首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell migration is regulated by focal adhesion (FA) turnover. Fibroblast growth factor-2 (FGF-2) induces FA disassembly in the murine brain capillary endothelial cell line IBE, leading to FGF-2-directed chemotaxis. We previously showed that activation of Src and Fes by FGF-2 was involved in chemotaxis of IBE cells. In this study, we examined the interplay between Src and Fes. FGF-2 treatment decreased the number of FA in IBE cells, but not in cells expressing dominant-negative Fes (denoted KE5-15 cells). FGF-2 induced the activation of Src and subsequent binding to and phosphorylation of Cas in IBE cells, but not in KE5-15 cells. Focal adhesion kinase (FAK) activation and tyrosine phosphorylation by Src were also delayed in KE5-15 cells compared to parental cells. FGF-2 induced activation of Src within FA in IBE cells, but not in KE5-15 cells. Downregulation of Fes or FAK using small interfering RNA diminished Src activation by FGF-2 within FA. These findings suggest that activation of Fes by FGF-2 enhances FAK-dependent activation of Src within FA, promoting FGF-2-induced disassembly of focal adhesions.  相似文献   

2.
To study the role of the Src homology 2 (SH2) domain-containing protein Shb in angiogenesis, wild-type Shb and SH2 domain-mutated Shb (R522K Shb) were overexpressed in murine immortalized brain endothelial cells. The wild-type Shb cells exhibited an increased rate of apoptosis on serum withdrawal. Both wild-type Shb and R522K Shb cells exhibited enhanced spreading concomitant with cytoskeletal rearrangements that occurred independently of fibroblast growth factor (FGF)-2 stimulation. However, these effects may partly be caused by altered regulation of Rac1 and Rap1 activation in the Shb cells. The Shb-induced cytoskeletal rearrangements were not dependent on phosphatidylinositol 3' kinase activity, but could be reversed by inhibition of Src family kinases. FGF-2 failed to further enhance migration of wild-type Shb and R522K Shb cells. The R522K Shb cells cultured in collagen gels exhibit diminished tubular morphogenesis when treated with FGF-2, implicating the need for a functional Shb molecule in this process. These data suggest that Shb plays a role in the proliferation and differentiation of endothelial cells and, hence, participates in angiogenesis.  相似文献   

3.
BACKGROUND: Overexpression of the Src homology 2 domain protein Shb in beta-cells of transgenic mice has been shown to promote an increased beta-cell mass. To investigate the mechanisms by which Shb controls the beta-cell mass, we have presently studied the effects of Shb overexpression on the IRS-1-induced signaling pathway in mouse islet beta-cells and in insulin-producing RINm5F cells and correlated these effects to growth and death patterns. MATERIALS AND METHODS: Shb overexpression was achieved in RINm5F cells by selection of stable clones or by FACS purification of transiently transfected cells. For Shb overexpression in primary mouse islet cells, a Shb-transgene mouse was used. Cell proliferation and death rates were determined using flow cytometry. Serum-, insulin-, and IGF-1-stimulated signaling events were studied by immunoblot, immunoprecipitation, and in vitro kinase procedures. RESULTS: Transient Shb overexpression in RINm5F cells resulted in increased proliferation. Both Shb-overexpressing RINm5F cells and islet cells from transgenic mice (islet Shb) exhibited increased basal tyrosine phosphorylation of IRS-1. Shb overexpression resulted also in the assembly and activation of a multiunit complex consisting of at least Shb, IRS-1, IRS-2, FAK, and PI3K. Consequently, the phosphorylation of Akt was enhanced under basal conditions in Shb overexpressing cells. Finally, Shb overexpression did not affect insulin-induced phosphorylation of the PI3K-antagonist PTEN. CONCLUSION: It is concluded that the Shb-induced alterations in the IRS-1/PI3K/Akt pathway may be relevant to the understanding of growth and death patterns of insulin-producing cells.  相似文献   

4.
Fibroblast growth factors (FGFs) regulate a number of angiogenic cellular responses such as migration of endothelial cells. To examine the role of mitogen-activated protein kinase (MAPK) in endothelial cell migration, chemotaxis toward FGF-2 was determined in murine brain capillary endothelial cells, denoted IBE cells. PD98059, a specific inhibitor for MAPK/Erk kinase, inhibited FGF-2-induced chemotaxis of IBE cells. It has been reported that c-Src tyrosine kinase phosphorylates focal adhesion kinase at tyrosine 925 within focal adhesions, which in turn creates the binding site for Grb2, leading to MAPK activation. The Src family tyrosine kinase inhibitor, PP1, as well as overexpression of kinase-inactive c-Src, attenuated chemotaxis toward FGF-2. To investigate the signaling events involved in FGF-2-induced chemotaxis, MAPK activation was monitored in IBE cells by indirect immunofluorescence staining. Activated MAPK was initially observed in the cytoplasm and gradually moved into nuclei. A fraction of MAPK was activated by FGF-2 within focal adhesions, where FGF receptor-1 and Src family kinases were also colocalized. MAPK activation within focal adhesions was remarkably decreased in kinase-inactive c-Src-expressing IBE cells. Our data suggest that activation of MAPK by FGF-2 within focal adhesions may depend on c-Src activity and is crucial for FGF-2-induced migration of IBE cells.  相似文献   

5.
In the present study we have investigated a possible role for the proline-rich SH2 domain protein Shb as a regulator of expression or activity of certain SH3 domain proteins and MAP kinase. The expression of the Shb binding proteins Eps8, Src, and p85 PI3-kinase, PI3-kinase activity, and MAP kinase activation were assessed in wild-type NIH3T3 cells and in NIH3T3 cells overexpressing the Shb cDNA. In addition, the expression of the SH3 domain STAT1 proteins was assessed in wild-type and Shb overexpressing cells. The Eps8 protein content and Eps8 mRNA steady-state levels were downregulated, whereas the protein contents of Src and p85 PI3-kinase were unaffected by Shb overexpression. There was, however, an increased basal PI3-kinase activity in Shb transfected cells after a 3-h serum starvation. Increased steady-state levels of STAT1 mRNA were accompanied by an increased STAT1 protein content in Shb overexpressing cells. Shb overexpression was not associated with an altered activation of p44 or p42 MAP kinases in response to PDGF stimulation. The data presented in this study suggest novel functions for the adaptor protein Shb regulating the expression of certain signal-transducing SH3 domain proteins and modulating PI3-kinase activity.  相似文献   

6.
The Src homology 2 (SH2) domain adaptor protein Shb has been shown to transmit NGF- and FGF-2-dependent differentiation signals in PC12 cells. To study if this involves signaling through the small GTPase Rap1, Rap1 activity was assessed in Shb-overexpressing PC12 cells. We demonstrate that NGF and EGF induce Rap1 activation in PC12-Shb cells, while FGF-2 fails to do so. However, PC12 cells expressing Shb with an inactivated SH2 domain do not respond to NGF stimulation with Rap1 activation. The CrkII SH2 domain interacts with Shb and a 130- to 135-kDa phosphotyrosine protein present mainly in PC12-Shb cells and these interactions may thus relate to the effect of Shb on Rap1 activation. Transient expression of RalGDS-RBD or Rap1GAP to block the Rap1 pathway reduces the NGF-dependent neurite outgrowth in PC12-Shb cells. These results suggest a role of Shb in NGF-dependent Rap1 signaling and this pathway may be of significance for neurite outgrowth under certain conditions.  相似文献   

7.
Our previous work indicates intestinal epithelial cell ERK activation by collagen IV, a major component of the intestinal epithelial basement membrane, requires focal adhesion kinase (FAK) and suggests FAK and ERK may have important roles in regulating intestinal epithelial cell migration. We therefore sought to identify FAK downstream targets regulating intestinal epithelial cell spreading, migration, and ERK activation on collagen IV and the integrins involved. Both dominant-negative Src and Src inhibitor PP2 strongly inhibited collagen IV ERK activation in Caco-2 intestinal epithelial cells. Collagen IV stimulated Grb2 binding site FAK Y925 phosphorylation, which was inhibited by PP2 and required FAK Y397 autophosphorylation. Additionally, FAK Y925F expression blocked collagen IV ERK activation. alpha(1)beta(1)- Or alpha(2)beta(1)-integrin blockade with alpha(1)- or alpha(2)-integrin subunit antibodies indicated that either integrin can mediate adhesion, cell spreading, and FAK, Src, and ERK activation on collagen IV. Both dominant-negative Src and PP2 inhibited Caco-2 spreading on collagen IV. PP2 inhibited p130(Cas) tyrosine phosphorylation, but dominant-negative p130(Cas) did not inhibit cell spreading. PP2 inhibited Caco-2 migration on collagen IV much more strongly than the mitogen-activated protein kinase kinase inhibitor PD-98059, which completely inhibited collagen IV ERK activation. These results suggest a pathway for collagen IV ERK activation requiring Src phosphorylation of FAK Y925 not previously described for this matrix protein and suggest either alpha(1)beta(1)- or alpha(2)beta(1)-integrins can regulate Caco-2 spreading and ERK activation on collagen IV via Src. Additionally, these results suggest Src regulates Caco-2 migration on collagen IV primarily through ERK-independent pathways.  相似文献   

8.
The binding of integrins to extracellular matrix triggers signals that promote cell spreading. We previously demonstrated that expression of the integrin β1 cytoplasmic domain in the context of a chimeric transmembrane receptor with the Tac subunit of the interleukin-2 receptor (Tac-β1) inhibits cell spreading. To study the mechanism whereby Tac-β1 inhibits cell spreading, we examined the effect of Tac-β1 on early signaling events following integrin engagement namely FAK and Src signaling. We infected primary fibroblasts with adenoviruses expressing Tac or Tac-β1 and found that Tac-β1 prevented FAK activation by inhibiting the phosphorylation of FAK at Tyr-397. In contrast, Src activation was maintained, as phosphorylation of Src at Tyr-419 and Tyr-530 were not responsive to expression of Tac-β1. Importantly, adhesion-induced tyrosine phosphorylation of the Src substrates p130Cas and paxillin was inhibited, indicating that Src signaling was blocked by Tac-β1. These Src-dependent signaling events were found to require FAK signaling. Our results suggest that Tac-β1 inhibits cell spreading, at least in part, by preventing the phosphorylation of FAK at Tyr-397 and the assembly of signaling complexes necessary for phosphorylation of p130Cas and other downstream effectors.  相似文献   

9.
The rat pheochromocytoma cell line PC12 is extensively used as a model for studies of neuronal cell differentiation. These cells develop a sympathetic neuron-like phenotype when cultured in the presence of nerve growth factor. The present study was performed in order to assess the role of mouse GTK (previously named BSK/IYK), a cytoplasmic tyrosine kinase belonging to the Src family, for neurite outgrowth in PC12 cells. We report that PC12 cells stably overexpressing GTK exhibit a larger fraction of cells with neurites as compared with control cells, and this response is not accompanied by an increased ERK activity. Treatment of the cells with the MEK inhibitor PD98059 did not reduce the GTK-dependent increased in neurite outgrowth. GTK expression induces a nerve growth factor-independent Rap1 activation, probably through altered CrkII signaling. We observe increased CrkII complex formation with p130(Cas), focal adhesion kinase (FAK), and Shb in PC12-GTK cells. The expression of GTK also correlates with a markedly increased content of FAK, phosphorylation of the adaptor protein Shb, and an association between these two proteins. Transient transfection of GTK-overexpressing cells with RalGDS-RBD or Rap1GAP, inhibitors of the Rap1 pathway, reduces the GTK-dependent neurite outgrowth. These data suggest that GTK participates in a signaling pathway, perhaps involving Shb, FAK and Rap1, that induces neurite outgrowth in PC12 cells.  相似文献   

10.
11.
Intracellular polyamine levels are highly regulated by the activity of ornithine decarboxylase (ODC), which catalyzes the first rate-limiting reaction in polyamine biosynthesis, producing putrescine, which is subsequently converted to spermidine and spermine. We have shown that polyamines regulate proliferation, migration, and apoptosis in intestinal epithelial cells. Polyamines regulate key signaling events at the level of the EGFR and Src. However, the precise mechanism of action of polyamines is unknown. In the present study, we demonstrate that ODC localizes in lamellipodia and in adhesion plaques during cell spreading. Spermine regulates EGF-induced migration by modulating the interaction of the EGFR with Src. The EGFR interacted with integrin β3, Src, and focal adhesion kinase (FAK). Active Src (pY418-Src) localized with FAK during spreading and migration. Spermine prevented EGF-induced binding of the EGFR with integrin β3, Src, and FAK. Activation of Src and FAK was necessary for EGF-induced migration in HEK293 cells. EGFR-mediated Src activation in live HEK293 cells using a FRET based Src reporter showed that polyamine depletion significantly increased Src kinase activity. In vitro binding studies showed that spermine directly binds Src, and preferentially interacts with the SH2 domain of Src. The physical interaction between Src and the EGFR was severely attenuated by spermine. Therefore, spermine acts as a molecular switch in regulating EGFR-Src coupling both physically and functionally. Upon activation of the EGFR, integrin β3, FAK and Src are recruited to EGFR leading to the trans-activation of both the EGFR and Src and to the Src-mediated phosphorylation of FAK. The activation of FAK induced Rho-GTPases and subsequently migration. This is the first study to define mechanistically how polyamines modulate Src function at the molecular level.  相似文献   

12.
Src-dependent ezrin phosphorylation in adhesion-mediated signaling   总被引:4,自引:0,他引:4       下载免费PDF全文
In addition to providing a regulated linkage between the membrane and the actin cytoskeleton, ezrin participates in signal transduction pathways. Here we describe that expression of the ezrin Y145F mutant delays epithelial cell spreading on fibronectin by inhibiting events leading to FAK activation. The defect in spreading was rescued by the overexpression of catalytically functional Src. We demonstrate that ezrin Y145 is phosphorylated in A431 cells stimulated with epidermal growth factor (EGF) and in v-Src-transformed cells. Moreover in cells devoid of Src, SYF-/- fibroblasts, ezrin Y145 phosphorylation could only be detected upon the introduction of an active form of Src. The phosphorylation of ezrin at Y145 required prior binding of the Src SH2 domain to ezrin. Our results further show that Src activity influences its binding to ezrin and a positive feedback mechanism for Src-mediated Y145 phosphorylation is implied. Interestingly, cells expressing ezrin Y145F did not proliferate when cultured in a 3D collagen gel. Collectively, our results demonstrate a key signaling input of Src-dependent ezrin phosphorylation in adhesion-mediated events in epithelial cells.  相似文献   

13.
Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine kinase involved in integrin-mediated control of cell behavior. Following cell adhesion to components of the extracellular matrix, FAK becomes phosphorylated at multiple sites, including tyrosines 397, 576, and 577. Tyr-397 is an autophosphorylation site that promotes interaction with c-Src or Fyn. Tyr-576 and Tyr-577 lie in the putative activation loop of the kinase domain, and FAK catalytic activity may be elevated through phosphorylation of these residues by associated Src family kinase. Recent studies have implicated FAK as a positive regulator of cell spreading and migration. To further study the mechanism of adhesion-induced FAK activation and the possible role and signaling requirements for FAK in cell spreading and migration, we utilized the tetracycline repression system to achieve inducible expression of either wild-type FAK or phosphorylation site mutants in fibroblasts derived from FAK-null mouse embryos. Using these Tet-FAK cells, we demonstrated that both the FAK autophosphorylation and activation loop sites are critical for maximum adhesion-induced FAK activation and FAK-enhanced cell spreading and migration responses. Negative effects on cell spreading and migration, as well as decreased phosphorylation of the substrate p130(Cas), were observed upon induced expression of the FAK autophosphorylation site mutant. These negative effects appear to result from an inhibition of integrin-mediated signaling by the FAK-related kinase Pyk2/CAKbeta/RAFTK/CadTK.  相似文献   

14.
Src family kinases (SFKs) are crucial for signaling through a variety of cell surface receptors, including integrins. There is evidence that integrin activation induces focal adhesion kinase (FAK) autophosphorylation at Y397 and that Src binds to and is activated by FAK to carry out subsequent phosphorylation events. However, it has also been suggested that Src functions as a scaffolding molecule through its SH2 and SH3 domains and that its kinase activity is not necessary. To examine the role of SFKs in integrin signaling, we have expressed various Src molecules in fibroblasts lacking other SFKs. In cells plated on fibronectin, FAK could indeed autophosphorylate at Y397 independently of Src but with lower efficiency than when Src was present. This step was promoted by kinase-inactive Src, but Src kinase activity was required for full rescue. Src kinase activity was also required for phosphorylation of additional sites on FAK and for other integrin-directed functions, including cell migration and spreading on fibronectin. In contrast, Src mutations in the SH2 or SH3 domain greatly reduced binding to FAK, Cas, and paxillin but had little effect on tyrosine phosphorylation or biological assays. Furthermore, our indirect evidence indicates that Src kinase activity does not need to be regulated to promote cell migration and FAK phosphorylation. Although Src clearly plays important roles in integrin signaling, it was not concentrated in focal adhesions. These results indicate that the primary role of Src in integrin signaling is as a kinase. Indirect models for Src function are proposed.  相似文献   

15.
Cell–matrix adhesion has been shown to promote activation of the hepatocyte growth factor receptor, Met, in a ligand‐independent manner. This process has been linked to transformation and tumorigenesis in a variety of cancer types. In the present report, we describe a key role of integrin signaling via the Src/FAK axis in the activation of Met in breast epithelial and carcinoma cells. Expression of an activated Src mutant in non‐neoplastic breast epithelial cells or in carcinoma cells was found to increase phosphorylation of Met at regulatory tyrosines in the auto‐activation loop domain, correlating with increased cell spreading and filopodia extensions. Furthermore, phosphorylated Met is complexed with β1 integrins and is co‐localized with vinculin and FAK at focal adhesions in epithelial cells expressing activated Src. Conversely, genetic or pharmacological inhibition of Src abrogates constitutive Met phosphorylation in carcinoma cells or epithelial cells expressing activated Src, and inhibits filopodia formation. Interestingly, Src‐dependent phosphorylation of Met requires cell–matrix adhesion, as well as actin stress fiber assembly. Phosphorylation of FAK by Src is also required for Src‐induced Met phosphorylation, emphasizing the importance of the Src/FAK signaling pathway. However, stimulation of Met phosphorylation by addition of exogenous HGF in epithelial cells is refractory to inhibition of Src family kinases, indicating that HGF‐dependent and Src/integrin‐dependent Met activation occur via distinct mechanisms. Together these findings demonstrate a novel mechanism by which the Src/FAK axis links signals from the integrin adhesion complex to promote Met activation in breast epithelial cells. J. Cell. Biochem. 107: 1168–1181, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
The sulfated regions in heparan sulfate and heparin are known to affect fibroblast growth factor (FGF) function. We have studied the mechanism whereby heparin directs FGF-2-induced FGF receptor-1 (FGFR-1) signal transduction. FGF-2 alone stimulated maximal phosphorylation of Src homology domain 2 tyrosine phosphatase (SHP-2) and the adaptor molecule Crk, in heparan sulfate-deficient Chinese hamster ovary (CHO) 677 cells expressing FGFR-1. In contrast, for phospholipase Cgamma(1) (PLCgamma(1)) and the adaptor molecule Shb to be maximally tyrosine-phosphorylated, cells had to be stimulated with both FGF-2 and heparin (100 ng/ml). Tyrosine residues 463 in the juxtamembrane domain and 766 in the C-terminal tail in FGFR-1 are known to bind Crk and PLCgamma(1), respectively. Analysis of tryptic phosphopeptide maps of FGFR-1 from cells stimulated with FGF-2 alone and FGF-2 together with heparin showed that FGF-2 alone stimulated a several-fold increase in tyrosine 463 in the juxtamembrane domain. In contrast, heparin had to be included in order for tyrosine 766 to be phosphorylated to the same fold level. Our data imply that tyrosine 463 is phosphorylated and able to transduce signals in response to FGF-2 treatment alone; furthermore, we suggest that FGFR-1 dimerization/kinase activation is stabilized by heparin.  相似文献   

17.
ADAM15, a disintegrin and metalloproteinase, is capable of counteracting genotoxic stress-induced apoptosis by the suppression of caspase-3 activation. A cell line expressing the membrane-bound ADAM15 without its cytoplasmic tail, however, lost this anti-apoptotic property, suggesting a crucial role of the intracellular domain as a scaffold for recruitment of survival signal-transducing kinases. Accordingly, an enhanced phosphorylation of FAK at Tyr-397, Tyr-576, and Tyr-861 was detected upon genotoxic stress by camptothecin in ADAM15-transfected T/C28a4 cells, but not in transfectants expressing an ADAM15 mutant without the cytoplasmic tail. Accordingly, a specific binding of the cytoplasmic ADAM15 domain to the C terminus of FAK could be shown by mammalian two-hybrid, pulldown, and far Western studies. In cells expressing full-length ADAM15, a concomitant activation of Src at Tyr-416 was detected upon camptothecin exposure. Cells transfected with a chimeric construct consisting of the extracellular IL-2 receptor α-chain and the cytoplasmic ADAM15 domain were IL-2-stimulated to prove that the ADAM15 tail can transduce a percepted extracellular signal to enhance FAK and Src phosphorylation. Our studies further demonstrate Src binding to FAK but not a direct Src interaction with ADAM15, suggesting FAK as a critical intracellular adaptor for ADAM15-dependent enhancement of FAK/Src activation. Moreover, the apoptosis induction elicited by specific inhibitors (PP2, FAK 14 inhibitor) of FAK/Src signaling was significantly reduced by ADAM15 expression. The newly uncovered counter-regulatory response to genotoxic stress in a chondrocytic survival pathway is potentially also relevant to apoptosis resistance in neoplastic growth.  相似文献   

18.
Transforming growth factor beta (TGF-beta) inhibits proliferation and promotes cell migration. In TGF-beta-treated MCF10A mammary epithelial cells overexpressing HER2 and by chromatin immunoprecipitation, we identified novel Smad targets including protein tyrosine phosphatase receptor type kappa (PTPRK). TGF-beta up-regulated PTPRK mRNA and RPTPkappa (receptor type protein tyrosine phosphatase kappa, the protein product encoded by the PTPRK gene) protein in tumor and nontumor mammary cells; HER2 overexpression down-regulated its expression. RNA interference (RNAi) of PTPRK accelerated cell cycle progression, enhanced response to epidermal growth factor (EGF), and abrogated TGF-beta-mediated antimitogenesis. Endogenous RPTPkappa associated with EGF receptor and HER2, resulting in suppression of basal and ErbB ligand-induced proliferation and receptor phosphorylation. In MCF10A/HER2 cells, TGF-beta enhanced cell motility, FAK phosphorylation, F-actin assembly, and focal adhesion formation and inhibited RhoA activity. These responses were abolished when RPTPkappa was eliminated by RNA interference (RNAi). In cells expressing RPTPkappa RNAi, phosphorylation of Src at Tyr527 was increased and (activating) phosphorylation of Src at Tyr416 was reduced. These data suggest that (i) RPTPkappa positively regulates Src; (ii) HER2 signaling and TGF-beta-induced RPTPkappa converge at Src, providing an adequate input for activation of FAK and increased cell motility and adhesion; and (iii) RPTPkappa is required for both the antiproliferative and the promigratory effects of TGF-beta.  相似文献   

19.
We have previously observed that collagen IV regulates Caco-2 intestinal epithelial cell spreading and migration via Src kinase and stimulates Src-dependent tyrosine phosphorylation of p130cas. We observed that collagen IV also stimulated Src-dependent phosphorylation of both paxillin Tyr31 and paxillin Tyr118. Caco-2 transfection with paxillin or p130cas siRNAs inhibited expression of these proteins by more than 90% for at least 5 days after transfection. Although p130cas siRNA inhibited cell spreading on collagen IV by 33%, three different paxillin siRNAs did not inhibit cell spreading. p130cas siRNA did not affect Src Tyr416 or Src Tyr527 phosphorylation, FAK Tyr397 phosphorylation, or Src-dependent phosphorylation of FAK Tyr925, suggesting that p130cas did not inhibit cell spreading by altering FAK or Src activity. Rat p130cas expression after siRNA knock-out of endogenous human p130cas in Caco-2 cells reduced cell spreading inhibition by 71%. In contrast, expression of rat p130cas from which the Src-phosphorylated substrate domain was deleted did not rescue siRNA inhibition of cell spreading. Combined treatment with siRNAs to Crk and CrkL, which bind to the p130cas substrate domain, inhibited cell spreading by 54%. Both p130cas siRNA and the combined Crk/CrkL siRNAs strongly inhibited (52 and 46% inhibition, respectively) Caco-2 sheet migration on collagen IV and noticeably inhibited lamellipodial extension, whereas paxillin siRNA only inhibited migration by 18% and did not noticeably affect lamellipodial extension. These results suggest that Src may regulate Caco-2 migration on collagen IV via both p130cas and paxillin but that Src phosphorylation of p130cas is more important for this process.  相似文献   

20.
Focal adhesion kinase (FAK) is a nonreceptor protein-tyrosine kinase implicated in controlling cellular responses to the engagement of cell-surface integrins, including cell spreading and migration, survival and proliferation. Aberrant FAK signaling may contribute to the process of cell transformation by certain oncoproteins, including v-Src. Progress toward elucidating the events leading to FAK activation following integrin-mediated cell adhesion, as well as events downstream of FAK, has come through the identification of FAK phosphorylation sites and interacting proteins. A signaling partnership is formed between FAK and Src-family kinases, leading to tyrosine phosphorylation of FAK and associated ‘docking’ proteins Cas and paxillin. Subsequent recruitment of proteins containing Src homology 2 domains, including Grb2 and c-Crk, to the complex is likely to trigger adhesion-induced cellular responses, including changes to the actin cytoskeleton and activation of the Ras-MAP kinase pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号