is an adaptor protein involved in regulating the function of receptor and cytoskeleton-associated tyrosine kinases. Here, we investigated its interaction with and regulation by Src. Tyr319 of Alix bound the isolated Src homology-2 (SH2) domain and was necessary for interaction with intact Src. A proline-rich region in the C terminus of Alix bound the Src SH3 domain, but this interaction was dependent on the release of the Src SH2 domain from its Src internal ligand either by interaction with Alix Tyr319 or by mutation of Src Tyr527. Src phosphorylated Alix at a C-terminal region rich in tyrosines, an activity that was stimulated by the presence of the Alix binding partner SETA/CIN85. Phosphorylation of Alix by Src caused it to translocate from the membrane and cytoskeleton to the cytoplasm and reduced its interaction with binding partners SETA/CIN85, epidermal growth factor receptor, and Pyk2. As a consequence of this, Src antagonized the negative regulation of receptor tyrosine kinase internalization and cell adhesion by Alix. We propose a model whereby Src antagonizes the effects of Alix by phosphorylation of its C terminus, leading to the disruption of interactions with target proteins.  相似文献   

7.
8.
Alix/AIP1 is a multifunctional adaptor protein that participates in basic cellular processes, including membrane trafficking and actin cytoskeleton assembly, by binding selectively to a variety of partner proteins. However, the mechanisms regulating Alix turnover, subcellular distribution, and function in muscle cells are unknown. We now report that Alix is expressed in skeletal muscle throughout myogenic differentiation. In myotubes, a specific pool of Alix colocalizes with Ozz, the substrate-binding component of the muscle-specific ubiquitin ligase complex Ozz-E3. We found that interaction of the two endogenous proteins in the differentiated muscle fibers changes Alix conformation and promotes its ubiquitination. This in turn regulates the levels of the protein in specific subcompartments, in particular the one containing the actin polymerization factor cortactin. In Ozz(-/-) myotubes, the levels of filamentous (F)-actin is perturbed, and Alix accumulates in large puncta positive for cortactin. In line with this observation, we show that the knockdown of Alix expression in C2C12 muscle cells affects the amount and distribution of F-actin, which consequently leads to changes in cell morphology, impaired formation of sarcolemmal protrusions, and defective cell motility. These findings suggest that the Ozz-E3 ligase regulates Alix at sites where the actin cytoskeleton undergoes remodeling.  相似文献   

9.
Alix/AIP1 is a cytoplasmic protein, which was first characterized as an interactor of ALG-2, a calcium-binding protein necessary for cell death. Alix has also recently been defined as a regulator of the endo-lysosomal system. Here we have used post-mitotic cerebellar neurons to test Alix function in caspase-dependent and -independent cell death. Indeed, these neurons survived when cultured in 25 mm potassium-containing medium but underwent apoptosis soon after the extracellular potassium was lowered to 5 mm. In agreement with other studies, we show that caspases are activated after K+ deprivation, but that inhibition of these proteases, using the pancaspase inhibitor boc-aspartyl(OMe)-fluoromethylketone, has no effect on cell survival. Transfection experiments demonstrated that Alix overexpression is sufficient to induce caspase activation, whereas overexpression of its C-terminal half, Alix-CT, blocks caspase activation and cell death after K+ deprivation. We also define a 12-amino acid PXY repeat of the C-terminal proline-rich domain necessary for binding ALG-2. Deletion of this domain in Alix or in Alix-CT abolished the effects of the overexpressed proteins on neuronal survival, demonstrating that the ALG-2-binding region is crucial for the death-modulating function of Alix. Overall, these findings define the Alix/ALG-2 complex as a regulator of cell death controlling both caspase-dependent and -independent pathways. They also suggest a molecular link between the endo-lysosomal system and the effectors of the cell death machinery.  相似文献   

10.
ALG-2-interacting protein X (Alix), also known as AIP1, is a cytoplasmic protein ubiquitously expressed and concentrated in phagosomes and exosomes. Alix may regulate apoptosis since it binds apoptosis-linked gene 2 (ALG-2), a Ca2+-binding protein necessary for cell death, and also overexpression of its C-terminal half (Alix-CT) blocks death induced by several stimuli. This part of Alix contains a long proline-rich domain containing several potential SH3-binding sites. Using Alix as bait in a yeast two-hybrid system to screen a mouse brain library, we have found that SH3p4, SH3p8, and SH3p13, collectively known as endophilins, bind to Alix. Co-immunoprecipitations and overlay experiments allowed us to demonstrate that endophilins bind to Alix-CT through an SH3/proline-rich domain interaction. We have narrowed the region of Alix interacting with endophilins down to 14 amino acids containing a PXRPPPP consensus sequence, also present in synaptojanin and germinal center kinase-like kinase, allowing their interaction to endophilins. We further show that overexpression of Alix-CT, which blocks cell death, leads to cytoplasmic vacuolization into tubulo-vesicular structures delineated by Alix-CT. This vacuolization phenomenon is greatly enhanced upon co-expression with endophilins and may be part of the protecting mechanism afforded by Alix-CT.  相似文献   

11.
The proline-rich L domains of human immunodeficiency virus 1 (HIV-1) and other retroviruses interact with late endocytic proteins during virion assembly and budding. In contrast, the YPDL L domain of equine infectious anemia virus (EIAV) is apparently unique in its reported ability to interact both with the mu2 subunit of the AP-2 adaptor protein complex and with ALG-2-interacting protein 1 (AIP1/Alix) protein factors involved in early and late endosome formation, respectively. To define further the mechanisms by which EIAV adapts vesicle trafficking machinery to facilitate virion production, we have examined the specificity of EIAV p9 binding to endocytic factors and the effects on virion production of alterations in early and late endocytic protein expression. The results of these studies demonstrated that (i) an approximately 300-residue region of AIP1/Alix-(409-715) was sufficient for binding to the EIAV YPDL motif; (ii) overexpression of AIP1/Alix or AP-2 mu2 subunit specifically inhibited YPDL-mediated EIAV budding; (iii) virion budding from a replication-competent EIAV variant with its L domain replaced by the HIV PTAP sequence was inhibited by wild type or mutant mu2 to a level similar to that observed when a dominant-negative mutant of Tsg101 was expressed; and (iv) overexpression or siRNA silencing of AIP1/Alix and AP-2 revealed additive suppression of YPDL-mediated EIAV budding. Taken together, these results indicated that both early and late endocytic proteins facilitate EIAV production mediated by either YPDL or PTAP L domains, suggesting a comprehensive involvement of endocytic factors in retroviral assembly and budding that can be accessed by distinct L domain specificities.  相似文献   

12.
Expression of the src homology 3 (SH3) domain-containing expressed in tumorigenic astrocytes (SETA) gene is associated with the tumorigenic state in astrocytes. SETA encodes a variety of adapter proteins containing either one or two SH3 domains, as suggested by the sequence heterogeneity of isolated cDNAs. Using both SH3 domains in a yeast two-hybrid screen of a glial progenitor cell cDNA library, we isolated the rat homolog of the ALG-2-interacting protein 1 or ALG-2-interacting protein X (AIP1/Alix). In vitro confrontation experiments showed that the SH3-N domain of SETA interacted with the proline-rich C terminus of AIP1. In co-immunoprecipitation experiments, SETA and AIP1 interacted and could form a complex with apoptosis-linked gene 2 protein. Endogenous SETA and AIP1 proteins showed similar patterns of staining in primary rat astrocytes. Misexpression of a variety of SETA protein isoforms in these astrocytes revealed that they localized to the actin cytoskeleton. Furthermore, SETA proteins containing the SH3-N domain were able to sensitize astrocytes to apoptosis induced by UV irradiation. Expression of the isolated SH3-N domain had the greatest effect in these experiments, indicating that interference in the interaction between endogenous SETA and AIP1 sensitizes astrocytes to apoptosis in response to DNA damage.  相似文献   

13.
The conserved adaptor protein Alix, also called AIP1 or Hp95, promotes flattening and alignment of cultured mammalian fibroblasts; however, the mechanism by which Alix regulates fibroblast morphology is not understood. Here we demonstrate that Alix in WI38 cells, which require Alix expression for maintaining typical fibroblast morphology, associates with filamentous actin (F-actin) and F-actin-based structures lamellipodia and stress fibers. Reducing Alix expression by small interfering RNA (siRNA) decreases F-actin content and inhibits stress fiber assembly. In cell-free systems, Alix directly interacts with F-actin at both the N-terminal Bro1 domain and the C-terminal proline-rich domain. In Alix immunoprecipitates from WI38 cell lysates, actin is the most abundant partner protein of Alix. In addition, the N-terminal half of the middle region of Alix binds cortactin, an activator of the ARP2/3 complex-mediated initiation of actin polymerization. Alix is required for lamellipodial localization of cortactin. The C-terminal half of the middle region of Alix interacts with alpha-actinin, a key factor that bundles F-actin in stress fibers. Alix knockdown decreases the amount of alpha-actinin that associates with F-actin. These findings establish crucial involvement of Alix in actin cytoskeleton assembly.  相似文献   

14.
ALG-2 is a Ca(2+)-binding protein that belongs to the penta-EF-hand protein family and associates with several proteins, including annexin VII, annexin XI, and Alix/AIP1, in a Ca(2+)-dependent manner. The yeast two-hybrid system and a biotin-tagged ALG-2 overlay assay were carried out to characterize the interaction between ALG-2 and Alix. The region corresponding to amino acid residues 794 to 827 in the carboxy-terminal proline-rich region of Alix was sufficient to confer the ability to interact directly with ALG-2. This region includes four-tandem PxY repeats. Alanine substitutions indicated that seven proline residues in this region, four in the PxY repeats, and four tyrosine residues in the PxY repeats are crucial for the binding affinity with ALG-2. Endogenous ALG-2 was co-immunoprecipitated in the presence of Ca(2+) with FLAG-tagged Alix or FLAG-tagged Alix Delta EBS, a deletion mutant lacking the endophilin binding consensus sequence, but not with FLAG-tagged Alix Delta ABS, another mutant lacking the region comprising amino acids 798-841, from the lysates of HEK293 cells transfected with each FLAG-tagged protein expression construct. FLAG-tagged ALG-2 overexpressed in HEK293 cells was also co-immunoprecipitated with Alix in a Ca(2+)-dependent fashion, whereas FLAG-tagged ALG-2(E47A/E114A), a Ca(2+)-binding deficient mutant of ALG-2, was not detected in the immunoprecipitates of Alix even in the presence of Ca(2+). Fluorescent microscopic analyses using the carboxy-terminal half of Alix fused with green fluorescent protein (GFP-AlixCT) revealed that endogenous ALG-2 in HeLa cells exhibits a dot-like pattern overlapping with exogenously expressed GFP-AlixCT, and the distribution of GFP-AlixCT Delta ABS is observed diffusely in the cytoplasm. These results indicate the requirement of ABS in Alix for the efficient accumulation of AlixCT and raise the possibility that ALG-2 participates in membrane trafficking through a Ca(2+)-dependent interaction with Alix.  相似文献   

15.
The cytoplasmic protein Alix/AIP1 (ALG-2 interacting protein X) is involved in cell death through mechanisms which remain unclear but require its binding partner ALG-2 (apoptosis-linked gene-2). The latter was defined as a regulator of calcium-induced apoptosis following endoplasmic reticulum (ER) stress. We show here that Alix is also a critical component of caspase 9 activation and apoptosis triggered by calcium. Indeed, expression of Alix dominant-negative mutants or downregulation of Alix afford significant protection against cytosolic calcium elevation following thapsigargin (Tg) treatment. The function of Alix in this paradigm requires its interaction with ALG-2. In addition, we demonstrate that caspase 9 activation is necessary for apoptosis induced by Tg and that this activation is impaired by knocking down Alix. Altogether, our findings identify, for the first time, Alix as a crucial mediator of Ca2+ induced caspase 9 activation.  相似文献   

16.
The apoptosis-linked protein ALG-2 is a Ca(2+)-binding protein that belongs to the penta-EF-hand (PEF) protein family. ALG-2 forms a homodimer, a heterodimer with another PEF protein, peflin, and a complex with its interacting protein, named Alix or AIP1. We previously identified annexin XI as a novel ALG-2-binding partner. Both the N-terminal regulatory domain of annexin XI (Anx11N) and the ALG-2-binding domain of Alix/AIP1 are rich in Pro, Gly, Ala, Tyr and Gln. This PGAYQ-biased amino acid composition is also found in the N-terminal extension of annexin VII (Anx7N). Using recombinant ALG-2 proteins and the glutathione S-transferase (GST) fusion proteins of Anx7N and Anx11N, the direct Ca(2+)-dependent interaction was analyzed by a biotin-tagged ALG-2 overlay assay and by a real-time interaction analysis with a surface plasmon resonance (SPR) biosensor. Both GST-Anx7N and GST-Anx11N showed similar binding kinetics against ALG-2 as well as ALG-2-DeltaN23, which lacked the hydrophobic N-terminal region. Two binding sites were predicted in both Anx7N and Anx11N, and the dissociation constants (K(d)) were estimated to be approximately 40-60 nM for the high-affinity site and 500-700 nM for the low-affinity site.  相似文献   

17.
The apoptosis-linked protein ALG-2 is a Ca(2+)-binding protein that belongs to the penta-EF-hand protein family. ALG-2 forms a homodimer, a heterodimer with another penta-EF-hand protein, peflin, and a complex with its interacting protein, named AIP1 or Alix. By yeast two-hybrid screening using human ALG-2 as bait, we isolated a cDNA of a novel ALG-2-interacting protein, which turned out to be annexin XI. Deletion analysis revealed that ALG-2 interacted with the N-terminal domain of annexin XI (AnxN), which has an amino acid sequence similar to that of the C-terminal region of AIP1/Alix. Using recombinant biotin-tagged ALG-2 and the glutathione S-transferase (GST) fusion protein of AnxN, the direct interaction was analyzed by an ALG-2 overlay assay and by real-time interaction analysis with a surface plasmon resonance (SPR) biosensor. The dissociation constant (K(d)) was estimated to be approximately 70 nM. The Ca(2+)-dependent fluorescence change of ALG-2 in the presence of the hydrophobicity fluorescent probe 2-p-toluidinylnaphthalene-6-sulfonate (TNS) was inhibited by mixing with GST-AnxN, suggesting that the Pro/Gly/Tyr/Ala-rich hydrophobic region in AnxN masked the Ca(2+)-dependently exposed hydrophobic surface of ALG-2.  相似文献   

18.
Apoptosis-linked gene-2 (ALG-2) encodes a 22 kDa Ca(2+)-binding protein of the penta EF-hand family that is required for programmed cell death in response to various apoptotic agents. Here, we demonstrate that ALG-2 mRNA and protein are down-regulated in human uveal melanoma cells compared to their progenitor cells, normal melanocytes. The down regulation of ALG-2 may provide melanoma cells with a selective advantage. ALG-2 and its putative target molecule, Alix/AIP1, are localized primarily in the cytoplasm of melanocytes and melanoma cells independent of the intracellular Ca(2+) concentration or the activation of apoptosis. Cross-linking and analytical centrifugation studies support a single-species dimer conformation of ALG-2, also independent of Ca(2+) concentration. However, binding of Ca(2+) to both EF-1 and EF-3 is necessary for ALG-2 interaction with Alix/AIP1 as demonstrated using surface plasmon resonance spectroscopy. Mutations in EF-5 result in reduced target interaction without alteration in Ca(2+) affinity. The addition of N-terminal ALG-2 peptides, residues 1-22 or residues 7-17, does not alter the interaction of ALG-2 or an N-terminal deletion mutant of ALG-2 with Alix/AIP1, as might be expected from a model derived from the crystal structure of ALG-2. Fluorescence studies of ALG-2 demonstrate that an increase in surface hydrophobicity is primarily due to Ca(2+) binding to EF-3, while Ca(2+) binding to EF-1 has little effect on surface exposure of hydrophobic residues. Together, these data indicate that gross surface hydrophobicity changes are insufficient for target recognition.  相似文献   

19.
ALG-2 is a EF hand calcium binding protein with sequence homologies to calmodulin. Vito et al have shown that ALG-2 expression is required for apoptosis following a number of death stimuli,1 although nothing is known about the effectors which underlie ALG-2 function. Here we have used ALG-2 as bait in a yeast two hybrid screen of a mouse brain cDNA library. We found that ALG-2 binds to itself and to a novel protein that we call ALG-2 interacting protein X, Alix. Using co-immunoprecipitation experiments, we confirmed ALG-2/ALG-2 binding and demonstrated that this interaction is calcium independent. ALG-2/Alix interaction was also validated by co-immunoprecipitation, but in this case, the binding was found to be strictly calcium dependent. Alix seems highly conserved throughout evolution since it shows significant homologies to a putative C. elegans protein (YNK-1) and to proteins of A. nidulans (PalA) and S. cerevisiae (BRO1). Alix is a potential regulator or downstream effector of ALG-2 action.  相似文献   

20.
Alix (ALG-2-interacting protein X) is a 95-kDa protein that interacts with an EF-hand type Ca(2+)-binding protein, ALG-2 (apoptosis-linked gene 2), through its C-terminal proline-rich region. In this study, we searched for proteins that interact with human AlixDeltaC (a truncated form not containing the C-terminal region) by using a yeast two-hybrid screen, and we identified two similar human proteins, CHMP4a and CHMP4b (chromatin-modifying protein; charged multivesicular body protein), as novel binding partners of Alix. The interaction of Alix with CHMP4b was confirmed by a glutathione S-transferase pull-down assay and by co-immunoprecipitation experiments. Fluorescence microscopic analysis revealed that CHMP4b transiently expressed in HeLa cells mainly exhibited a punctate distribution in the perinuclear area and co-localized with co-expressed Alix. The distribution of CHMP4b partly overlapped the distributions of early and late endosomal marker proteins, EEA1 (early endosome antigen 1) and Lamp-1 (lysosomal membrane protein-1), respectively. Transient overexpression of CHMP4b induced the accumulation of ubiquitinated proteins as punctate patterns that were partly overlapped with the distribution of CHMP4b and inhibited the disappearance of endocytosed epidermal growth factor. In contrast, stably expressed CHMP4b in HEK293 cells was observed diffusely in the cytoplasm. Transient overexpression of AlixDeltaC in stably CHMP4b-expressing cells, however, induced formation of vesicle-like structures in which CHMP4b and AlixDeltaC were co-localized. SKD1(E235Q), a dominant negative form of the AAA type ATPase SKD1 that plays critical roles in the endocytic pathway, was co-immunoprecipitated with CHMP4b. Furthermore, CHMP4b co-localized with SKD1(E235Q) as punctate patterns in the perinuclear area, and Alix was induced to exhibit dot-like distributions overlapped with SKD1(E235Q) in HeLa cells. These results suggest that CHMP4b and Alix participate in formation of multivesicular bodies by cooperating with SKD1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号