首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nile Red is sequentially metabolized by cytochrome P4503A4 to the N-monoethyl and N-desethyl products, which typifies the metabolism of many amine containing drugs. Sequential metabolism of a single substrate results in complex kinetics that confound predictive models of drug clearance. As a fluorescent model for drugs which undergo sequential metabolism, Nile Red provides the opportunity to monitor drug-CYP interactions wherein the fluorescent properties of Nile Red could, in principle, be exploited to determine individual rate and equilibrium constants for the individual reactions. Previously, it was shown that Nile Red binds at the active site and fluoresces (KD ≈ 50 nM) with maximum emission at ∼620 nm, but it was unclear whether a red-shifted emission, at ∼660 nm, consisted of only free Nile Red or Nile Red bound at a second site on the protein. Here, equilibrium binding studies, including ‘reverse titrations’ spanning low ratios of CYP3A4/Nile Red, indicate two binding sites for Nile Red with a contribution to the ‘red emission’ greater than can be accounted for by free Nile Red. Singular value decomposition affords basis spectra for both spectral components and fits well to the experimentally determined concentration dependence of Nile Red emission. In addition, the red spectral component, with an apparent KD = 2.2 μM, is selectively eliminated by titration with the known allosteric effectors of CYP3A4, α-napthoflavone and testosterone. Furthermore, the double mutant L2311F/D214E, previously demonstrated to perturb a peripheral allosteric site, lacks the red-emitting Nile Red binding site, but retains the blue-emitting site. Together these data indicate that a second Nile Red site competes with other effectors of CYP3A4 at a site that results in Nile Red emission at 660 nm.  相似文献   

2.
Typical cytochrome P450s secure the heme prosthetic group with a cysteine thiolate ligand bound to the iron, electrostatic interactions with the heme propionate carboxylates, and hydrophobic interactions with the heme periphery. In addition to these interactions, CYP4B1 covalently binds heme through a monoester link furnished, in part, by a conserved I-helix acid, Glu310. Chromatography, mass spectrometry, and NMR have now been utilized to identify the site of attachment on the heme. Native CYP4B1 covalently binds heme solely at the C-5 methyl position. Unexpectedly, recombinant CYP4B1 from insect cells and Escherichia coli also bound their heme covalently at the C-8 methyl position. Structural heterogeneity may be common among recombinant CYP4 proteins because CYP4A3 exhibited this duality. Attempts to evaluate functional heterogeneity were complicated by the complexity of the system. The phenomenon of covalent heme binding to P450 provides a novel method for assessing microheterogeneity in heme orientation and raises questions about the fidelity of heme incorporation in recombinant systems.  相似文献   

3.
Lampe JN  Atkins WM 《Biochemistry》2006,45(40):12204-12215
Cytochrome P450 3A4 (CYP3A4) is a major enzymatic determinant of drug and xenobiotic metabolism that demonstrates remarkable substrate diversity and complex kinetic properties. The complex kinetics may result, in some cases, from multiple binding of ligands within the large active site or from an effector molecule acting at a distal allosteric site. Here, the fluorescent probe TNS (2-p-toluidinylnaphthalene-6-sulfonic acid) was characterized as an active site fluorescent ligand. UV-vis difference spectroscopy revealed a TNS-induced low-spin heme absorbance spectrum with an apparent K(d) of 25.4 +/- 2 microM. Catalytic turnover using 7-benzyloxyquinoline (7-BQ) as a substrate demonstrated TNS-dependent inhibition with an IC(50) of 9.9 +/- 0.1 microM. These results suggest that TNS binds in the CYP3A4 active site. The steady-state fluorescence of TNS increased upon binding to CYP3A4, and fluorescence titrations yielded a K(d) of 22.8 +/- 1 microM. Time-resolved frequency-domain measurement of TNS fluorescence lifetimes indicates a testosterone (TST)-dependent decrease in the excited-state lifetime of TNS, concomitant with a decrease in the steady-state fluorescence intensity. In contrast, the substrate erythromycin (ERY) had no effect on TNS lifetime, while it decreased the steady-state fluorescence intensity. Together, the results suggest that TNS binds in the active site of CYP3A4, while the first equivalent of TST binds at a distant allosteric effector site. Furthermore, the results are the first to indicate that TST bound to the effector site can modulate the environment of the heterotropic ligand.  相似文献   

4.
Three heterobifunctional photoaffinity probes, N-(p-azidobenzyl)-N-methyl-p-aminobenzylamine (I), N-(p-azidobenzyl)-N-methyl-p-aminophenethylamine (II), and N-(p-azidophenethyl)-N-methyl-p-aminophenethylamine (III), were synthesized and characterized. These probes, containing a photolabile azido-group and an amino-group on opposite sides of the molecule, were designed for photoaffinty labeling of the cytochrome P450 (CYP) 2B active site cavity differing in distance from the heme iron. Spectroscopic studies proved that probes I and II coordinated with the heme iron via their amino-group in the enzyme active center, whereas probe III did not. This result in conjunction with data from kinetic studies suggests probes I and II are appropriate for photoaffinity labeling of the CYP 2B active center. Thus, probe II was used to identify amino acid residues within a distance of the probe length (about 16.5 A) from the heme. Analysis of a Lys-C digest of the probe II-labeled CYP 2B4 revealed a single labeled hexapeptide corresponding to position 192-197 of the CYP 2B4 sequence. Using postsource decay/matrix-assisted laser desorption ionization-time of flight, Arg197 was identified as a probe II target. The location of the labeled site in three-dimensional structures of bacterial CYPs and in CYP 2B homology models is discussed.  相似文献   

5.
Recent studies have indicated that CYP3A4 exhibits non-Michaelis-Menten kinetics for numerous substrates. Both homo- and heterotropic activation have been reported, and kinetic models have suggested multiple substrates within the active site. We provide some of the first physicochemical data supporting the hypothesis of allosteric substrate binding within the CYP3A4 active site. Midazolam (MDZ) is metabolized by CYP3A4 to two hydroxylated metabolites, 1'- and 4-hydroxymidazolam. Incubations using purified CYP3A4 and MDZ showed that both alpha-naphthoflavone (alpha-NF) and testosterone affect the ratio of formation rates of 1'- and 4-hydroxymidazolam. Similar to previous reports, alpha-NF was found to promote formation of 1'-hydroxymidazolam, while testosterone stimulated formation of 4-hydroxymidazolam. NMR was used to measure the closest approach of individual MDZ protons to the paramagnetic heme iron of CYP3A4 using paramagnetic T(1) relaxation measurements. Solutions of 0.2 microM CYP3A4 with 500 microM MDZ resulted in calculated distances between 7.4 and 8.3 A for all monitored MDZ protons. The distances were statistically equivalent for all protons except C3-H and were consistent with the rotation within the active site or sliding parallel to the heme plane. When 50 microM alpha-NF was added, proton-heme iron distances ranged from 7.3 to 10.0 A. Consistent with kinetics of activation, the 1' position was situated closest to the heme, while the fluorophenyl 5-H proton was the furthest. Proton-heme iron distances for MDZ with CYP3A4 and 50 microM testosterone ranged from 7.7 to 9.0 A, with the flourophenyl 5-H proton furthest from the heme iron and the C4-H closest to the heme, also consistent with kinetic observations. When titrated with CYP3A4 in the presence of MDZ, testosterone and alpha-NF resonances themselves exhibited significant broadening and enhanced relaxation rates, indicating that these effector molecules were also bound within the CYP3A4 active site near the paramagnetic heme iron. These results suggest that the effector exerts its cooperative effects on MDZ metabolism through simultaneous binding of MDZ and effector near the CYP3A4 heme.  相似文献   

6.
The heme-containing cytochrome P450s (CYPs) are a major enzymatic determinant of drug clearance and drug-drug interactions. The CYP3A4 isoform is inhibited by antifungal imidazoles or triazoles, which form low-spin heme iron complexes via formation of a nitrogen-ferric iron coordinate bond. However, CYP3A4 also slowly oxidizes the antifungal itraconazole (ITZ) at a site that is approximately 25 A from the triazole nitrogens, suggesting that large antifungal azoles can adopt multiple orientations within the CYP3A4 active site. Here, we report a surface plasmon resonance (SPR) analysis with kinetic resolution of two binding modes of ITZ, and the related drug ketoconazole (KTZ). SPR reveals a very slow off-rate for one binding orientation. Multiphasic binding kinetics are observed, and one of the two binding components resolved by curve fitting exhibits "equilibrium overshoot". Preloading of CYP3A4 with the heme ligand imidazole abolishes this component of the antifungal azole binding trajectories, and it eliminates the conspicuously slow off-rate. The fractional populations of CYP3A4 complexes corresponding to different drug orientations can be manipulated by altering the duration of the pulse of drug exposure. UV-vis difference absorbance titrations yield low-spin spectra and K(D) values that are consistent with the high-affinity complex resolved by SPR. These results demonstrate that ITZ and KTZ bind in multiple orientations, including a catalytically productive mode and a slowly dissociating inhibitory mode. Most importantly, they provide the first example of a SPR-based method for the kinetic characterization of binding of a drug to any human CYP, including mechanistic insight not available from other methods.  相似文献   

7.
A homology model of rabbit CYP 2B4 was constructed on the basis of the crystallographic structure of truncated mammalian CYP 2C5/3 and bacterial soluble CYPs. To validate the CYP 2B4 homology model photoaffinity labeling was employed. Three probes (I-III) containing a photo-labile azido-group and an amino-group on opposite ends of the molecule were designed for photoaffinity labeling of the CYP 2B4 in increasing distance from the heme iron. Spectroscopic data proved probes I (the shortest) and II (a middle sized) to be coordinated with the heme iron via their amino-groups in the enzyme active center while the probe III (the longest) was not bound in this way. This binding orientation of probes I and II is in accordance with the model predicting ion-pairing of the negatively charged side chain of CYP 2B4 Asp 105 and a positively charged nitrogen located in an appropriate position in structures of probes I and II, only. The lack of heme binding of the probe III is clear from its docking into the CYP 2B4 model since no Asp 105 ion-pairing is possible. The target of photoactivated probe II, Arg 197, in a distance of about 16.5 A from the heme iron, exactly matches the position of that amino acid residue, predicted from the CYP 2B4 homology model. Moreover, using this technique, a substrate access channel has been identified. To assess the predicted substrate-binding pocket, an interaction of a specific CYP 2B4 substrate, diamantane, was examined. In "silico" docking revealed strong binding of diamantane in an orientation allowing experimentally observed C4-hydroxylation. Our homology model of CYP 2B4 is thus consistent with experimental metabolic and photoaffinity labeling data.  相似文献   

8.
Spectroscopic methods reveal differences in flexibility and stability of P450 forms. Among microsomal P450s, the most flexible active site has been found in the CYP3A4 enzyme as it is compressible and the heme vinyl side chains may adopt two different conformations. On the other hand, active site of this enzyme denatures quite easily upon hydrostatic pressure. The most rigid active site able to withstand the effect of high pressure has CYP1A2. The bacterial CYP102 (BM3) flavocytochrome has also a rather stable, but flexible active site. The differences between CYP3A4 and CYP1A2 active sites apparently reflect their ability to bind various substrates: whereas the CYP3A4 binds a vast variety of structures, the CYP1A2 preferentially binds planar, aromatic structures and its substrate specificity is relatively narrow.  相似文献   

9.
In this study we have investigated binding of the fluorescent hydrophobicity probe Nile Red to the photoactive yellow protein (PYP), to characterize the exposure and accessibility of hydrophobic surface upon formation of the signaling state of this photoreceptor protein. Binding of Nile Red, reflected by a large blue shift and increase in fluorescence quantum yield of the Nile Red emission, is observed exclusively when PYP resides in its signaling state. N-terminal truncation of the protein allows assignment of the region surrounding the chromophore as the site where Nile Red binds to PYP. We also observed a pH dependence of the affinity of Nile Red for pB, which we propose is caused by pH dependent differences of the structure of the signaling state. From a comparative analysis of the kinetics of Nile Red binding and transient absorption changes in the visible region we can conclude that protonation of the chromophore precedes the exposure of a hydrophobic surface near the chromophore binding site, upon formation of the signaling state. Furthermore, the data presented here favor the view that the signaling state is structurally heterogeneous.  相似文献   

10.
Three independent experimental methods, liquid chromatography, denaturing gel electrophoresis with heme staining, and mass spectrometry, establish that the CYP4A class of enzymes has a covalently bound heme group even though the heme is not cross-linked to the protein in other P450 enzymes. Covalent binding has been demonstrated for CYP4A1, -4A2, -4A3, -4A8, and -4A11 heterologously expressed in Escherichia coli. However, the covalent link is also present in CYP4A1 isolated from rat liver and is not an artifact of heterologous expression. The extent of heme covalent binding in the proteins as isolated varies and is substoichiometric. In CYP4A3, the heme is attached to the protein via an ester link to glutamic acid residue 318, which is on the I-helix, and is predicted to be within the active site. This is the first demonstration that a class of cytochrome P450 enzymes covalently binds their prosthetic heme group.  相似文献   

11.
Woods CM  Fernandez C  Kunze KL  Atkins WM 《Biochemistry》2011,50(46):10041-10051
Cytochrome P450 3A4 (CYP3A4) is the dominant xenobiotic metabolizing CYP. Despite great interest in CYP enzymology, two in vitro aspects of CYP3A4 catalysis are still not well understood, namely, sequential metabolism and allosteric activation. We have therefore investigated such a system in which both phenomena are present. Here we report that the sequential metabolism of Nile Red (NR) is accelerated by the heterotropic allosteric effector α-naphthoflavone (ANF). ANF increases the rates of formation for NR metabolites M1 and M2 and also perturbs the metabolite ratio in favor of M2. Thus, ANF has as an allosteric effect on a kinetic branch point. Co-incubating deuterium-labeled NR and unlabeled M1, we show that ANF increases k(cat)/k(off) ~1.8-fold in favor of the k(cat) of M2 production. Steady-state metabolic experiments are analyzed using a kinetic model in which the enzyme and substrates are not in rapid equilibrium, and this distinction allows for the estimation of rates of catalysis for the formation of both the primary (M1) and secondary (M2) products, as well as the partitioning of enzyme between these states. These results are compared with those of earlier spectroscopic investigations of NR and ANF cooperativity, and a mechanism of ANF heteroactivation is presented that involves effects on substrate off rate and coupling efficiency.  相似文献   

12.
Cytochrome P450 46A1 (CYP46A1) initiates the major pathway of cholesterol elimination from the brain and thereby controls cholesterol turnover in this organ. We determined x-ray crystal structures of CYP46A1 in complex with four structurally distinct pharmaceuticals; antidepressant tranylcypromine (2.15 Å), anticonvulsant thioperamide (1.65 Å), antifungal voriconazole (2.35 Å), and antifungal clotrimazole (2.50 Å). All four drugs are nitrogen-containing compounds that have nanomolar affinity for CYP46A1 in vitro yet differ in size, shape, hydrophobicity, and type of the nitrogen ligand. Structures of the co-complexes demonstrate that each drug binds in a single orientation to the active site with tranylcypromine, thioperamide, and voriconazole coordinating the heme iron via their nitrogen atoms and clotrimazole being at a 4 Å distance from the heme iron. We show here that clotrimazole is also a substrate for CYP46A1. High affinity for CYP46A1 is determined by a set of specific interactions, some of which were further investigated by solution studies using structural analogs of the drugs and the T306A CYP46A1 mutant. Collectively, our results reveal how diverse inhibitors can be accommodated in the CYP46A1 active site and provide an explanation for the observed differences in the drug-induced spectral response. Co-complexes with tranylcypromine, thioperamide, and voriconazole represent the first structural characterization of the drug binding to a P450 enzyme.  相似文献   

13.
The intramolecular site of P-450scc for conversion of cholesterol to pregnenolone involves a substrate site, an active site, and a site for transmission of electrons. The substrate site was studied with a high-affinity, high-potency nitroxide spin-labeled inhibitor of cholesterol side-chain cleavage. This substance, 17 alpha-hydroxy-11-deoxycorticosterone nitroxide (SL-V), has an affinity comparable to that of the most active substrate inhibitors ever reported and 2-50 times greater than that of the natural substrate cholesterol. Competition experiments with cholesterol and its analogues confirmed that SL-V binds reversibly to the substrate site. Titration experiments showed a single binding site on the P-450 molecule. The substrate site is on the apoprotein and has little or no direct interaction with the heme. Spin-spin interactions between the Fe3+ and side-chain or A-ring spin-labeled groups could not be demonstrated, which is consistent with carbons 22 and 20 being closest to the heme iron. We postulate that substrate disrupts a histidine nitrogen coordination with the heme iron and induces conformational changes in the apoprotein. These changes lead to increased affinity for iron-sulfur protein.  相似文献   

14.
Design of a partially cysteine-depleted C98S/C239S/C377S/C468A cytochrome P450 3A4 mutant designated CYP3A4(C58,C64) allowed site-directed incorporation of thiol-reactive fluorescent probes into alpha-helix A. The site of modification was identified as Cys-64 with the help of CYP3A4(C58) and CYP3A4(C64), each bearing only one accessible cysteine. Changes in the fluorescence of CYP3A4(C58,C64) labeled with 6-(bromoacetyl)-2-(dimethylamino)naphthalene (BADAN), 7-(diethylamino)-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM), or monobromobimane (mBBr) were used to study the interactions with bromocriptine (BCT), 1-pyrenebutanol (1-PB), testosterone (TST), and alpha-naphthoflavone (ANF). Of these substrates only ANF has a specific effect, causing a considerable decrease in fluorescence intensity of BADAN and CPM and increasing the fluorescence of mBBr. This ANF-binding event in the case of the BADAN-modified enzyme is characterized by an S50 of 18.2 +/- 0.7, compared with the value of 2.2 +/- 0.3 for the ANF-induced spin transition, thus revealing an additional low-affinity binding site. Studies of the effect of TST, 1-PB, and BCT on the interactions of ANF monitored by changes in fluorescence of CYP3A4(C58,C64)-BADAN or by the ANF-induced spin transition revealed no competition by these substrates. Investigation of the kinetics of fluorescence increase upon H2O2-dependent heme depletion suggests that labeled CYP3A4(C58,C64) is represented by two conformers, one of which has the fluorescence of the BADAN and CPM labels completely quenched, presumably by photoinduced electron transfer from the neighboring Trp-72 and/or Tyr-68 residues. The binding of ANF to the newly discovered binding site appears to affect the interactions of the label with the above residue(s), thus modulating the fraction of the fluorescent conformer.  相似文献   

15.
P450cam has long served as a prototype for the cytochrome P450 (CYP) gene family. But, little is known about how substrate enters its active site pocket, and how access is achieved in a way that minimizes exposure of the reactive heme. We hypothesize that P450cam may first bind substrate transiently near the mobile F-G helix that covers the active site pocket. Such a two-step binding process is kinetically required if P450cam rarely populates an open conformation-as suggested by previous literature and the inability to obtain a crystal structure of P450cam in an open conformation. Such a mechanism would minimize exposure of the heme by allowing P450cam to stay in a closed conformation as long as possible, since only brief flexing into an open conformation would be required to allow substrate entry. To test this model, we have attempted to dock a second camphor molecule into the crystal structure of camphor-bound P450cam. The docking identified only one potential entry site pocket, a well-defined cavity on the F-helix side of the F-G flap, 16 A from the heme iron. Location of this entry site pocket is consistent with our NMR T1 relaxation-based measurements of distances for a camphor that binds in fast exchange (active site camphor is known to bind in slow exchange). Presence of a second camphor binding site is also confirmed with [(1)H-(13)C] HSQC titrations of (13)CH3-threonine labeled P450cam. To confirm that camphor can bind outside of the active site pocket, (13)CH3-S-pyridine was bound to the heme iron to physically block the active site, and to serve as an NMR chemical shift probe. Titration of this P450cam-pyridine complex confirms that camphor can bind to a site outside the active site pocket, with an estimated Kd of 43 microM. The two-site binding model that is proposed based on these data is analogous to that recently proposed for CYP3A4, and is consistent with recent crystal structures of P450cam bound to tethered-substrates, which force a partially opened conformation.  相似文献   

16.
Mycobacterium tuberculosis encodes a P450 of the sterol demethylase family (CYP51) chromosomally located adjacent to a ferredoxin (Fdx). CYP51 and Fdx were purified to homogeneity and characterized. Spectroscopic analyses were consistent with cysteinate- and aqua-ligated heme iron in CYP51. An epsilon419 of 134 mM(-1) cm(-1) was determined for oxidized CYP51. Analysis of interactions of 1-, 2-, and 4-phenylimidazoles with CYP51 showed that the 1- and 4-forms were heme iron-coordinating inhibitors, while 2-phenylimidazole induced a substrate-like optical shift. The 2-phenyimidazole-bound CYP51 demonstrated unusual decreases in high-spin heme iron content at elevated temperatures and an almost complete absence of high-spin heme iron by low-temperature EPR. These data suggest thermally induced alterations in CYP51 active site structure and/or binding modes for the small ligand. Reduction of CYP51 in the presence of carbon monoxide leads to formation of an Fe(II)-CO complex with a Soret absorption maximum at 448.5 nm, which collapses (at 0.246 min(-1) at pH 7.0) forming a species with a Soret maximum at 421.5 nm (the inactive P420 form). The rate of P420 formation is accelerated at lower pH, consistent with protonation of the cysteinate (Cys 394) to a thiol underlying the P450-P420 transition. The P450 form is stabilized by estriol, which induces a type I spectral shift on binding CYP51 (Kd = 21.7 microM). Nonstandard spectral changes occur on CYP51 reduction (using either dithionite or natural redox partners), including a blue-shifted Soret band and development of a strong feature at approximately 558.5 nm, suggestive of cysteine thiol ligation. Thus, ligand-free ferrous CYP51 is prone to thiolate ligand protonation even in the absence of carbon monoxide. Analysis of reoxidized CYP51 demonstrates that the enzyme re-forms P450, indicating that Cys 394 thiol is readily deprotonated to thiolate in the ferric form. Spectroscopic analysis of Fdx by EPR (resonance at g = 2.03) and magnetic CD (intensity for oxidized and reduced forms and signal intensity dependence on field strength and temperature) demonstrated that Fdx binds a [3Fe-4S] iron-sulfur cluster. Potentiometric studies show that the midpoint potential for ligand-free CYP51 is -375 mV, increasing to -225 mV in the estriol-bound form. The Fdx potential is -31 mV. Fdx forms a productive electron transfer complex with CYP51 and reduces it at a rate of 3.0 min(-1) in the ligand-free form and 4.3 min(-1) in the estriol-bound form, despite a thermodynamic barrier. Steady-state analysis of a M. tuberculosis class I redox system comprising flavoprotein reductase A (FprA), Fdx, and estriol-bound CYP51 indicates heme iron reduction as a rate-limiting step.  相似文献   

17.
Davydov DR  Baas BJ  Sligar SG  Halpert JR 《Biochemistry》2007,46(26):7852-7864
Allosteric mechanisms in human cytochrome P450 3A4 (CYP3A4) in oligomers in solution or monomeric enzyme incorporated into Nanodiscs (CYP3A4ND) were studied by high-pressure spectroscopy. The allosteric substrates 1-pyrenebutanol (1-PB) and testosterone were compared with bromocriptine (BCT), which shows no cooperativity. In both CYP3A4 in solution and CYP3A4ND, we observed a complete pressure-induced high-to-low spin shift at pressures of <3 kbar either in the substrate-free enzyme or in the presence of BCT. In addition, both substrate-free and BCT-bound enzyme revealed a pressure-dependent equilibrium between two states with different barotropic parameters designated R for relaxed and P for pressure-promoted conformations. This pressure-induced conformational transition was also observed in the studies with 1-PB and testosterone. In CYP3A4 oligomers, the transition was accompanied by an important increase in homotropic cooperativity with both substrates. Surprisingly, at high concentrations of allosteric substrates, the amplitude of the spin shift in both CYP3A4 in solution and Nanodiscs was very low, demonstrating that hydrostatic pressure induces neither substrate dissociation nor an increase in the heme pocket hydration in the complexes of the pressure-promoted conformation of CYP3A4 with 1-PB or testosterone. These findings suggest that the mechanisms of interactions of CYP3A4 with 1-PB and testosterone involve an effector-induced transition that displaces a system of conformational equilibria in the enzyme toward the state(s) with decreased solvent accessibility of the active site so that the flux of water into the heme pocket is impeded and the high-spin state of the heme iron is stabilized.  相似文献   

18.
Fernando H  Halpert JR  Davydov DR 《Biochemistry》2006,45(13):4199-4209
To explore the mechanism of homotropic cooperativity in human cytochrome P450 3A4 (CYP3A4) we studied the interactions of the enzyme with 1-pyrenebutanol (1-PB), 1-pyrenemethylamine (PMA), and bromocriptine by FRET from the substrate fluorophore to the heme, and by absorbance spectroscopy. These approaches combined with an innovative setup of titration-by-dilution and continuous variation (Job's titration) experiments allowed us to probe the relationship between substrate binding and the subsequent spin transition caused by 1-PB or bromocriptine or the type-II spectral changes caused by PMA. The 1-PB-induced spin shift in CYP3A4 reveals prominent homotropic cooperativity, which is characterized by a Hill coefficient of 1.8 +/- 0.3 (S50 = 8.0 +/- 1.1 microM). In contrast, the interactions of CYP3A4 with bromocriptine or PMA reveal no cooperativity, exhibiting KD values of 0.31 +/- 0.08 microM and 7.1 +/- 2.3 microM, respectively. The binding of all three substrates monitored by FRET in titration-by-dilution experiments at an enzyme:substrate ratio of 1 reveals a simple bimolecular interaction with KD values of 0.16 +/- 0.09, 4.8 +/- 1.4, and 0.18 +/- 0.09 microM for 1-PB, PMA, and bromocriptine, respectively. Correspondingly, Job's titration experiments showed that the 1-PB-induced spin shift reflects the formation of a complex of the enzyme with two substrate molecules, while bromocriptine and PMA exhibit 1:1 binding stoichiometry. Combining the results of Job's titrations with the value of KD obtained in our FRET experiments, we demonstrate that the interactions of CYP3A4 with 1-PB obey a sequential binding mechanism, where the spin transition is triggered by the binding of 1-PB to the low-affinity site, which becomes possible only upon saturation of the high-affinity site.  相似文献   

19.
CYP130 is one of the 20 Mycobacterium tuberculosis cytochrome P450 enzymes, only two of which, CYP51 and CYP121, have so far been studied as individually expressed proteins. Here we characterize a third heterologously expressed M. tuberculosis cytochrome P450, CYP130, by UV-visible spectroscopy, isothermal titration calorimetry, and x-ray crystallography, including determination of the crystal structures of ligand-free and econazole-bound CYP130 at a resolution of 1.46 and 3.0A(,) respectively. Ligand-free CYP130 crystallizes in an "open" conformation as a monomer, whereas the econazole-bound form crystallizes in a "closed" conformation as a dimer. Conformational changes enabling the "open-closed" transition involve repositioning of the BC-loop and the F and G helices that envelop the inhibitor in the binding site and reshape the protein surface. Crystal structure analysis shows that the portion of the BC-loop relocates as much as 18A between the open and closed conformations. Binding of econazole to CYP130 involves a conformational change and is mediated by both a set of hydrophobic interactions with amino acid residues in the active site and coordination of the heme iron. CYP130 also binds miconazole with virtually the same binding affinity as econazole and clotrimazole and ketoconazole with somewhat lower affinities, which makes it a plausible target for this class of therapeutic drugs. Overall, binding of the azole inhibitors is a sequential two-step, entropy-driven endothermic process. Binding of econazole and clotrimazole exhibits positive cooperativity that may reflect a propensity of CYP130 to associate into a dimeric structure.  相似文献   

20.
Inhibition of CYP 3A4 catalytic activity is a principal mechanism for in vivo drug-drug interactions, sometimes leading to severe toxic effects. Rapid in vitro testing for CYP 3A4 high affinity/high inhibition potential has become part of the standard investigations for new drug candidates. Unfortunately, the complexity of the kinetics associated with CYP 3A4 catalyzed reactions (multiple substrates binding, non Michaelis-Menten kinetics) make these tests either inaccurate or tedious. We have designed and synthesized a new fluorescent probe, a testosterone substituted at the 6beta- position with a fluorescent deazaflavine moiety which is able to inhibit to the same extent the hydroxylation of compounds known to bind to different sites in the CYP 3A4 active site. Furthermore, the binding of this compound and its displacement from the active site can be followed by fluorescence measurements, which allows a rapid evaluation of the CYP 3A4 affinity of any new drug candidate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号