首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PAUL  N. D.; AYRES  P. G. 《Annals of botany》1986,57(3):353-360
Groundsel (Senecio vulgaris L.) was grown in sand culture ata range of nutrient concentrations. Except when nutrient deficiencywas severe, infection by the rust fungus Puccinia lagenophoraeCooke substantially reduced root dry weight but had little effecton root length. Thus, specific root length (SRL, cm root mg–1d. wt) was significantly increased in rust-infected plants.The inhibition of root dry weight caused by rust infection wasmost pronounced late in development, especially after floweringwhen, in control plants, root elongation but not dry weightaccumulation ceased. In rusted plants, and in all plants subjectedto severe nutrient deficiency, dry weight accumulation in theroots ceased concurrently with root elongation. Late in developmentat high nutrient concentration adventitious roots with low SRLswere produced. However, infection did not modify the productionof such roots and increases in SRL could not be attributed tochanges in any single type of root. There was an inverse relationship between SRL and root diameter.This relationship was unaffected by rust infection whilst nutrientdeficiency changed only its intercept: at a given SRL rootsof nutrient stressed plants were thinner than those of plantswith adequate nutrient supply. Thus, the smaller diameter ofroots of nutrient-stressed plants occurred independently ofmeasured changes in SRL but, in the absence of nutrient stress,the decrease in root diameter caused by rust was closely relatedto increases in SRL. Changes in the root: length relationships in rusted plants mayhave important implications for root activity in the field.In view of the reported changes in SRL, inhibition of root growthin terms of dry weight may be a poor indicator of potentialchanges in activity. Senecio vulgaris, rust infection, nutrient deficiency, root weight: length ratio, root diameter  相似文献   

2.
PAUL  N. D.; AYRES  P. G. 《Annals of botany》1986,58(3):321-331
Groundsel (Senecio vulgaris L.), healthy or infected with therust fungus Puccinia lagenophorae Cooke, was grown at a rangeof nutrient concentrations in sand culture. There were statisticallysignificant interactions between the effects of infection andnutrient supply upon the dry weights of stems, leaves, rootsand reproductive tissues, leaf area and cumulative capitulumproduction. This interaction occurred since infection causedsignificant inhibitions of growth only at moderate or high nutrientconcentrations. At low concentrations rusted plants were similarto or slightly larger than controls. Both in controls and rustedplants root: shoot ratios increased as nutrient supply declined.The ratio of root: shoot dry weight was consistently reducedby infection whilst root length: leaf area ratio was relativelyunchanged. More detailed investigations confirmed that infection had littleeffect on plant growth under nutrient deficient conditions despitesuppression of the host's ability to increase root: shoot ratiosin response to nutrient stress. This reflected the inhibitionof relative growth rates in rusted plants at high but not lownutrient concentrations, which in turn reflected reduced netassimilation rates (NAR). Increases in leaf-area ratio (LAR)often ameliorated the decline in NAR in rusted plants. Senecio vulgaris L., Puccinia lagenophorae Cooke, nutrient deficiency, growth, root: shoot ratio  相似文献   

3.
PAUL  N. D.; AYRES  P. G. 《Annals of botany》1988,61(4):489-498
Groundsel (Senecio vulgaris L.), healthy or infected with therust fungus Puccinia lagenophorae was grown in sand and fedwith a complete nutrient medium diluted to give a range of concentrations.Analysis of bulked, dried tissues of the plant showed that undernutrient-rich conditions rust infection resulted in increasedconcentrations of total (Kjeldahl) nitrogen and potassium buthad little effect on phosphorus concentration. Thus, despitereduced dry weight growth, total plant nitrogen contents wereno less in rusted than control plants. Although total contentsof phosphorus and potassium were reduced by rust, effects wereprobably related to loss of these nutrients in fungal spores. Interactions between rust infection and nutrient supply weresignificant but differed between nutrients: rust caused increasednitrogen concentrations only under nutrient-rich conditionsbut increased phosphorus concentrations only when nutrient supplywas limited. Increased concentrations were not confined to infectedtissues. Mechanisms underlying rust-nutrient interactions appearto be complex and to depend inter alia on the partitioning andrecycling of the particular nutrient within the plant. Rust-inducedincreases in potassium concentration occurred under both highand low nutrient conditions but were confined to infected tissues.Potassium accumulation in nutrient deficient conditions wasprobably due to increased transpirational flux into infectedtissues, but under nutrient-rich conditions reduced potassiumexport appeared to assume greater significance. The possible implications of the changed nutrient relationsfor the wider interactions of rust-infected plants in naturalvegetation are discussed. Senecio vulgaris, Puccinia lagenophorae, rust infection, nutrient deficiency, nutrient content, nutrient concentration, nutrient distribution  相似文献   

4.
PAUL  N. D.; AYRES  P. G. 《Annals of botany》1988,61(4):499-506
Groundsel (Senecio vulgaris), healthy or infected with rust,Puccinia lagenophorae, was grown at a range of nutrient concentrationsin sand culture. Specific absorption rates calculated on thebasis of root dry weight (SARW) were greater in rusted thancontrol groundsel for nitrogen, potassium and phosphorus. Whilethe magnitudes of these stimulations varied, they occurred acrossthe whole range of nutrient concentrations. By contrast, specificabsorption rate on the basis of root length (SARL) were littlechanged by rust at any external nutrient concentration; SARLfor phosphate and potassium were slightly reduced when nutrientswere freely available. Water flux per unit dry root weight and length was stimulatedby rust because transpiration per unit leaf area was more rapidin infected plants after fungal sporulation. However, water-fluxand the rate of uptake of nutrients were correlated only whenexpressed on the basis of root weight and increased transpirationdid not appear to be the mechanism underlying increased rootactivity. Rather, increased SARW for N, P and K could very largelybe attributed to increased shoot demand per unit root, whichresulted from the higher shoot: root (S: R) ratios of infectedindividuals. Changes in S: R accounted for 92, 81 and 57% oftotal variation in SARW for K, P and N respectively. Greatervalues for SARW were possible because specific root length (SRL)increased, producing more functional root per unit root weight.The lack of stimulation in SARL in response to rust could beexplained since the higher SRL of infected plants resulted instable values of shoot weight per unit root length, i.e. shootdemand was not increased by infection on this basis. Senecio vulgaris, Puccinia lagenophorae, rust infection, nutrient uptake, water uptake, shoot: root interactions  相似文献   

5.
Soluble sugars were extracted by low speed centrifugation fromthe apoplast of leaves of barley (Hordeum distichum L.) infiltratedwith water. Infection of the leaf with the brown rust fungus(Puccinia hordeii) resulted in a reduction in the concentrationof sucrose, glucose and fructose in the apoplast. Sugars werepresent in an apoplastic space occupying 12 and 17 cm3 m–2of leaf area in healthy and infected tissue, respectively. Uptakeof hexoses by intercellular hyphae is suggested as a cause ofthis reduction. The pH of apoplastic sap extracted from rust-infectedleaves was increased to pH 7·3 from pH 6·6 incontrols. The effect of a reduced apoplastic sugar pool andincreased pH on export from infected leaves is discussed. Key words: Apoplast, barley (Hordeum distichum L.), brown rust (Puccinia hordeii Otth.), pH, sucrose, hexose  相似文献   

6.
Chloroplast preparations from the young primary leaves of Phaseolusvulgaris L. cv. Canadian Wonder carry out the DNA-dependentincorporation of UTP into RNA at rates between 8 and 14 pmolUTP µg–1 chlorophyll h–1. It is estimatedthat 90% of the activity was localized in the chloroplasts.The incorporation proceeded for between 20 and 30 min at 35°C. The maximum rates of RNA synthesis were attained atpH 8.3, in the presence of 15 mM MgCl2. Chloroplasts were alsoactive, to a lesser extent, with 1.5 mM MnCl2. The simultaneouspresence of MnCl2 and MgCl2 resulted in inhibition of activity.Nuclear material prepared from young P. vulgaris leaves incorporatedUTP at a rate of about 12 pmol UTP µg–1 DNA h–1.On a chloroplast (Tritonsoluble) DNA basis chloroplast activitywas over 40-fold that of nuclei. Methods of solubilizing chloroplastRNA polymerase were explored. Yields of over 75% were achieved,but methods suitable for one species were not always successfulwhen applied to another. The highest yields of the P. vulgarisenzyme were obtained using EDTA and KCl. All methods resultedin solubilization of DNA. RNA synthesis by the soluble P. vulgarisenzyme proceeded for more than 40 min at 35 °C.  相似文献   

7.
Differential Thermal Analysis of hydrated lettuce cv. GreatLakes achenes using a rapid cooling rate (20 °C h–1)produced two exotherms per achene. Both exotherms representedthe freezing of supercooled water. The high temperature exothermoccurred at –93 °C and was produced by freezing ofwater inside the pericarp but exterior to the endosperm. Thetemperature at which it occurred could be altered by the additionof nucleating agents. The low temperature exotherm produced by freezing of the embryooccurred at –162 °C and marked the death of the seed.Its temperature was not changed by the addition of nucleatingagents but its occurrence required the structural integrityof the endosperm. At low cooling rates (1 and 2 °C h1)low temperature exotherms were not recorded and samples removedat –25 °C had high viability. Slow cooling causeda redistribution of water within the seed whereby ice formingoutside the endosperm caused desiccation of the embryo and preventedits freezing. A mechanism is proposed, in terms of established supercoolingand nucleation theory, to explain the observed results and thevalue of freeze tolerance to the species in its natural habitatis discussed. Cooling rate, differential thermal analysis, freezing avoidance, Lactuca sativa L., lettuce, seed, supercooling, water migration  相似文献   

8.
In June 2004, a rust fungus not previously reported for Oklahoma was found occurring naturally on the weed, common groundsel, Senecio vulgaris, in pots in a commercial container nursery in northeastern Oklahoma. Host symptoms and morphology of teliospores and aeciospores of the fungus were consistent with those of Puccinia lagenophorae, a recent introduction into North America that has, as yet, been reported only on the East and West Coasts of the USA. This is the first report of the rust in central regions of North America. The rust is believed to be native to Australia and New Zealand and subsequently reported in most continents on numerous species and genera of the Asteraceae. Some authors in Europe consider the rust on Bellis as different from the one on Senecio, naming it Puccinia distincta. Our ITS1‐5.8S‐ITS2 ribosomal DNA sequence data, however, show homology with P. distincta sequences from Europe, indicating there is only one morphologically‐variable polyphagous species. Presumably, the rust was introduced into Oklahoma on infected plants from the West Coast of the USA, the source of most plant material in the commercial nursery where it was found. The rust is potentially important on several ornamental Asteraceae in North America as it has become in Europe, where it spreads rapidly throughout that continent following its introduction there in the early 1960s.  相似文献   

9.
10.
《Biological Control》2001,20(2):160-166
The herbicides 2,4-D, glyphosate, linuron, and MCPP at rates of 1X (recommended field rate), 0.25X, 0.025X, and 0.0125X were evaluated in vitro for their effects on the rust fungus Puccinia lagenophorae, a biocontrol agent for the annual weed Senecio vulgaris. Herbicides applied at 1X and 0.25X completely prevented aeciospore germination. Glyphosate was toxic even at 0.0125X and 0.025X. Aeciospores germinated in linuron, 2,4-D, and MCPP at 0.025X and 0.0125X at rates similar to the water control. Abnormal germ-tube growth was observed with 2,4-D at 0.25X and 0.025X, with linuron at 0.025X, and with glyphosate at 0.0125X. Further in planta studies were perfomed with two inbred lines of S. vulgaris inoculated with aeciospores of P. lagenophorae and treated with water, linuron, and 2,4-D at 0.025X at different times of application. Quantitative analysis of the infection process revealed that both herbicides reduced spore deposition on the leaves and altered leaf morphology. The herbicides had no effect on disease severity at this low rate although linuron significantly reduced the formation of infection peg. Timing of herbicide application had no influence on the infection process, and the effect of the herbicides on fungal development did not differ between the two plant lines. Thus, the herbicides applied at 0.025X did not increase plant susceptibility to the rust fungus, and the rates of 1X, 0.25X, and 0.025X would prevent, inhibit, or delay fungal development. Therefore, joint application of P. lagenophorae with these herbicides to control S. vulgaris cannot be recommended.  相似文献   

11.
Cold hardiness in actively growing plants of Saxifraga caespitosaL., an arctic and subarctic cushion plant, was examined. Plantscollected from subarctic and arctic sites were cultivated ina phytotron at temperatures of 3, 9, 12 and 21 °C undera 24-h photoperiod, and examined for freezing tolerance usingcontrolled freezing at a cooling rate of 3–4 °C eitherin air or in moist sand. Post-freezing injury was assessed byvisual inspection and with chlorophyll fluorescence, which appearedto be well suited for the evaluation of injury in Saxifragaleaves. Freezing of excised leaves in moist sand distinguishedwell among the various treatments, but the differences werepartly masked by significant supercooling when the tissue wasfrozen in air. Excised leaves, meristems, stem tissue and flowerssupercooled to –9 to –15 °C, but in rosettesand in intact plants ice nucleation was initiated at –4to –7 °C. The arctic plants tended to be more coldhardy than the subarctic plants, but in plants from both locationscold hardiness increased significantly with decreasing growthtemperature. Plants grown at 12 °C or less developed resistanceto freezing, and excised leaves of arctic Saxifraga grown at3 °C survived temperatures down to about –20 °C.Exposure to –3 °C temperature for up to 5 d did notsignificantly enhance the hardiness obtained at 3 °C. Whenwhole plants of arctic Saxifraga were frozen, with roots protectedfrom freezing, they survived –15 °C and –25°C when cultivated at 12 and 3 °C, respectively, althougha high percentage of the leaves were killed. The basal levelof freezing tolerance maintained in these plants throughoutperiods of active growth may have adaptive significance in subarcticand arctic environments. Saxifraga caespitosa L., arctic, chlorophyll fluorescence, cold acclimation, cushion plant, freezing stress, freezing tolerance, ice nucleation, supercooling  相似文献   

12.
ABA Levels and Effects in Chilled and Hardened Phaseolus vulgaris   总被引:3,自引:0,他引:3  
Leaf abscisic acid (ABA) levels of chilled P. vulgaris weremeasured after 18 h chilling at 5°C, at a saturation deficitof 1.24 g m–3 (SD), and after chilling in a water-saturatedatmosphere. Changes were also followed during a chill hardeningperiod of 4 d at 12°C, 2.1 g m–3 SD. It was foundthat hardening resulted in an almost 5. fold increase in ABAlevels after 3 d at 12°C, and this decreased to approximatelycontrol levels on the fourth day. Subsequent chilling of hardenedplants produced no change in ABA levels from that of controlplants (22° C). In contrast, non-hardened plants chilledat 1.24 g m–3 SD had ABA levels almost 3 times the levelof control plants. However, chilling in a water-saturated atmosphereresulted in a decrease in ABA levels. In addition, the response of leaf diffusion resistance (LDR)to exogenous ABA fed via the transpiration stream was measuredat 5 ° C and 22° C in hardened and non-hardened plants.Use of tritium-labelled ABA was made to calculate the stomatalsensitivity to ABA. It was found that exogenous ABA caused anincreased in LDR at 22°C in both hardened and non-hardenedplants. However, the sensitivity of the hardened plants to ABAwas greater in terms of rate of closure and amount of ABA requiredto close the stomata. At 5°C, however, ABA caused stomatalopening and the maintainance of open stomata in non-hardenedplants. In hardened plants, ABA caused stomatal closure at 5°C.These results are discussed in relation to the locking-openresponse of chilled P. vulgaris stomata. Key words: Chilling, Stomata, ABA, Phaseolus vulgaris  相似文献   

13.
Solutions of oestrone, oestrone-phosphate, oestrone-sulphate,oestradiol and oestradiol-sulphate in the concentration range10–3 mol m–3 to 10–7 mol m–3 had noobservable morphological or anatomical effects on adventitiousroot formation in Phaseolus vulgaris hypocotyl, epicotyl andprimary leaf cuttings. Oestradiol-sulphate and oestrone-sulphatetreatments at 0.1 mol m–3 significantly inhibited rootingin hypocotyls, and the inhibition was almost complete in epicotylsand primary leaves. In the latter, anomalous development ofvascular tissues was noted. However, neither oestrone-phosphateat 0.1 mol m–3 nor direct application of up to 100 µgof the oestrogens to apices or primary leaves of explants modifiedthe pattern of root formation. The results are discussed withreference to the distributive and metabolic fates of the appliedsubstances. Phaseolus vulgaris L., bean, adventitious roots, steroidal oestrogens, translocation  相似文献   

14.
Excised florets of some hardy Rhododendron species did not toleratefreezing at –5°C when ice-inoculated due to intracellularfreezing. Florets in intact December buds, however, could besupercooled to about –30°C. When flower buds of R.japonicum were slowly cooled with daily decrements of 5°Cto temperatures ranging from 0 to –20°C, the exothermtemperatures of the florets drastically decreased. This wasaccompanied by a decrease in water content of florets and peduncleand an increase in that of scales. The water in florets andthe peduncle is thought to migrate to scales and other tissuesduring the early stages of freezing; the dehydrated floret hasa lower freezing point which enhances its supercooling abilityand the dehydrated peduncle helps to maintain the supercooledstate of the florets. This hypothesis would explain the dependenceon the cooling rate of supercooling in Rhododendron flower buds.Water migration within flower buds was observed in other hardyRhododendron species with some variation in ice formation siteand the quantity of migrated water. The exotherm temperatureof excised florets was inversely proportional to their watercontent. Dehydration of flower buds by wind at 0°C alsoenhanced their supercooling ability. Mechanisms of freezingavoidance by supercooling in Rhododendron flower buds and therelationship of supercooling to freezing tolerance are discussed. 1 Contribution No. 2254 from the Institute of Low TemperatureScience 2 This is a revised form of the master's thesis of the seniorauthor (M.I.) which is cited in the present and previous papers(Sakai 1979a, b, etc.). (Received August 11, 1980; Accepted June 1, 1981)  相似文献   

15.
Groundsel (Senecio vulgaris) was grown in either a warm (20°C) or a cool (8°C) controlled environment and infected with Puccinia lagenophorae. Dark respiration, measured over the range 6 to 18°C, was higher in leaves of healthy plants grown under low temperatures than in those of plants grown under high temperatures. Infection increased the rates of dark respiration in the region of sporulating lesions in both sets of plants, but the greater increase in plants grown under warm conditions resulted in both sets having similar respiration rates across the range 6 to 18°C. The conclusion that the magnitude of the respiratory increase following rust infection depends upon the conditions under which plants were grown is supported by literature on other rust diseases and has implications for the utilization of carbohydrate reserves and the survival of both rust and host populations over winter.  相似文献   

16.
Photosynthetic acclimation was examined by exposing third trifoliolateleaves of soybeans to air temperatures of 20 to 30°C andphotosynthetic photon flux densities (PPFD) of 150 to 950µmolphotons m–2 s–1 for the last 3 d before they reachedmaximum area. In some cases the environment of the third leafwas controlled separately from that of the rest of the plant.Photosynthesis, respiration and dry mass accumulation were determinedunder the treatment conditions, and photosynthetic capacity,and dry mass and protein content were determined at full expansion.Photosynthetic capacity, the light-saturated rate of net carbondioxide exchange at 25°C and 34 Pa external partial pressureof carbon dioxide, could be modified between 21 and 35 µmolCO2 m–2 s–1 by environmental changes after leaveshad become exporters of photosynthate. Protein per unit leafmass did not differ between treatments, and photosynthetic capacityincreased with leaf mass per unit area. Photosynthetic capacityof third leaves was affected by the PPFD incident on those leaves,but not by the PPFD on other leaves on the plant. Photosyntheticcapacity of third leaves was affected by the temperature ofthe rest of the plant, but not by the temperature of the thirdleaves. Photosynthetic capacity was linearly related to carbondioxide exchange rate in the growth regimes, but not to daytimePPFD. At high PPFD, and at 25 and 30°C, mass accumulationwas about 28% of the mass of photosynthate produced. At lowerPPFD, and at 20°C, larger percentages of the photosynthateproduced accumulated as dry mass. The results suggest that photosynthatesupply is an important factor controlling leaf structural growthand, consequently, photosynthetic acclimation to light and temperature. Key words: Glycine max (L.) Merr., photosynthesis, temperature acclimation, light acclimation, photosynthate partitioning  相似文献   

17.
HEUER  BRURIA; PLAUT  Z. 《Annals of botany》1981,48(3):261-268
The influence of salinity in the growing media on ribulose-1,5-bisphosphate (RuBP) carboxylase and on CO2 fixation by intactsugar beet (Beta vulgaris) leaves was investigated. RuBP carboxylase activity was mostly stimulated in young leavesafter exposure of plants for 1 week to 180 mM NaCl in the nutrientsolution. This stimulation was more effective at the higherNaHCO2 concentrations in the reaction medium. Salinity also enhanced CO2 fixation in intact leaves mostlyat rate-limiting light intensities. A 60 per cent stimulationin CO2 fixation rate was obtained by salinity under 450 µEm–2 s–1. At quantum flux densities of 150 µEm–2 s–1 (400–700 nm) this stimulation was280 per cent. Under high light intensities no stimulation bysalinity was found. In contrast, water stress achieved by directleaf desiccation or by polyethylene glycol inhibited enzymeactivity up to fourfold at –1.2 MPa. Beta vulgaris, sugar beet, ribulose-1, 5-bisphosphate carboxylase, salt stress, water stress, carbon dixoide fixation, salinity  相似文献   

18.
Excised embryos of Phaseolus vulgaris incubated in a mediumcontaining 10 mg dm–3 farnesol showed enhanced root growthwhereas the leaves remained rudimentary At lower concentrationsof exogenous farnesol normal leaf development occurred and rootgrowth was comparable to untreated cultures. Enhanced root growthalso occurred when excised embryos of Hordeum vulgare were treatedwith farnesol but only at 10 mg dm–3 and this treatmentdid not prevent leaf growth X-ray micro-probe analysis of leavesrevealed an increased phosphorus content in P vulgaris and adecreased sulphur content in H vulgare in comparison to untreatedplants. Hordeum vulgare L., barley, Phaseolus vulgaris, bean, embryo culture, farnesol, X-ray microprobe analysis, root growth  相似文献   

19.
Low temperature tolerance was investigated in the imbibed seedof 15 seed lots compnsmg seven cultivars of Lactuca sativa L.During rapid cooling (20 °C h–1) some seeds of allseed lots survived to –16 °C but none to –20°C. The majority of seed lots retained over 50 per centviability above –14 °C due to isolation of the embryofrom external ice by the endosperm, and subsequent embryo super-cooling.Certain seed lots, including all three seed lots of cv. TomThumb, showed high mortality at temperatures above –10°C. Correlation of mortality with the formation of externalice suggested that the endosperm is not an effective nucleationbarrier in these seed lots. Survival to –20 °C was increased at slower coolingrates (6 to 1 °C h–1) due to freeze desiccation ofthe embryo, but seed lots varied considerably in their toleranceof specific cooling rates. A model to explain this variationwas developed incorporatmg (1) seed lot super-cooling limittemperature, (2) the rate at which freeze dehydration of thesupercooled embryo took place, (3) the moisture content at whichnucleation (at –20 °C) was no longer certain and (4)the.initial equilibrium moisture content of the fully imbibedseed. Factors (1), (2) and (3) were found to be relatively constant,but low (or artificially reduced) seed moisture content wasclosely correlated with high survival at natural cooling rates.Seed size fractions of similar moisture content from a singlecultivar showed that more small seeds survive cooling at 3 °Ch–1 to –20 °C than larger seed. Seed with pierced endosperms or ineffective nucleation barrierswere capable of surviving to at least –10 °C if cooledslowly (1 °C h–1) but were killed by rapid (20 °Ch–1) cooling. Lactuca sativa L, lettuce, seed germination freezing tolerance, super-cooling  相似文献   

20.
Plants of the C4 sedge Cyperus longus L. were grown at 10, 20and 30 °C. An asymptotic growth curve, the Richards function,was fitted to growth data for successive leaves. The mean rateof leaf appearance was a linear function of temperature with0.014 leaves appearing per day for every 1 °C increase intemperature. The instantaneous relative rate of leaf extensionshowed a marked ontogenetic drift which was most rapid at 30°C and slowest at 10 °C. The mean absolute extensionrate for foliage had a temperature coefficient of 0.16 cm d–1° C–1 in the range from 10 to 30 °C. The durationof leaf growth was independent of leaf number at 10 and 20 °Cbut increased linearly with leaf number at 30 °C. The smalldifferences in relative growth rate at the three temperaturesresulted in large differences in foliage area produced at theend of a 30 d growth period. The final foliage areas at 20 and10 °C were 51 and 9% respectively of that at 30 °C. Cyperus longus, temperature, leaf growth, Richards function, growth analysis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号