首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The specificities of cytotoxic T lymphocytes (CTL) were studied for the analysis of CTL against tumor-specific cell surface antigen(s) (TSSA) of non-virus-producing tumor cells induced by the Schmidt-Ruppin strain of Rous sarcoma virus (SR-RSV) in B10 congenic and recombinant mice. Eight CTL clones were established from immune spleen cells of B10.A(5R) mice. These clones demonstrated six patterns of cytotoxic reactivity in vitro: Two clones showed H-2 restriction in tumor cell lysis. Two other clones had the capacity to lyse syngeneic, H-2K-compatible B10 and H-2-incompatible B10.A(4R) tumor cells, but not YAC-1 cells. One clone had cytotoxic activity against syngeneic, H-2D-compatible B10.D2 tumor cells and YAC-1 cells, but not against H-2-incompatible tumor cells. One clone had cytotoxic activity against syngeneic and YAC-1 tumor cells, but not against either H-2-compatible or H-2-incompatible tumor cells. One clone had lytic activity to syngeneic, H-2-compatible, H-2-incompatible, and YAC-1 tumor cells. Another clone killed H-2-incompatible B10.A(4R) tumor and YAC-1 cells, but not syngeneic or H-2-compatible tumor cells. All these clones strongly expressed surface Thy-1.2 antigens, whereas the expression of Lyt-1.2 and Lyt-2.2 antigens was different from clone to clone. These results demonstrate heterogeneity of both lytic specificity and phenotype of CTL against RSV-induced mouse tumor cells, suggesting the existence of multiple antigenic sites on the RSV TSSA recognized by CTL populations.  相似文献   

2.
Self-Ia-reactive cloned T-cell lines, designated PK, were established by long-term culture of T cells from normal DBA/2 mice with irradiated syngeneic splenic adherent cells (SAC), rich in macrophages and dendritic cells. The cell lines were Thy 1+, Lyt 1+, Lyt 2-, produced IL-2 following stimulation with syngeneic spleen cells, and did not exhibit alloreactivity when screened against six different H-2 haplotypes. Of the five cloned PK cell lines tested, four were I-Ed restricted while one was I-Ad restricted as determined by genetic mapping and blocking studies carried out with monoclonal anti-Ia sera. Extensive specificity studies suggested that the PK cells reacted to syngeneic Ia molecules alone and not to foreign antigens such as fetal calf serum (FCS) used in the culture medium, in association with self-Ia. SAC pulsed with FCS or other protein antigens such as turkey gamma-globulin (TGG) were tested for their ability to induce proliferation of autoreactive T cells and other antigen-specific T cells using culture conditions consisting of serumless medium and interleukin 2 (IL-2). The data showed that the autoreactive T cells proliferated better in response to antigen-unpulsed SAC, while FCS-specific and TGG-specific cell lines, developed independently, proliferated only in response to FCS- or TGG-pulsed SAC, respectively, but not to antigen-unpulsed SAC. These results clearly distinguished the autoreactive T-cell clones from the antigen-specific T-cell clones. Preliminary studies carried out to investigate the functions of autoreactive T cells suggested that these cells helped in the in vitro differentiation of alloantigen-specific cytotoxic T lymphocytes (CTL) from CTL precursors obtained from the thymus and augmented syngeneic, allogeneic, and antigen-specific immune responses in vitro. The autoreactive T cells were also capable of inducing both proliferation and differentiation of antigen-specific populations of B cells in the absence of antigen. The present investigation suggests that autoreactive, non-antigen-reactive T cells can be cloned from normal, unimmunized mice and that such cell lines may provide a powerful tool for analyzing the role of the syngeneic mixed lymphocyte reaction in induction and maintenance of both T-and B-cell immune responses.  相似文献   

3.
Two Lyt-1+, L3T4a+ autoreactive T cell clones specific for self-class II major histocompatibility complex (MHC) gene products were established from lymph node cells and spleen cells of C57BL/6J mice, respectively, by different methods. They were stimulated to proliferate in culture in response to I-Ab antigen-bearing syngeneic spleen cells in a class II MHC-restricted manner. This stimulation was inhibited completely by the addition of anti-L3T4a (GK1.5) or anti-I-Ab (3JP) monoclonal antibodies. The autoreactive T cell clones lysed syngeneic I-Ab+ target cells such as lipopolysaccharide (LPS) blasts. They also lysed I-A- bystander cells such as Cloudman and B16 melanoma and lymphoid tumor cells in the presence of I-Ab+ stimulator cells but not I-Ad+ cells. This bystander killing was most likely mediated by soluble factors released from the autoreactive T cells in response to I-Ab antigens, because culture supernatants from activated autoreactive T cells inhibited the proliferation of B16 melanoma cells in vitro and also had significant cytolytic activity. Both lymphotoxin and interferon-gamma were released from activated autoreactive T cells, suggesting that these cytotoxic lymphokines were responsible for autoreactive T cell-mediated cytolysis. The finding that the two clones, established independently and by different methods, show self-class II MHC antigen-restricted cytolysis, and bystander cytolysis suggests that these properties are not restricted to a unique population of autoreactive T cells. These results favor the concept that in vivo, autoreactive T cells may express not only regulatory activity in regard to antibody responses, but also anti-tumor activity via bystander cytolysis.  相似文献   

4.
We have previously demonstrated that the introduction of the bm12 mutation into NZB mice results in animals that spontaneously produce high titer IgG autoantibodies to dsDNA. The observation that NZB.H-2bm12 develop lupus although NZB.H-2b control mice do not, provides a unique system to study the role of Th cells in the production of antibodies to dsDNA. We have isolated, in the absence of a known stimulating autoantigen, a series of seven autoreactive T cell clones that provide help in vitro for the production of IgG anti-dsDNA antibodies by syngeneic B cells. The data on these seven cloned T cell lines was compared to two cloned T cell lines specific for keyhole limpet hemocyanin. The seven cloned T cell lines, coined clones 19D, 23G, 410F, 410H, C1, C15, and C52 all show significant help in vitro for production of IgM and IgG antibodies to ssDNA and dsDNA; antibody levels increased 7- to 30-fold compared to cultures without T cells. Clones C1, C15, and C52 were furthered studied and were shown to provide help for IgM antihistone and anti-OVA responses but provided significantly less help for IgG antibodies. In contrast, keyhole limpet hemocyanin-specific cloned T cell lines TK2 and TK5 provided help for IgM antibodies to ssDNA, dsDNA, and histone, but failed to significantly increase IgG antibodies to ssDNA, dsDNA, or histone. The cloned T cell lines were restricted to H-2bm12 and proliferated only in response to APC from NZB.H-2bm12 and B6.C-H-2bm12 but not NZB.H-2b or NZB.H-2d mice; their in vitro helper activity was inhibited by antibodies to class II. All cloned T cell lines expressed Thy-1, CD5, and TCR-alpha/beta. Three of the seven clones used TCR-V beta 4. However, the V beta expression of the four remaining autoreactive T cell clones could not be determined. All of the autoreactive cloned T cell lines produce significant IL-4 but no detectable IL-2 or IFN-gamma. We believe that HPLC-purified peptides eluted from I-Abm12 molecules from APC can potentially provide insight on the putative autoantigen.  相似文献   

5.
We examined the antigen recognition of the class II major histocompatibility complex (MHC) of 45 poly(glu60 ala30 tyr10) (GAT)-reactive T-cell clones isolated by limiting dilution cloning of a pool of in vivo-primed and in vitro-restimulated A.TL lymph-node T cells. Each clone expressed the Thy-1.2+, Lyt-1+, Lyt-2-, LFA-1+, Ia-, and H-2Dd+ cell-surface phenotype and exhibited strict specificity for GAT on syngeneic antigen-presenting cells (APCs). The monitoring of the proliferative responses of these clones in the presence or absence of GAT, using APCs from strains with 11 independent H-2 haplotypes, revealed several distinct specificity patterns: (i) most (31 of 45, 73%) T-cell clones recognized GAT in a self-I-Ak-restricted manner; (ii) other alloreactive clones (5 of 45, 11%) were stimulated to proliferate, irrespective of the presence of GAT, in response to allodeterminants expressed on H-2s, H-2d, H-2f or H-2u spleen cells; (iii) a third T-cell clone subset (4 of 45, 9%) was activated by GAT in the context of not only self-I-Ak but also nonself restriction Ia determinants; and (iv) three clones (7%) exhibited a triple specificity, i.e., they recognized GAT in the context of self and nonself Ia determinants and were alloreactive. One of the latter clones responded to GAT in an apparently non-MHC-restricted manner and recognized an I-Ab allodeterminant. These data provide direct evidence that the antigen-specific and alloreactive T-cell repertoires overlap and that the self-MHC restriction of GAT-specific T-cell responses is not absolute in A.TL mice.  相似文献   

6.
We have previously shown that at least two types of Lyt-1+, Lyt-2-, L3T4+ helper T cell clones can be distinguished in vitro by different patterns of lymphokine secretion and by different forms of B cell help. Evidence is presented here to show that one type of helper T cell clone (TH1) causes delayed-type hypersensitivity (DTH) when injected with the appropriate antigen into the footpads of naive mice. The antigen-specific, major histocompatability complex (MHC)-restricted footpad swelling reaction peaked at approximately 24 hr. Footpad swelling was induced by all TH1 clones tested so far, including clones specific for soluble, particulate, or allogeneic antigens. In contrast, local transfer of TH2 cells and antigen did not produce a DTH reaction, even when supplemented with syngeneic spleen accessory cells. Similarly, local transfer of an alloreactive cytotoxic T lymphocyte clone into appropriate recipients did not produce DTH. The requirements for the DTH reaction induced by TH1 cells were investigated further by using TH1 clones with dual specificity for both foreign antigens and M1s antigens. Although these clones responded in vitro to either antigen + syngeneic presenting cells, or M1s disparate spleen cells, they responded in vivo only to antigen + MHC and did not cause footpad swelling in an M1s-disparate mouse in the absence of antigen. Moreover, in vitro preactivation of TH1 or TH2 cells with the lectin concanavalin A was insufficient to induce DTH reactions upon subsequent injection into footpads. From these results, we conclude that the lack of DTH given by TH2 clones in vivo could be due to the inability of the TH2 cells to produce the correct mediators of DTH, or to a lack of stimulation of TH2 clones in the footpad environment.  相似文献   

7.
From the spleen cells of C57BL/6 (B6) mice, T-cell clones were established which responded to mutant H-2K antigen of B6. B-H-2bml (Hz1) mice. One clone and its subclones were maintained in culture medium containing lower concentration (2.5%) of IL-2 (culture supernatant of rat spleen cells stimulated with concanavalin A). They were shown to have a capability to induce graft-versus-host reaction in (B6 X Hz1)F1 recipients as well as to exert cytotoxicity against concanavalin-A-activated spleen cells of Hz1 mice and also their kidney fibroblasts. They lacked cytotoxicity against syngeneic and also third-party Con-A-stimulated spleen cells. These reactive clones were Thy-1.2 and Lyt-2 positive and Lyt-1 negative. On the other hand, clones which were maintained in culture medium containing higher concentration (20%) of IL-2 were devoid of activities in vivo as well as in vitro. These clones were Thy-1.2 positive but Lyt-1.2 and Lyt-2.2 negative.  相似文献   

8.
Several murine Sendai virus-specific T-cell clones were characterized in vitro and in vivo. All T-cell clones were phenotypically Thy-1.2+, and most clones were Lyt-1+,2-; one T-cell clone was Lyt-1-,2-. Some of the clones proliferated in response to antigen presented on I region-compatible stimulator cells. Proliferation could be inhibited by monoclonal antibodies directed against class II antigens. Clones which proliferated in response to antigen secreted lymphokines which could be identified as Interleukin 2 and Interleukin 3. All of the clones tested in vivo induced a delayed-type hypersensitivity response in syngeneic mice challenged with antigens. Depending on the experimental conditions chosen, Interleukin 2-producing clones as well as non-Interleukin 2-producing clones mediated help for stimulation of cytolytic T lymphocytes.  相似文献   

9.
The role of T-T cell interactions in the clinical course of acute experimental allergic encephalomyelitis (EAE) in mice was investigated. Myelin basic protein (MBP)-reactive and encephalitogenic T cell clones were established from long-term lines derived from susceptible strain SJL/J mice and resistant strain DDD/1 mice. The lines and clones from DDD/1 mice were obtained by immunization of congenitally athymic mice of DDD/1 origin, which had been reconstituted with syngeneic Lyt-2+-depleted splenic T cells. The clones derived from both strains bore surface phenotypes of Lyt-1+, 2- and L3T4+, and proliferated well in response to rat, rabbit, bovine, and guinea pig MBP in the presence of antigen-presenting cells with I-As. Passive EAE could be induced in syngeneic normal recipients by these clones as well as by the lines from which the clones were derived. The clinical features of the clone-induced EAE were essentially the same as those of the line-induced EAE. Furthermore, DDD/1 athymic recipients developed signs of acute EAE by the adoptive transfer of I-A-compatible syngeneic and allogeneic T cell clones, in which there was no significant difference in time of onset, maximum severity, or prognosis. These results indicate that the entire clinical course of acute EAE can be elicited by a single population of MBP-reactive T cells in the absence of the thymus and other populations of primed or unprimed T cells.  相似文献   

10.
The present studies were undertaken to characterize the antigen-processing requirements involved in the responses to T cells to soluble antigen (antigen specific), to allogeneic cell surface MHC determinants (alloreactive), and to syngeneic MHC determinants (autoreactive). T cell clones were used that have dual cross-reactive specificities either 1) for self MHC plus soluble antigen and for allogeneic MHC products or 2) for syngeneic MHC and for allogeneic MHC, in order to permit comparison of the processing requirements for responses of the same T cell to distinct antigenic stimuli. The proliferative responses of antigen-specific, Ia-restricted T cell clones to soluble antigens were sensitive to treatment of antigen-presenting cells (APC) with 125 to 250 microM chloroquine, a lysosomotropic agent previously shown to inhibit the processing of soluble antigens. In contrast, the same T cell clones were only minimally affected in their ability to respond to similarly chloroquine-treated APC expressing allogeneic MHC products. The responses of autoreactive T cell clones to syngeneic stimulating cells and their cross-reactive responses to allogeneic cells were both resistant to chloroquine treatment of stimulating cells. The failure of chloroquine to inhibit antigen presentation to autoreactive T cell clones suggests that these clones are specific for self Ia not associated with in vitro processed foreign antigen. Thus, chloroquine sensitivity distinguishes the in vitro antigen-processing requirements for presentation of the soluble antigens tested from the requirements for presentation of syngeneic or allogeneic cell surface MHC determinants to the same T cells.  相似文献   

11.
Induction of CTL responses to alloantigens by a Db-specific T helper clone   总被引:1,自引:0,他引:1  
A T cell helper clone was derived 2 yr ago from a mixed lymphocyte culture. This clone, referred to as clone 9, was propagated in interleukin 2 (IL 2)-containing medium in the presence of irradiated stimulator and irradiated syngeneic spleen cells. Clone 9 was of H-2d origin and was found to be Thy-1+ and Lyt-1-2-. Clone 9, as well as supernatant factor(s) derived from it, were able to enhance the primary cytotoxic responses of Db responder cells to alloantigens. Furthermore, clone 9 cells or its factor(s) were only active when added during the first 24 hr of a 5-day culture period. When a low stimulator cell dose (10(4) cells per 0.2 ml culture) was used, it was possible to demonstrate that clone 9 also required a source of irradiated allogeneic splenic accessory cells to exert its helper action. Under these conditions, clone 9 or its factor(s) could also synergize with IL 2-containing medium in mounting cytotoxic responses to alloantigens. Synergy between IL 2-containing medium and clone 9 or its factor(s) was observed only when Db responder cells were used. The helper activity in clone 9 supernatant was also specifically absorbed out by Con A-stimulated Db spleen cell blasts. Preincubation with clone 9 supernatant for 1 hr at room temperature also led to enhanced cytotoxic responses of Db responder cells to alloantigens. Clone 9 supernatant was also found to be devoid of detectable IL 2 activity. Thus, clone 9 or its helper factor(s) appear to exert its helper activity by an early interaction with Db cytotoxic T lymphocyte precursors (CTL-P).  相似文献   

12.
The studies presented here investigated the relationship between T cell recognition of MHC-encoded products and non-MHC-linked Mls determinants. The first aspect addressed whether Mls-reactive T cells recognize Mls-encoded products alone or in association with MHC-encoded determinants. Initial studies used Mlsa-specific T cell clones that were generated by repeated stimulation of C57BL/6 or B10.A(5R) spleen cells with DBA/2 lymphoid cells. These clones recognized Mlsa on cells expressing MHC products of the H-2b, H-2d, and H-2k haplotypes, but not the H-2q haplotype. Thus, these cloned T cells were found to recognize Mlsa products in association with public but demonstrably polymorphic H-2 determinants. The question of whether T cell clones that were specific for self-H-2 determinants (autoreactive) or soluble antigen plus syngeneic H-2 (antigen-specific) could also be stimulated by Mlsa determinants was also addressed. A substantial proportion of the antigen-specific or autoreactive T cell clones tested were stimulated by Mlsa determinants. Furthermore, stimulation of these clones by Mlsa was H-2 restricted. The pattern of H-2-restricted recognition of Mlsa by these clones was not distinguishable from that observed in the Mlsa-specific T cell clones, nor was it influenced by the primary specificity or H-2 restriction pattern of a given clone. Although these findings provide a means of explaining the observation that Mls-reactive T cells exist at extremely high precursor frequencies, they also raise questions regarding the nature of the receptor structures which are used by a single T cell in the recognition of two or more apparently distinct stimuli.  相似文献   

13.
Immune responses to GAT are controlled by H-2-linked Ir genes; soluble GAT stimulates antibody responses in responder mice (H-2b) but not in nonresponder mice (H-2q). In nonresponder mice, soluble GAT stimulates suppressor T cells that preempt function of helper T cells. After immunization with soluble GAT, spleen cells from (responder x nonresponder: H-2b X H-2q)F1 mice develop antibody responses to responder H-2b GAT-M phi but not to nonresponder H-2q GAT-M phi. This failure of immune F1 spleen cells to respond is due to an active suppressor T cell mechanism that is activated by H-2q, but not H-2b, GAT-M phi and involves two regulatory T cell subsets. Suppressor-inducer T cells are immune radiosensitive Lyt-1 +2-, I-A-, I-J+, Qa-1+ cells. Suppressor-effector T cells can be derived from virgin or immune spleens and are radiosensitive Lyt-1-2+, I-A-, I-J+, Qa-1+ cells. This suppressor mechanism can suppress responses of virgin or immune F1 helper T cells and B cells. Helper T cells specific for H-2b GAT-M phi are easily detected in F1 mice after immunization with soluble GAT; helper T cells specific for H-2q GAT-M phi are demonstrated after elimination of the suppressor-inducer and -effector cells. These helper T cells are radioresistant Lyt-1+2-, I-A+, I-J-, Qa-1- cells. These data indicate that the Ir gene defect in responses to GAT is not due to a failure of nonresponder M phi to present GAT and most likely is not due to a defective T cell repertoire, because the relevant helper T cells are primed in F1 mice by soluble GAT and can be demonstrated when suppressor cells are removed. These data are discussed in the context of mechanisms for expression of Ir gene function in responses to GAT, especially the balance between stimulation of helper vs suppressor T cells.  相似文献   

14.
Acute and chronic graft-vs-host disease (GVHD) due to non-MHC histocompatibility differences differ histopathologically. Acute GVHD is characterized by the cytotoxic destruction of recipient tissues, whereas chronic GVHD is characterized by increased collagen deposition. In an attempt to determine if acute and chronic GVHD represent two phases of the same pathophysiologic process or two distinct processes, the T lymphocytes from the C57BL/6 (B6) recipients of LP spleen cells (non-H-2 GVHD) have been cloned and compared to clones from immune mice (LP anti-B6). Acute GVHD (G) clones were established on day 10-14 posttransplant and chronic GVHD (CG) clones on day 50 from animals with clinical chronic GVHD. Immune (I) clones were established 10 to 14 days after immunization. All I clones exhibited B6-specific blastogenesis and cytotoxicity and had a Thy-1.2+, Lyt-2.2+, L3T4- phenotype. All CG clones were noncytotoxic, had I-Ab-specific blastogenesis, and had a Thy-1.2+, Lyt-2.2-, L3T4+ phenotype. The acute GVHD (G) clones were heterogeneous. Fourteen of 23 clones exhibited B6-specific blastogenesis and had a Lyt-2.2+, L3T4- phenotype (B6-G clones). Seven of 9 B6-G clones were cytotoxic for B6 targets. Nine of 23 G clones exhibited I-Ab-specific blastogenesis, and all but one clone had a Lyt-2.2-, L3T4+ phenotype as the did CG clones. Thus, the principal clonogenic T lymphocytes from mice with acute and chronic GVHD differ in terms of 1) their antigenic specificity, 2) their cytotoxic capacity, and 3) their surface phenotype. The presence of I-Ab-specific T lymphocytes with a phenotype identical to CG clones early after transplantation suggests that the immunologic events that result in chronic GVHD begin soon after transplantation. These results indicate that acute GVHD is due primarily to recipient-specific cytotoxic donor T lymphocytes, whereas chronic GVHD is due to autoreactive helper T lymphocytes.  相似文献   

15.
The present study determines the Ly phenotype of T cells mediating tumor cell rejection in vivo and investigates some of cellular mechanisms involved in the in vivo protective immunity. C3H/HeN mice were immunized to syngeneic X5563 plasmacytoma by intradermal (i.d.) inoculation of viable X5563 tumor cells, followed by the surgical resection of the tumor. Spleen cells from these immune mice were fractionated by treatment with anti-Lyt antibodies plus complement, and each Lyt subpopulation was tested for the reconstituting potential of in vivo protective immunity in syngeneic T cell-depleted mice (B cell mice). When C3H/HeN B cell mice were adoptively transferred with Lyt-1-2+ T cells from the above tumor-immunized mice, these B cell mice exhibited an appreciable cytotoxic T lymphocyte (CTL) response to the X5563 tumor, whereas they failed to resist the i.d. challenge of X5563 tumor cells. In contrast, the adoptive transfer of Lyt-1+2- anti-X5563 immune T cells into B cell mice produced complete protection against the subsequent tumor cell challenge. Although no CTL or antibody response against X5563 tumors was detected in the above tumor-resistant B cell mice, these mice were able to retain Lyt-1+2- T cell-mediated delayed-type hypersensitivity (DTH) responses to the X5563 tumor. These results indicate that Lyt-1+2- T cells depleted of the Lyt-2+ T cell subpopulation containing CTL or CTL precursors are effective in in vivo protective immunity, and that these Lyt-1+2- T cells implement their in vivo anti-tumor activity without inducing CTL or antibody responses. The mechanism(s) by which Lyt-1+2- T cells function in vivo for the implementation of tumor-specific immunity is discussed in the context of DTH responses to the tumor-associated antigens and its related Lyt-1+2- T cell-mediated lymphokine production.  相似文献   

16.
T cell subsets responsible for clearance of Sendai virus from mouse lungs determined by adoptive transfer of immune spleen cell fractions to infected nude mice. T cells with antiviral activity developed in spleens by 7 days after intranasal infection. Spleen cell fractions depleted of Lyt-2+, Lyt-1+, or L3T4+ cells showed antiviral activity in vivo, although the degree of the activity was lower than that of control whole spleen cells. The antiviral activity of the Lyt-2+ cell-depleted fraction was consistently higher than that of L3T4+ (Lyt-1+)-depleted cells. In vitro cytotoxic activity against Sendai virus-associated, syngeneic lipopolysaccharide-blast cells was detected in stimulated cells from intraperitoneally immunized mice but was lost after depletion of Lyt-2+ cells. Multiple injection of anti-Sendai virus antibody into infected nude mice had no effect on lung virus titer. These results indicate that L3T4+ (Lyt-1+) and Lyt-2+ subsets are cooperatively responsible for efficient clearance of Sendai virus from the mouse lung.  相似文献   

17.
After immunization of B6 mice with the syngeneic retrovirus-induced T cell leukemia/lymphoma FBL-3, two major tumor-specific proliferative T cell clonotypes were derived. T cell clones derived from long-term lines propagated by in vitro culture with irradiated tumor cells and syngeneic spleen cells were exclusively of the Lyt-2+ phenotype. Such clones were cytolytic, retained their proliferative phenotype indefinitely when expanded by repeated cycles of reactivation and rest, and recognized a tumor-specific cell surface antigen in association with class I MHC molecules. This tumor cell antigen was not present on nontransformed virus-infected cells. Class II MHC-restricted MT4+ clones specific for the viral antigen gp70 were derived from lymph node T cells of FBL-3 tumor-immune mice only by in vitro culture with purified Friend virus in the presence of syngeneic splenic APC. Once derived, however, such clones could be stimulated in the presence of FBL-3 tumor cells and syngeneic spleen cells, demonstrating the reprocessing of tumor-derived gp70 antigen by APC in the spleen cell population. In contrast, no reprocessing of the tumor cell surface antigen by splenic APC for presentation to the class I MHC-restricted T cell clones could be demonstrated. Evidence is presented that FBL-3 T leukemia/lymphoma cells function as APC for Lyt-2+ class I MHC-restricted clones, and that no concomitant recognition of Ia molecules is required to activate these clones. Both Lyt-2+ and MT4+ clones were induced to proliferate in the presence of exogenous IL2 alone, but this stimulus failed to result in significant release of immune interferon. In contrast, antigen stimulation of both clones resulted in proliferation as well as significant immune interferon release. Immune interferon production is not required for the generation of MHC-restricted cell-mediated cytolytic function.  相似文献   

18.
In vitro expanded T cell lines were used to determine whether antigen-specific cytolytic T lymphocytes are generated after infection with the intracellular bacterium, Listeria monocytogenes. Spleen cells from infected mice were cultured in the presence of syngeneic accessory cells, listerial antigen, and interleukin 2 containing supernatants. Cell lines were greater than 98% Thy-1+, L3T4-, Lyt-2+. Bone-marrow macrophages were used as target cells in two in vitro cytolytic assay systems. The Lyt-2+ T cells killed bone marrow macrophages only when infected with L. monocytogenes as assessed in a 4-hr 51Cr release assay and in an 18-hr neutral red uptake assay. Cytolysis was blocked by anti-LFA-1 and anti-Lyt-2 monoclonal antibodies. These cytolytic T cells produced interferon-gamma after co-stimulation with antigen, accessory cells, and recombinant interleukin 2. Bone marrow macrophages infected with Mycobacterium bovis were not killed by T cells from L. monocytogenes-infected mice but by T cell lines from M. bovis-infected mice, indicating that cytolysis was antigen specific. L. monocytogenes-infected target cells of different haplotype were lysed by the Lyt-2+ T cells. By using a low cell density split culture system, antigen-specific, H-2-restricted cytolytic T cells could be identified. These findings demonstrate that during infection with intracellular bacteria, Lyt-2+ T cells with cytolytic activity are generated that may be involved in antibacterial protection.  相似文献   

19.
The interaction between class I major histocompatibility complex (MHC) products and T cells was studied using H-2Kb-specific alloreactive T-cell lines and clones obtained by repeated in vitro stimulation with allogeneic cells. Induction of proliferation of these T cells appeared to involve two signals: the H-2Kb alloantigen and interleukins. Immunopurified liposome-inserted H-2Kb, which stimulates specific secondary in vitro cytotoxic T lymphocyte (CTL) responses, could not replace cell-associated H-2Kb in the stimulation of these T-cell lines, even in the presence of feeder cells and interleukins. When T-cell lines were initiated in vitro and repeatedly stimulated with H-2Kb liposomes and feeder cells, it was possible to obtain T cells that could proliferate in response to H-2Kb liposomes in the presence of feeder cells and interleukin-2-containing supernatants or on H-2K b -expressing cells. Only stimulation with cells permitted maintenance of these T cells in culture for more than 12 weeks. Analyses of cell surface markers and of patterns of inhibition of proliferation by monoclonal antibodies (mAb) of T-cell lines induced in vitro with cell- or liposome-associated H-2Kb indicated that T-cell stimulation by class I antigen can occur in at least two ways. In the first, the H-2Kb-induced proliferation of Lyt-1- Lyt-2+ T4- T cells is inhibited by H-2Kb- and by Lyt-2-specific mAb, but not by Ia or T4-specific mAb. In the second, both Lyt-2+ and T4+ T cells are involved and the H-2Kb-induced proliferation is inhibited by H-2Kb- and Lyt-2-specific mAb and by Ia- and T4-specific mAb.Abbreviations used in this paper Ab antibody - mAb monoclonal antibody - C complement - i.p. intraperitoneally - PBS phosphate-buffered saline - PBS-B-N PBS containing bovine serum albumin and NaN3 - CTL cytotoxic T lymphocyte - Th T helper cell - MHC major histocompatibility complex - PMA 4-phorbol 12-myristate 13-acetate - SCA concanavalin A-stimulated rat spleen cell supernatant - SC16 EL4 clone 16 supernatant - IL-1 interleukin-1 - IL-2 interleukin-2 (T-cell growth factor) - FCS fetal calf serum - H-2Kb-lip. H-2Kb inserted in liposomes - C. E. cell equivalents  相似文献   

20.
It has been shown that peritoneal exudate cells (PEC) from BALB/c mice immunized with minor histocompatibility antigens presented by DBA/2 or B10.D2 spleen cells are capable of lysing syngeneic YC8 tumor cells in a 4-hr 51Cr-release assay. In this study, we employed limiting dilution analysis to determine the frequency of CTL precursors (CTL-P) reactive against both the specific DBA/2 (or P815) target and the syngeneic tumor YC8. The mean frequency of anti-DBA/2 CTL-P in PEC from BALB/c mice immunized with DBA/2 was 1/302. Between one-third and one-fifth of limiting dilution microcultures that exhibited lytic activity against DBA/2 lymphoblasts (or P815) were also able to lyse YC8. No lysis of YC8 was observed in the absence of a parallel lysis on DBA/2 lymphoblasts or P815 target cells. T cell clones, derived by micromanipulation from microcultures selected for cytotoxic activity against YC8 and/or P815, maintained either the specific anti-allogeneic or the doubly reactive ( antiallogeneic plus anti-syngeneic tumor) phenotype. Fourteen clones (six specific and eight doubly reactive) were tested for cytotoxic activity on a panel of target cells with different haplotypes. All showed H-2-restricted specificity for minor histocompatibility antigens shared by DBA/2 and B10.D2. The restriction element for some of the clones mapped in the K region of the H-2 complex, whereas for other clones the restriction element mapped in the D region; both K- and D-restricted clones were able to lyse YC8. When the clones that exhibited lysis on YC8 were tested on two other BALB/c tumor targets, LSTRA, a Moloney virus induced lymphoma, and RL male-1, a radiation induced lymphoma, two of seven were found to lyse all three syngeneic tumor targets equally well, but not syngeneic BALB/c blasts. These clones were functionally categorized as conventional CTL because they were unable to proliferate when cultured with antigen in the absence of exogenous lymphokines, and were unable to produce lymphokine with IL 2 activity when stimulated by the appropriate splenocytes. When tested in vivo in a Winn assay, a strong anti-tumor activity against YC8 was exerted by the anti-DBA/2 clones DY4 -3 and DY16 -3. These clones lysed both YC8 and the immunizing target cells in vitro. No in vivo effect in neutralizing YC8 tumor growth was observed with clone D2-1, a clone that lysed DBA/2 targets but not YC8 in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号