首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron spin resonance studies of erythrocyte membranes from patients with Huntington's disease and normal controls have been performed. Intact erythrocytes in each case were either untreated or subjected to proteolysis with the membrane impermeable enzymes, pronase, chymotrypsin, or trypsin. Membrane ghosts were prepared from untreated and protease-treated intact cells and spin labeled with protein- or lipid-specific spin probes. Comparison of the resulting electron spin resonance spectra confirmed our previous findings that in untreated samples the relevant parameter of the protein-specific spin label was increased in Huntington's disease (P < 0.02) suggesting an altered physical state of membrane proteins in this disorder, while no difference in erythrocyte lipid fluidity could be discerned. No significant difference in the physical state of membrane proteins in Huntington's disease and control as judged as spin labeling methods could be detemined in membrane ghosts prepared from protease-treated intact cells. These results, together with the known specificity of the proteases used in this study, suggest that a molecular defect in Huntington's disease erythrocytes is manifested in an exterior part of a membrane protein and supports our hypothesis that Huntington's disease is associated with a generalized cell membrane defect.  相似文献   

2.
In this study we examined the effect of carnitine and acetylcarnitine on the human erythrocyte membrane stability and membrane deformability. Since erythrocyte membranes are impermeable to these compounds, we resealed erythrocyte ghosts in the presence of different concentrations of carnitine or acetylcarnitine. Resealed ghosts can be adequately studied in their cellular deformability and membrane stability properties by means of ektacytometry. Both carnitine and acetylcarnitine alter the membrane stability but not membrane deformability of the red cell membrane. Resealed ghosts containing 20, 50, 150, and 300 microM carnitine had 1.1, 1.6, 0.9, and 0.7 times the normal stability. While resealed ghosts containing 20, 50, 150, and 300 microM acetylcarnitine had 1.1, 1.5, 1.3, and 1.2 times the normal stability. Such changes were found to be reversible. We also conducted SDS PAGE of cytoskeletal membrane proteins from membrane fragments and residual membranes produced during membrane stability analysis, and unsheared resealed membranes in those samples where we observed an increase or a decrease of membrane stability. No changes in the cytoskeletal membrane proteins were noticed, even when the samples, prior SDS PAGE analysis, were treated with or without dithiothreitol. In addition, fluorescence steady state anisotropy of DPH in the erythrocyte membrane treated with carnitine or acetylcarnitine shows no modification of the lipid order parameter. Our results would suggest that both carnitine and its acetyl-ester, at physiological concentrations, may increase membrane stability in mature erythrocytes, most likely via a specific interaction with one or more cytoskeletal proteins, and that this effect would manifest when the erythrocytes are subjected to high shear stress.  相似文献   

3.
Electron paramagnetic resonance employing a lipid-specific spin label has been used to investigate the molecular effects of endotoxin on the physical state of bilayer lipids in rat erythrocyte membranes. When added at a concentration as low as 40 μg/ml to whole blood (plasma plus leukocytes present), decreased membrane lipid motion was found in subsequently washed and spin-labeled intact erythrocytes (P < 0.02). However, if endotoxin were added to washed, plasma plus leukocyte-free intact erythrocytes, no change in the motion of the spin label was found, suggesting that plasma-soluble substances and/or leukocytes are required to produce the change in the physical state of lipids. The decreased lipid motion found in these studies is discussed with reference to the known decreased deformability of endotoxin-treated red cells and to the pathogenesis of sepsis.  相似文献   

4.
Parallel experiments employing sialic acid- and protein specific spin labels have been performed to monitor the effects on the physical state of this carbohydrate and membrane proteins of human erythrocytes induced by the binding of three lectins, Phaseolus vulgaris phytohaemagglutinin (PHA), wheat germ agglutinin (WGA), and Concanavalin-A (Con-A). PHA and WGA, both of which are known to bind at different sites on the principal sialoglycoprotein of human erythrocytes, glycophorin, had markedly different effects: compared to control values, PHA decreased the apparent correlation time of the sialic acid specific spin probe by 10% while this parameter was decreased by 33% by WGA. The protein specific spin label also monitored differential effects of these lectins: the relevant electron spin resonance parameter (the W/S ratio) was reduced 33% by PHA and increased by WGA over 17% from that of control values. Con-A, which is known to bind to the principal transmembrane protein, Band 3, had no effect on sialic acid or membrane proteins as assessed by the two spin labels employed. These results suggest that (1) the effects of binding of these different lectins, two of which bind to the same cell surface receptor, can be discriminated by use of spin labeling methods; (2) binding events occuring at the cell surface have distinct and pronounced effects on the physical state of proteins within the membrane; (3) the different results with PHA and WGA both of which bind to glycophorin are indicative of multiple and complex interactions of this glycoprotein with the membrane proteins in the erythrocyte; and (4) that the spin labelling technique has the potential to investigate the relationships between cell-surface binding events to membrane structural-functional interactions.  相似文献   

5.
The normal deformability of erythrocytes plays an important role in ensuring blood mobility, erythrocyte longevity, and microcirculation, which is the ability of erythrocytes to change shapes in response to external forces. However, the effects of curcumin extracts on the deformability of erythrocytes have not yet been evaluated. Accordingly, in this study, we explored the effects of pre-treatment with curcumin extract on erythrocyte deformation and erythrocyte band 3 (SLC4A1; EB3) expression. We also evaluated the associations between EB3 expression and erythrocyte deformability induced by hydrogen peroxide. Blood samples were divided into the control group, pre-treatment group (treated with curcumin extract or vitamin C), and negative control group, and oxidant stress parameters, antioxidant status, erythrocyte deformability and elasticity, and EB3 modifications were evaluated using immunoblotting and immunofluorescence staining. Hydrogen peroxide significantly increased oxidative stress parameters, modulus elasticity values and clustered EB3 levels and induced conjugation of membrane proteins to form high-molecular-weight complexes (p < 0.05). Erythrocyte deformability and elasticity were significantly decreased in the treated groups compared with those in the control group. Overall, our findings suggested that pre-treatment with curcumin extracts increased antioxidant status, reduced EB3 cross-linking, and improved erythrocyte deformability, to an even better extent than vitamin C. These results provide important insights into the effects of treatment with curcumin extracts on erythrocyte damage and suggest that curcumin may have applications in antioxidant therapy.  相似文献   

6.
The interaction of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) with erythrocyte membranes from patients with Huntington disease and normal controls has been studied by electron spin resonance. GABA affects the physical state of erythrocyte membrane proteins in control and Huntington disease differently. In addition, after exposure of spin-labeled Huntington disease erythrocyte membranes to 0.1 mM GABA, the relevant electron spin resonance parameters reflecting the physical state of membrane proteins are indistinguishable from those of untreated control membranes. These findings support the concept that this disease is associated with a generalized membrane defect.  相似文献   

7.
Comparison of electron spin resonance spectra of spin labeled erythrocyte membranes from patients with the dystrophic conditions Duchenne and myotonic muscular dystrophy with those of normal controls suggests that alterations in membrane protein conformation and/or organization are present in these disease states. These protein alterations are not apparent in the non-dystrophic disease congenital myotonia. The results suggest a correlation between changes in the physical state of proteins in membranes with the presence of dystrophy. In addition, the present results from erythrocytes lend support for the concept of a generalized membrane defect in these diseases.  相似文献   

8.
The Ca2+-induced loss of deformability in human erythrocytes and the recovery of the lost deformability by stomatocytogenic reagents were investigated by means of a new flow electron paramagnetic resonance (EPR) spin label method, which provides information on deformation and orientation characteristics of spin labeled erythrocytes in shear flow. The Ca2+-induced loss of deformability is attributed mainly to the increase in intracellular viscosity resulting from efflux of intracellular potassium ions and water (Gardos effect). Partial recovery of the lost deformability is demonstrated in the presence of stomatocytogenic reagents, such as chlorpromazine, trifluoperazine, W-7, and calmidazolium (R24571). The recovery can not be explained solely by suppression of the Gardos effect due to the reagents. Incorporation of an optimal amount of the reagents into the membrane appears to compensate for the membrane modification due to Ca2+ ions to restore a part of the lost deformability.  相似文献   

9.
Summary Erythrocytes from myotonic goats, an animal model of heritable myotonia, and normal goats were studied using electron paramagnetic resonance (EPR) and saturation transfer electron paramagnetic resonance (ST-EPR) spin labeling techniques. Three fatty acid spin labels with the nitroxide moiety at progressively greater distances from the carboxyl group were used to monitor different regions within the erythrocyte membrane. Since spin labels have been shown to induce hemolytic and morphologic alterations in erythrocytes, conditions for minimizing these alterations were first defined by hemolysis studies and scanning electron microscopy. Using these defined conditions for our studies we observed no significant differences in any of the EPR or ST-EPR parameters for normal and myotomic goat erythrocytes with any of the fatty acid spin labels used. Our results do not support the theory that myotonia is the result of a generalized membrane defect characterized by increased membrane fluidity as determined by fatty acid spin labels.  相似文献   

10.
Erythrocyte membranes from multiple sclerosis (MS) patients and normal individuals were studied by electron spin resonance spectroscopy, osmotic fragility tests, scanning electron microscopy (SEM) and fatty acid analysis of membrane lipids. There was no significant difference in the membrane fluidity between MS and normal erythrocytes using fatty acid spin labels with the nitroxide moiety on carbons 5, 12, or 16 from the carboxyl group. Linoleic acid, which has been reported to decrease the absolute electrophoretic mobility of only MS erythrocytes, increased the fluidity of MS and normal erythrocyte membranes to a similar extent. The osmotic fragility of MS erythrocytes obtained from outpatients was similar to normal control cells but the osmotic fragility of erythrocytes obtained from hospitalized MS patients was greater than normal. Scanning electron microscopy of MS erythrocytes revealed no gross abnormalities. Cells incubated with linoleic acid had transformed from discocytes into sphero-echinocytes with prominent membrane surface indentations but MS and normal erythrocytes appeared identical. Of the fatty acid content of the total lipid extract, erythrocytes from most, but not all, MS hospitalized patients and some patients with other demyelinating diseases had relatively less (P<.001) 18:2 than the normal cells. These results indicate that at least some of the abnormalities reported in MS erythrocytes may only be found in hospitalized patients and may be due to other complications of the disease. They also indicate that the reported abnormal effects of linoleic acid on the electrophoretic mobility of MS erythrocytes may be caused by some other mechanism than an effect on the fluidity of the bilayer.  相似文献   

11.
Electron spin resonance studies of erythrocyte membranes from patients with Duchenne muscular dystrophy exhibit changes in the physical state of lipids and proteins in membranes when compared to membranes from normal subjects. The results suggest that the alterations in membrane lipid-protein organization are present in this disease.  相似文献   

12.
Erythrocyte ghosts, prepared from rats fed zinc-deficient diets, were analyzed for the mobility of membrane proteins by electron spin resonance spectroscopy of the sulfhydryl-binding spin probe, 4-maleimido-2,2,6,6-tetramethylpiperidine-N-oxyl. Compared with erythrocyte membranes from rats fed zinc-adequate diets ad libitum or pair-fed, erythrocyte membranes from zinc-deficient rats had a significantly increased ratio of weakly immobilized to strongly immobilized probe-binding proteins. This suggests that dietary zinc deficiency causes a conformational change in erythrocyte membrane proteins. Dietary zinc deficiency did not significantly affect N-ethylmaleimide (NEM)-induced thermal sensitivity or NEM-induced mechanical fragility in rat erythrocytes; however, the addition of zinc in vitro to red cells significantly inhibits NEM-induced mechanical fragility.  相似文献   

13.
The oxidized low-density lipoprotein (Ox-LDL) plays an important role in atherosclerosis, yet it remains unclear if it damages circulating erythrocytes. In this study, erythrocyte deformability and its membrane proteins after Ox-LDL incubations are investigated by micropipette aspiration, thiol radical measurement, and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Results show that Ox-LDL incubation reduces the erythrocyte deformability, decreases free thiol radical contents in erythrocytes, and induces the cross-linking among membrane proteins. SDS-PAGE analysis reveals a high molecular weight (HMW) complex as well as new bands between spectrins and band 3 and reduced ratios between band 3 and other major membrane skeletal proteins. Analyses indicate that Ox-LDL makes erythrocytes harder to deform through a molecular mechanism by which the oxidation of free thiol radicals forms disulfide bonds among membrane skeletal proteins.  相似文献   

14.
Skeletal proteins play an important role in determining erythrocyte membrane biophysical properties. To study whether membrane deformability and stability are regulated by the same or different skeletal protein interactions, we measured these two properties, by means of ektacytometry, in biochemically perturbed normal membranes and in membranes from individuals with known erythrocyte abnormalities. Treatment with 2,3-diphosphoglycerate resulted in membranes with decreased deformability and decreased stability, whereas treatment with diamide produced decreased deformability but increased stability. N-ethylmaleimide induced time-dependent changes in membrane stability. Over the first minute, the stability increased; but with continued incubation, the membranes became less stable than control. Meanwhile, the deformability of these membranes decreased with no time dependence. Biophysical measurements were also carried out on pathologic erythrocytes. Membranes from an individual with hereditary spherocytosis and a defined abnormality in spectrin-protein 4.1 association showed decreased stability but normal deformability. In a family with hereditary elliptocytosis and an abnormality in spectrin self-association, the membranes had decreased deformability and stability. Finally, membranes from several individuals with Malaysian ovalocytosis had decreased deformability but increased stability. Our data from both pathologic membranes and biochemically perturbed membranes show that deformability and stability change with no fixed relationship to one another. These findings imply that different skeletal protein interactions regulate membrane deformability and stability. In light of these data, we propose a model of the role of skeletal protein interactions in deformability and stability.  相似文献   

15.
缺锌对大鼠红细胞膜生物物理性质的影响   总被引:1,自引:0,他引:1  
利用激光衍射仪,荧光分光光度法,ESR等牲物理技术和缺锌大鼠模型,研究缺锌对大鼠红细胞膜生物物理性质的影响,实验结果表明缺锌使大鼠红细胞的变形能力增大,稳定性降低,红细胞膜脂的流动性和膜蛋白的运动性增加,支持了锌具有维持膜结构和功能和生理作用的理论;为膜结构和功能的改变是缺锌病理变化主要原因的假说提供了实验依据。  相似文献   

16.
The effect of radiation-induced peroxidation on the fluidity of the phospholipids of the erythrocyte membrane was studied using both erythrocyte ghosts and liposomes formed from the polar lipids of erythrocytes. In liposomes, the oxidation of the phospholipids increased with radiation dose, but there was no change in the fluidity of the lipids as measured by spin-label motion. Under the same conditions of irradiation, no oxidation of phospholipid was detected in erythrocyte ghosts, although changes occurred in the motion of spin labels intercalated with the membrane. These changes were attributed to radiation-induced alterations in the membrane proteins. It is concluded that alterations in motion of spin labels, observed with intact membranes after irradiation, are most likely the result of changes in the structure of membrane proteins rather than the lipids.  相似文献   

17.
Additional protein fraction migrating slower than spectrin has been detected in erythrocyte membranes from an ataxia-telangiectasia (A-T) patient and from his mother (A-T heterozygote). In erythrocyte membranes labelled with maleimide spin label changes in signal of the weakly immobilized spin label as related to that of strongly immobilized one (w/s) were noted. In comparison to age-matched control groups the values of w/s were lower in A-T heterozygotes (ten persons) and higher in A-T homozygotes (four persons). In control persons the values of w/s increased with age, whereas in families with A-T no significant differences in this parameter were noted between children and parents. The presence of additional protein fraction in erythrocytes membranes of A-T patient and A-T heterozygote indicates that these phenotypes can be differentiated from the healthy control persons for the first time on the basis of changes detected in the erythrocytes. This change in erythrocyte membrane may explain the decrease in the w/s parameter of electron spin resonance in A-T heterozygotes. On the other hand increased values of w/s in A-T patients may be caused by disease process.  相似文献   

18.
The effect of certain inorganic and coordinated nickel compounds on the resistance to different destructive substances, rheological properties, and functional activity of healthy human red blood cells (RBC), was investigated. It is shown that nickel compounds affect the erythrocyte membrane lipid bilayer, as well as membrane proteins to various extents, depending on the type of compounds used. In general, the acceleration of erythrocyte aging was observed to be more pronounced in young erythrocytes. The observed results suggest that nickel compounds decrease water permeability across erythrocyte membranes. Almost all the investigated nickel compounds decrease erythrocyte thermostability, deformability, and the rate of O2 release by erythrocytes.  相似文献   

19.
Effects of salt-loading on erythrocyte and erythrocyte ghost deformabilities were measured by laser diffractometry using a flat cell and a helium-neon laser in spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto rats (WKY). Salt-loading did not affect the deformability of erythrocytes in SHR and WKY, although a significantly reduced deformability was observed in salt-loaded SHR compared with values in control WKY and salt-loaded WKY (p less than 0.05, p less than 0.05, respectively). In contrast, salt-loading significantly reduced the deformability of erythrocyte ghosts in WKY and SHR (p less than 0.05, p less than 0.05, respectively). Our results suggest that salt-loading reduces erythrocyte membrane viscoelasticity in both WKY and SHR, and that the observed reduction of ghost deformability induced by salt-loading may influence the peripheral circulation.  相似文献   

20.
Cholesterol diet-induced hemolytic anemia in rats was described. When rats were fed a cholesterol diet for 11 weeks, serum cholesterol rapidly increased within the first week, and was maintained in 5-10 times higher levels throughout the study as compared to those of control rats. Erythrocyte count, hematocrit and hemoglobin concentration decreased from about 2 weeks of feeding. The spleen showed an increase of hemosiderin deposition from 6 weeks of feeding. The half life of erythrocytes labelled with 51Cr was shortened significantly at 6 weeks of feeding. These findings indicate that cholesterol diet can induce hemolytic anemia. Serum cholesterol and phospholipid were markedly increased, but in erythrocyte membrane, free cholesterol content was not persistently increased and phospholipid content was decreased. In hemorrheological studies, erythrocyte deformability and mechanical hemolysis tended to reduce. In conclusion, it was considered that as a result of reduced phospholipid content the erythrocytes of cholesterol-fed rats were decreased in its deformability and were captured more easily by the spleen. The profile of hemolytic anemia in cholesterol-fed rats was quite different from those reported in cholesterol-fed guinea pigs, rabbits and dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号