首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Artemia larvae respond to a brief heat-shock between 28 degrees and 40 degrees C with an increase in the synthesis of two groups of proteins of Mr 68,000 and 89,000. At 40 degrees C synthesis of all other proteins is strongly repressed. Cysts, which are naturally thermotolerant, synthesise both heat-shock proteins at temperatures up to 47 degrees C but maintain normal protein synthesis. During pre-emergence development, Ap3A is present in cysts at a concentration twice that of Ap4A. The maximum level of 7.6 pmol/10(6) cells is reached shortly before hatching of the larvae. After hatching, the levels of both nucleotides decline. A 40 degrees C heat-shock produces a 1.8-fold increase in both nucleotides within 20 min in cysts and larvae. A 2.8-fold increase results from a 47 degrees C heat-shock to cysts. The rates of increase parallel but do not precede the increases in the heat-shock proteins. Since non-heat-shocked cysts possess higher levels of Ap3A and Ap4A than do heat-shocked larvae, the observed heat-induced changes in gene expression cannot be explained simply in terms of the intracellular concentrations of these nucleotides.  相似文献   

2.
The P1P4-bis(5'-nucleosidyl) tetraphosphate asymmetrical-pyrophosphohydrolase from encysted embryos of the brine shrimp Artemia has been purified over 11,000-fold to homogeneity. Anion-exchange chromatography resolves two major species with very similar properties. The enzyme is a single polypeptide of Mr 17,600 and is maximally active at pH 8.4 and 2 mM-Mg2+. It is inhibited by Ca2+ (IC50 = 0.9 mM with 2 mM-Mg2+) but not by Zn2+ ions. It preferentially hydrolyses P1P4-bis(5'-nucleosidyl) tetraphosphates, e.g. P1P4-bis(5'-adenosyl) tetraphosphate (Ap4A) (kcat. = 12.7 s-1; Km = 33 microM) and P1P4-bis(5'-guanosyl) tetraphosphate (Gp4G) (kcat. = 6.2 s-1; Km = 5 microM). With adenosine 5'-P1-tetraphospho-P4-5"'-guanosine (Ap4G) as substrate, there is a 4.5-fold preference for AMP and GTP as products and biphasic reaction kinetics are observed giving Km values of 4.7 microM and 34 microM, and corresponding rate constants of 6.5 s-1 and 11.9 s-1. The net rate constant for Ap4G hydrolysis is 7.6 s-1. The enzyme will also hydrolyse nucleotides with more than four phosphate groups, e.g. Ap5G, Ap6A and Gp5G are hydrolysed at 25%, 18% and 10% of the rate of Ap4A respectively. An NTP is always one of the products. Ap2A and Gp2G are not hydrolysed, while Ap3A and Gp3G are very poor substrates. When the enzyme is partially purified from embryos and larvae at different stages of development by sedimentation through a sucrose density gradient, its activity increases 3-fold during the first 12 h of pre-emergence development. This is followed by a slow decline during subsequent larval development. The similarity of this enzyme to other asymmetrical-pyrophosphohydrolases suggests that it did not evolve specifically to degrade the large yolk platelet store of Gp4G which is found in Artemia embryos, but that it probably serves the same general function in bis(5'-nucleosidyl) oligophosphate metabolism as in other cells.  相似文献   

3.
Enzymatic activity which hydrolyzes diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) yielding ADP has been identified in extracts of eubacteria, Escherichia coli and Acidaminococcus fermentans, and of a highly thermophilic archaebacterium, Pyrodictum occultum. Specific Ap4A (symmetric) pyrophosphohydrolase from Escherichia coli K12 has been purified almost 400-fold. The preparation was free of phosphatase, ATPase, phosphodiesterase, AMP-nucleosidase, and adenylate kinase. The Ap4A pyrophosphohydrolase molecular weight estimated by gel filtration is 27,000 +/- 1,000. Activity maximum is at pH 8.3. The Km value computed for Ap4A is 25 +/- 3 microM. The sulfhydryl group(s) is essential for enzyme activity. Metal chelators, EDTA, and o-phenanthroline, inhibit Ap4A hydrolysis; I0.5 values are 3 and 50 microM, respectively. Co2+ is a strong stimulator with an almost 100-fold increase in rate of Ap4A hydrolysis and a plateau in the range of 100-500 microM Co2+, when compared with the nonstimulated hydrolysis. Other transition metal ions, Mn2+, Cd2+, and Ni2+, stimulate by factors of 8, 3.5, and 3.5, respectively, with optimal concentrations in the range 200-500, 2-5, and 4-8 microM, respectively. Zn2+, Cu2+, and Fe2+, up to 30 microM, are without effect and they inhibit at higher concentrations. Mg2+ or Ca2+, in the absence of other divalent metal ions, are weak stimulators (1.5-fold stimulation occurs at 1-2 mM concentration), but act synergistically with Co2+ at its suboptimal concentrations. Stimulation in the presence of 10 microM Co2+ and either 1 mM MgCl2 or CaCl2 increases up to 75-fold. The same degree of synergy is found at 10 microM Co2+ and either 2-5 mM spermidine or 0.5-1.5 mM spermine. Besides Ap4A, bacterial Ap4A pyrophosphohydrolase hydrolyzes effectively Ap5A and Gp4G, and, to some extent, p4A, Ap6A, and Ap3A yielding in each case corresponding nucleoside diphosphate as one of the products.  相似文献   

4.
An assay of adenosine(5')tetraphospho(5')adenosine (Ap4A), based on the luciferin/luciferase method for ATP measurement, was developed, which allows one to determine picomolar amounts of unlabeled Ap4A in cellular extracts. In eukaryotic cells this method yielded levels of Ap4A varying from 0.01 microM to 13 microM depending on the growth, cell cycle, transformation, and differentiation state of cells. After mitogenic stimulation of G1-arrested mouse 3T3 and baby hamster kidney fibroblasts the Ap4A pools gradually increased 1000-fold during progression through the G1 phase reaching maximum Ap4A concentrations of about 10 microM in the S phase. Quiescent 3T3 cells reach a high level of Ap4A (1 microM) in a 'committed' but prereplicative state if exposed to an external mitogenic stimulant (excess of serum) and simultaneously to a synchronizer which inhibits entry into the S phase (hydroxyurea). When the block for DNA replication was removed at varying times after removal of the stimulant decay of commitment to DNA synthesis was found correlated with a shrinkage of the Ap4A pool. Cells lacking a defined G1 phase (V79 lung fibroblasts, Physarum) possess a constitutively high base level of Ap4A (about 0.3 microM) even during mitosis. From this high level, Ap4A concentration increases only about tenfold during the S phase. Temperature-down-shift experiments, using chick embryo cells infected with transformation-defective temperature-sensitive viral mutants(td-ts), have shown that the expression of the transformed state at 35 degrees C is accompanied by a tenfold increase of the cellular Ap4A pool. Treatment of exponentially growing human cells with interferon leads, concomitantly with an inhibition of DNA syntheses, to a tenfold decrease in intracellular Ap4A levels within 20 h. The possibility of Ap4A being a 'second messenger' of cell cycle and proliferation control is discussed in the light of these results and those reported previously demonstrating that Ap4A is a ligand of mammalian DNA polymerase alpha, triggers DNA replication in quiescent mammalian cells and is active in priming DNA synthesis.  相似文献   

5.
Diadenosine-5',5'-P1,P4-tetraphosphate pyrophosphohydrolase (diadenosinetetraphosphatase) from Escherichia coli strain EM20031 has been purified 5000-fold from 4 kg of wet cells. It produces 2.4 mg of homogeneous enzyme with a yield of 3.1%. The enzyme activity in the reaction of ADP production from Ap4A is 250 s-1 [37 degrees C, 50 mM tris(hydroxymethyl)aminomethane, pH 7.8, 50 microM Ap4A, 0.5 microM ethylenediaminetetraacetic acid (EDTA), and 50 microM CoCl2]. The enzyme is a single polypeptide chain of Mr 33K, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and high-performance gel permeation chromatography. Dinucleoside polyphosphates are substrates provided they contain more than two phosphates (Ap4A, Ap4G, Ap4C, Gp4G, Ap3A, Ap3G, Ap3C, Gp3G, Gp3C, Ap5A, Ap6A, and dAp4dA are substrates; Ap2A, NAD, and NADP are not). Among the products, a nucleoside diphosphate is always formed. ATP, GTP, CTP, UTP, dATP, dGTP, dCTP, and dTTP are not substrates; Ap4 is. Addition of Co2+ (50 microM) to the reaction buffer containing 0.5 microM EDTA strongly stimulates Ap4A hydrolysis (stimulation 2500-fold). With 50 microM MnCl2, the stimulation is 900-fold. Ca2+, Fe2+, and Mg2+ have no effect. The Km for Ap4A is 22 microM with Co2+ and 12 microM with Mn2+. The added metals have similar effects on the hydrolysis of Ap3A into ADP + AMP. However, in the latter case, the stimulation by Co2+ is small, and the maximum stimulation brought by Mn2+ is 9 times that brought by Co2+. Exposure of the enzyme to Zn2+ (5 microM), prior to the assay or within the reaction mixture containing Co2+, causes a marked inhibition of Ap4A hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Binding of adenosine(5')tetraphospho(5')adenosine (Ap4A) to histones of calf thymus was investigated by non-equilibrium dialysis. Histone H1 interacts with the dinucleotide via two strong sites and competes with Mg2+ ions. Intrinsic dissociation constants were 1.6 +/- 0.1 microM and 11 +/- 1 microM for zero and 0.4 mm-Mg2+ concentration respectively. Binding of poly(dT) and of other nucleotides to histone H1 was measured in an [3H]Ap4A-competition assay. The tendency to form complexes among nucleotides was highest for bisnucleoside tetraphosphates and decreased in the order poly(dT) greater than or equal to Ap4A approximately Gp4G greater than Ap4 much greater than Ap3A approximately Ap5A greater than or equal to ATP, GTP and dTTP. The co-ordination complex derived from Ap4A and cis-diammine-dichloroplatinum(II) was not reactive. The other histones of calf thymus also bound Ap4A with affinities decreasing in the order H4 approximately H3 greater than H1 greater than H2b greater than H2a. Ap4A stimulated the exchange of histone H1 between nucleosomes, but this effect was referred to ionic strength. It did not bind to assembled nucleosomes. Binding of Ap4A to histone H1 was decreased by salt (NaCl). At physiological saline concentration the value of the dissociation constant is commensurable with the value of the Ap4A concentration in the nucleus and thus indicative of complex-formation in vivo.  相似文献   

7.
The diadenine nucleotides diadenosine 5',5"-P1,P3-triphosphate (Ap3A) and diadenosine 5',5"-P1,P4-tetraphosphate (Ap4A) can be released from platelets and were shown to act as long-lived signal molecules. Accordingly, we studied their potential effect on hepatic metabolism. In isolated perfused rat liver, Ap3A and Ap4A increase the portal pressure, lead to a transient net release of Ca2+, complex net K+ movement across the liver plasma membrane and stimulate hepatic glucose output and 14CO2 production from [1-14C]glutamate. These responses resemble that obtained with extracellular ATP. This and studies on the additivity of ATP and Ap4A effects suggest similar mechanisms mediating the ATP and diadenine nucleotide effects in the liver. Ap3A and Ap4A increased the activity of glycogen phosphorylase a in isolated hepatocyte suspensions by about 100%, pointing to a direct effect of these nucleotides on hepatic parenchymal cells. A response of hepatic non-parenchymal cells to diadenine nucleotide infusion is suggested by a marked stimulation of thromboxane and prostaglandin D2 release from perfused liver. Studies with the thromboxane A2 receptor antagonist BM 13.177 (20 microM) show that the pressure and glucose response to the diadenine nucleotides is partially mediated by this thromboxane formation. Studies with retrograde and sequential liver perfusions suggest a less efficient degradation of the diadenine nucleotides during a single liver passage compared to extracellular ATP. The data suggest that Ap3A and Ap4A are potential regulators of hepatic hemodynamics and metabolism, involving complex interactions between hepatic parenchymal cells and hepatic non-parenchymal cells, including eicosanoids as signal molecules.  相似文献   

8.
Di(adenosine-5')oligophosphate nucleotides of general structure ApnA (n = 2-6) inhibited phosphorylation of immunoglobulin G from tumor-bearing rabbits (TBR IgG) by pp60src protein kinase purified from Rous sarcoma virus-transformed rat tumor cells. Ap4A, a nucleotide associated with eukaryotic cell proliferation, was one of the most effective inhibitors in the series, causing 50% inhibition of TBR IgG phosphorylation at 15 microM. Ap4A inhibited pp60src-dependent phosphorylation of TBR IgG in solution and immunoprecipitates, as well as the phosphorylation of tubulin, microtubule-associated proteins, and vinculin. Under similar assay conditions, Ap4A did not inhibit phosphorylation of histone H2b by cAMP- or cGMP-dependent protein kinases. Ap4A appears to interact noncovalently with the enzyme, because removal of pp60src by immunoprecipitation from solutions containing Ap4A restored activity to uninhibited levels. A 100-fold increase in ATP (4-400 nM) caused a 13-fold increase in the 50% inhibitory concentration of Ap4A (2.5-33 microM), consistent with the interpretation that Ap4A competes for an ATP-binding site on the pp60src molecule. The simplest explanation of these results is that Ap4A binds to the phosphodonor site for ATP.  相似文献   

9.
The accumulation in large amounts of bisnucleoside polyphosphates (Ap4X) after heat shock in Xenopus laevis oocytes or cultured hepatoma cells (HTC cells) is observed after exposure to temperatures of 45 degrees C or higher. The accumulation is a transient phenomenon, with the collapse in cellular ATP concentration severely affecting the rate of synthesis of Ap4X, allowing degrading activities to empty the pool of these compounds under prolonged heat shock. This accumulation of Ap4X to high levels, compared to the basic content, is only observed under conditions leading to irreversible damage, ultimately resulting in the death of the cell. It is shown that the increase in Ap4X after hyperthermia is due to the partial or almost complete inhibition of their degradation pathways, rather than to a stimulation of their rate of synthesis. Finally, the synthesis of heat-shock proteins could be observed under conditions which do not lead to important accumulation of Ap4X, therefore ruling out the possibility that these adenylylated nucleotides would behave as chemical signals ("alarmones") triggering the synthesis of heat-shock proteins. Nevertheless, on the basis of our earlier results (Guédon, G., Sovia, D., Ebel, J. P., Befort, D., and Remy, P. (1985) Embo J. 4, 3743-3749), it cannot be excluded that Ap4X might play a role in the regulation of the heat-shock response; this would, however, rely on variations in Ap4X concentrations which do not exceed a factor of 2.  相似文献   

10.
An enzyme hydrolyzing diadenosine 5',5"'P1, P4-tetraphosphate (Ap4A) to AMP and ATP has been purified to apparent homogeneity from mouse liver cell extracts. The isolation procedure comprised ammonium sulfate precipitation, chromatography on Sephadex G-75. DEAE-cellulose, blue Sepharose and AMP-Sepharose. The enzyme is a single polypeptide chain with a native Mr = 64,000 with a Km of 1.66 microM and Vmax of 1.25 mumol/min. AMP, ADP, Ap4, GTP, Gp4, Ap3A, Ap5A, Gp3G, and Gp5G are noncompetitive inhibitors of the Ap4A hydrolase activity, whereas Gp4G inhibits Ap4A hydrolysis competitively with a Ki of 6 microM. Theophylline, caffeine, and isobutylmethylxanthine do not or only slightly inhibit Ap4A hydrolysis. Mitogenic factors have no effect on the enzymatic activity of Ap4A hydrolase, excluding that a direct influence of internalized mitogens on Ap4A degradation could be responsible for mitogen-dependent fluctuation of intracellular Ap4A pool sizes.  相似文献   

11.
An ectoenzyme hydrolyzing diadenosine polyphosphates (ApnA) to AMP and Ap(n-1) has been studied in cultured chromaffin cells from bovine adrenal medulla. The KM value for extracellular Ap4A hydrolysis was 2.90 +/- 0.72 microM, the V(max) value obtained was 11.59 +/- 0.92 pmol/min x 10(6) cells (116 pmol/min.mg total protein). Ap3A, Ap5A, Ap6A, and Gp4G were competitive inhibitors of Ap4A hydrolysis with K(i) values of 3.65, 1.10, 1.20, and 2.65 microM, respectively. Phosphatidylinositol-specific phospholipase C removes the ApnA hydrolase activity from cultured chromaffin cells, suggesting an anchorage of this protein to the plasma membrane through the phosphatidylinositol. The turnover time for this enzyme calculated in the presence of cycloheximide was 38.94 +/- 1.53 hr for cultured chromaffin cells.  相似文献   

12.
1. A P1,P3-bis(5'-nucleosidyl)triphosphate pyrophosphohydrolase (Np3 Nase) has been partially purified from Artemia embryos. 2. The Np3 Nase has a native Mr of 115,000 and preferentially hydrolyses substrates of the form Np3 N. Relative rates of hydrolysis are Ap3A (Vrel = 1.0), Gp3G (Vrel = 0.71), Ap4A (Vrel = 0.08), Ap5A (Vrel = 0.09), Gp4G (Vrel = 0.3) and Gp5G (Vrel = 0.33). An NMP is always one of the products. 3. The Km values for Ap3A and Gp3G are 15 and 10 microM respectively. 4. Mg2+, Mn2+ and Ca2+ ions all stimulate the activity, while Zn2+, Co2+ and Ni2+ ions are inhibitory. 5. The activity of the Np3 Nase remains constant during pre-emergence development of encysted embryos but decreases slightly after hatching.  相似文献   

13.
The biologically active dinucleotides adenosine(5')tetraphospho(5')adenosine (Ap4A) and adenosine(5')-triphospho(5')adenosine (Ap3A), which are both releasable into the circulation from storage pools in thrombocytes, are catabolized by intact bovine aortic endothelial cells. 1. Compared with extracellular ATP and ADP, which are very rapidly hydrolysed, the degradation of Ap4A and Ap3A by endothelial ectohydrolases is relatively slow, resulting in a much longer half-life on the endothelial surface of the blood vessel. The products of hydrolysis are further degraded and finally taken up as adenosine. 2. Ap4A hydrolase has high affinity for its substrate (Km 10 microM). 3. ATP as well as AMP transiently accumulates in the extracellular fluid, suggesting an asymmetric split of Ap4A by the ectoenzyme. 4. Mg2+ or Mn2+ at millimolar concentration are needed for maximal activity; Zn2+ and Ca2+ are inhibitory. 5. The hydrolysis of Ap4A is retarded by other nucleotides, such as ATP and Ap3A, which are released from platelets simultaneously with Ap4A.  相似文献   

14.
The effects of cadmium chloride (CdCl(2)) on oxidative stress in the skeletal muscle cell line C(2)C(12) were investigated. Myoblast cells that differentiated into myotubes were treated with CdCl(2) (1, 3, 5, 7.5, 10, and 12.5 microM) for 24, 48, and 72 h. Subsequent assay of cell homogenates for MTT (3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium bromide) reduction, neutral red uptake and nucleic acid content showed that cadmium was toxic to C(2)C(12) cells in a concentration-dependent manner. Glutathione-S-transferase activity (nmol microg of protein(-1) min(-1)) was increased with 1 and 3 microM CdCl(2) (36.9 +/- 5.6 and 32.1 +/- 6.0, respectively) compared to control cells (21.8 +/- 1.5), but decreased at higher concentrations (7.5 microM = 15.9 +/- 3.3, 10 microM = 15.9 +/- 4.6, and 12.5 microM = 10.5 +/- 2.8). An increase in malondialdehyde content (nmol microg of protein(-1)), especially at high CdCl(2) concentrations (control = 7.3 +/- 0.5; CdCl(2): 7.5 microM = 11.2 +/- 3.1, 10 microM = 14.6 +/- 3.8, and 12.5 microM = 20.5 +/- 6.5) indicated that there was enhanced lipid peroxidation. Light and scanning electron microscopy showed that there was a concentration-dependent loss of adherent cells and the formation of vesicles indicative of cell death. These results indicated that CdCl(2) increased oxidative stress in C(2)C(12) cells, and this stress probably compromised cell adhesion and the cellular antioxidant defense mechanisms.  相似文献   

15.
T4 RNA ligase has been shown to synthesize nucleoside and dinucleoside 5'-polyphosphates by displacement of the AMP from the E-AMP complex with polyphosphates and nucleoside diphosphates and triphosphates. Displacement of the AMP by tripolyphosphate (P3) was concentration dependent, as measured by SDS/PAGE. When the enzyme was incubated in the presence of 0.02 mm [alpha-32P] ATP, synthesis of labeled Ap4A was observed: ATP was acting as both donor (Km, microm) and acceptor (Km, mm) of AMP from the enzyme. Whereas, as previously known, ATP or dATP (but not other nucleotides) were able to form the E-AMP complex, the specificity of a compound to be acceptor of AMP from the E-AMP complex was very broad, and with Km values between 1 and 2 mm. In the presence of a low concentration (0.02 mm) of [alpha-32P] ATP (enough to form the E-AMP complex, but only marginally enough to form Ap4A) and 4 mm of the indicated nucleotides or P3, the relative rate of synthesis of the following radioactive (di)nucleotides was observed: Ap4X (from XTP, 100); Ap4dG (from dGTP, 74); Ap4G (from GTP, 49); Ap4dC (from dCTP, 23); Ap4C (from CTP, 9); Ap3A (from ADP, 5); Ap4ddA, (from ddATP, 1); p4A (from P3, 200). The enzyme also synthesized efficiently Ap3A in the presence of 1 mm ATP and 2 mm ADP. The following T4 RNA ligase donors were inhibitors of the synthesis of Ap4G: pCp > pAp > pA2'p.  相似文献   

16.
An enzyme able to cleave dinucleoside triphosphates has been purified 3,750-fold from Saccharomyces cerevisiae. Contrary to the enzymes previously shown to catabolize Ap4A in yeast, this enzyme is a hydrolase rather than a phosphorylase. The dinucleoside triphosphatase molecular ratio estimated by gel filtration is 55,000. Dinucleoside triphosphatase activity is strongly stimulated by the presence of divalent cations. Mn2+ displays the strongest stimulating effect, followed by Mg2+, Co2+, Cd2+, and Ca2+. The Km value for Ap3A is 5.4 microM (50 mM Tris-HCl [pH 7.8], 5 mM MgCl2, and 0.1 mM EDTA; 37 degrees C). Dinucleoside polyphosphates are substrates of this enzyme, provided that they contain more than two phosphates and that at least one of the two bases is a purine (Ap3A, Ap3G, Ap3C, Gp3G, Gp3C, m7Gp3A, m7Gp3G, Ap4A, Ap4G, Ap4C, Ap4U, Gp4G, and Ap5A are substrates; AMP, ADP, ATP, Ap2A, and Cp4U are not). Among the products, a nucleoside monophosphate is always formed. The specificity of cleavage of methylated dinucleoside triphosphates and the molecular weight of dinucleoside triphosphatase indicate that this enzyme is different from the mRNA decapping enzyme previously characterized (A. Stevens, Mol. Cell. Biol. 8:2005-2010, 1988).  相似文献   

17.
DNA ligase from the hyperthermophilic marine archaeon Pyrococcus furiosus (Pfu DNA ligase) synthesizes adenosine 5'-tetraphosphate (p4A) and dinucleoside polyphosphates by displacement of the adenosine 5'-monophosphate (AMP) from the Pfu DNA ligase-AMP (E-AMP) complex with tripolyphosphate (P3), nucleoside triphosphates (NTP), or nucleoside diphosphates (NDP). The experiments were performed in the presence of 1-2 microM [alpha-32P]ATP and millimolar concentrations of NTP or NDP. Relative rates of synthesis (%) of the following adenosine(5')tetraphospho(5')nucleosides (Ap4N) were observed: Ap4guanosine (Ap4G) (from GTP, 100); Ap4deoxythymidine (Ap4dT) (from dTTP, 95); Ap4xanthosine (Ap4X) (from XTP, 94); Ap4deoxycytidine (Ap4dC) (from dCTP, 64); Ap4cytidine (Ap4C) (from CTP, 60); Ap4deoxyguanosine (Ap4dG) (from dGTP, 58); Ap4uridine (Ap4U) (from UTP, <3). The relative rate of synthesis (%) of adenosine(5')triphospho(5')nucleosides (Ap3N) were: Ap3guanosine (Ap3G) (from GDP, 100); Ap3xanthosine (Ap3X) (from XDP, 110); Ap3cytidine (Ap3C) (from CDP, 42); Ap3adenosine (Ap3A) (from ADP, <1). In general, the rate of synthesis of Ap4N was double that of the corresponding Ap3N. The enzyme presented optimum activity at a pH value of 7.2-7.5, in the presence of 4 mM Mg2+, and at 70 degrees C. The apparent Km values for ATP and GTP in the synthesis of Ap4G were about 0.001 and 0.4mM, respectively, lower values than those described for other DNA or RNA ligases. Pfu DNA ligase is used in the ligase chain reaction (LCR) and some of the reactions here reported [in particular the synthesis of Ap4adenosine (Ap4A)] could take place during the course of that reaction.  相似文献   

18.
Diadenosine tetraphosphate (Ap4A) and diadenosine pentaphosphate (Ap5A) have been identified in bovine adrenal medullary tissue using an HPLC method. The values obtained were 0.1 +/- 0.05 mumol/g of tissue for both compounds. The subcellular fraction where Ap4A and Ap5A were present in the highest concentration was chromaffin granules: 32 nmol/mg of protein for both compounds (approximately 6 mM intragranularly). This value was 30 times higher than in the cytosolic fraction. Enzymatic degradation of Ap4A and Ap5A, isolated from chromaffin granules, with phosphodiesterase produces AMP as the final product. The Ap4A and Ap5A obtained from this tissue were potent inhibitors of adenosine kinase. Their Ki values relative to adenosine were 0.3 and 2 microM for Ap4A and Ap5A, respectively. The cytosolic fraction also contains enzymatic activities that degrade Ap4A as well as Ap5A. These activities were measured by an HPLC method; the observed Km values were 10.5 +/- 0.5 and 13 +/- 1 microM for Ap4A and Ap5A, respectively.  相似文献   

19.
In order to elucidate the postulated role of diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) in cell growth regulation, the Ap4A cellular content was measured in cells submitted to various treatments affecting the cell growth. Ap4A level was found to increase ten times when cells reached confluence, whereas no significant variation of the ATP pool was observed. Cell growth arrest after serum depletion did not cause any variation in the Ap4A pool. A limited increase in the Ap4A pool was observed when growth of arrested cells was reinitiated but this variation reflected only the increase of cell density. No significant variation in the Ap4A intracellular level was observed after submitting two eukaryotic cell lines to various stresses (cytotoxic drugs, ethanol and heat-shock treatments). These results suggest that, in eukaryotic cells, Ap4A is not involved in cell growth stimulation but rather is associated with cell contact growth inhibition. They also suggest that Ap4A is not an 'alarmone', contrary to what has been proposed for bacteria.  相似文献   

20.
Diadenosine oligophosphates (Ap(n)A) have been proposed as intracellular and extracellular signaling molecules in animal cells. The ratio of diadenosine 5',5'-P1,P3-triphosphate to diadenosine 5',5'-P1,P4-tetraphosphate (Ap3A/Ap4A) is sensitive to the cellular status and alters when cultured cells undergo differentiation or are treated with interferons. In cells undergoing apoptosis induced by DNA topoisomerase II inhibitor VP16, the concentration of Ap3A decreases significantly while that of Ap4A increases. Here, we have examined the effects of exogenously added Ap3A and Ap4A on apoptosis and morphological differentiation. Penetration of Ap(n)A into cells was achieved by cold shock. Ap4A at 10 microM induced programmed cell death in human HL60, U937 and Jurkat cells and mouse VMRO cells and this effect appeared to require Ap4A breakdown as hydrolysis-resistant analogues of Ap4A were inactive. On its own, Ap3A induced neither apoptosis nor cell differentiation but did display strong synergism with the protein kinase C activators 12-deoxyphorbol-13-O-phenylacetate and 12-deoxyphorbol-13-O-phenylacetate-20-acetate in inducing differentiation of HL60 cells. We propose that Ap4A and Ap3A are physiological antagonists in determination of the cellular status: Ap4A induces apoptosis whereas Ap3A is a co-inductor of differentiation. In both cases, the mechanism of signal transduction remains unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号