首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uracil-DNA glycosylase, UNG2, interacts with PCNA and initiates post-replicative base excision repair (BER) of uracil in DNA. The DNA repair protein XRCC1 also co-localizes and physically interacts with PCNA. However, little is known about whether UNG2 and XRCC1 directly interact and participate in a same complex for repair of uracil in replication foci. Here, we examine localization pattern of these proteins in live and fixed cells and show that UNG2 and XRCC1 are likely in a common complex in replication foci. Using pull-down experiments we demonstrate that UNG2 directly interacts with the nuclear localization signal-region (NLS) of XRCC1. Western blot and functional analysis of immunoprecipitates from whole cell extracts prepared from S-phase enriched cells demonstrate the presence of XRCC1 complexes that contain UNG2 in addition to separate XRCC1 and UNG2 associated complexes with distinct repair features. XRCC1 complexes performed complete repair of uracil with higher efficacy than UNG2 complexes. Based on these results, we propose a model for a functional role of XRCC1 in replication associated BER of uracil.  相似文献   

2.
Interstrand crosslinks (ICLs) are covalent lesions formed by cisplatin. The mechanism for the processing and removal of ICLs by DNA repair proteins involves nucleotide excision repair (NER), homologous recombination (HR) and fanconi anemia (FA) pathways. In this report, we monitored the processing of a flanking uracil adjacent to a cisplatin ICL by the proteins involved in the base excision repair (BER) pathway. Using a combination of extracts, purified proteins, inhibitors, functional assays and cell culture studies, we determined the specific BER proteins required for processing a DNA substrate with a uracil adjacent to a cisplatin ICL. Uracil DNA glycosylase (UNG) is the primary glycosylase responsible for the removal of uracils adjacent to cisplatin ICLs, whereas other uracil glycosylases can process uracils in the context of undamaged DNA. Repair of the uracil adjacent to cisplatin ICLs proceeds through the classical BER pathway, highlighting the importance of specific proteins in this redundant pathway. Removal of uracil is followed by the generation of an abasic site and subsequent cleavage by AP endonuclease 1 (APE1). Inhibition of either the repair or redox domain of APE1 gives rise to cisplatin resistance. Inhibition of the lyase domain of Polymerase β (Polβ) does not influence cisplatin cytotoxicity. In addition, lack of XRCC1 leads to increased DNA damage and results in increased cisplatin cytotoxicity. Our results indicate that BER activation at cisplatin ICLs influences crosslink repair and modulates cisplatin cytotoxicity via specific UNG, APE1 and Polβ polymerase functions.  相似文献   

3.
Genomic uracil resulting from spontaneously deaminated cytosine generates mutagenic U:G mismatches that are usually corrected by error-free base excision repair (BER). However, in B-cells, activation-induced cytosine deaminase (AID) generates U:G mismatches in hot-spot sequences at Ig loci. These are subject to mutagenic processing during somatic hypermutation (SHM) and class switch recombination (CSR). Uracil N-glycosylases UNG2 and SMUG1 (single strand-selective monofunctional uracil-DNA glycosylase 1) initiate error-free BER in most DNA contexts, but UNG2 is also involved in mutagenic processing of AID-induced uracil during the antibody diversification process, the regulation of which is not understood. AID is strictly single strand-specific. Here we show that in the presence of Mg2+ and monovalent salts, human and mouse SMUG1 are essentially double strand-specific, whereas UNG2 efficiently removes uracil from both single and double stranded DNA under all tested conditions. Furthermore, SMUG1 and UNG2 display widely different sequence preferences. Interestingly, uracil in a hot-spot sequence for AID is 200-fold more efficiently removed from single stranded DNA by UNG2 than by SMUG1. This may explain why SMUG1, which is not excluded from Ig loci, is unable to replace UNG2 in antibody diversification. We suggest a model for mutagenic processing in which replication protein A (RPA) recruits UNG2 to sites of deamination and keeps DNA in a single stranded conformation, thus avoiding error-free BER of the deaminated cytosine.  相似文献   

4.
Nuclear uracil-DNA glycosylase UNG2 has an established role in repair of U/A pairs resulting from misincorporation of dUMP during replication. In antigen-stimulated B-lymphocytes UNG2 removes uracil from U/G mispairs as part of somatic hypermutation and class switch recombination processes. Using antibodies specific for the N-terminal non-catalytic domain of UNG2, we isolated UNG2-associated repair complexes (UNG2-ARC) that carry out short-patch and long-patch base excision repair (BER). These complexes contain proteins required for both types of BER, including UNG2, APE1, POLbeta, POLdelta, XRCC1, PCNA and DNA ligase, the latter detected as activity. Short-patch repair was the predominant mechanism both in extracts and UNG2-ARC from proliferating and less BER-proficient growth-arrested cells. Repair of U/G mispairs and U/A pairs was completely inhibited by neutralizing UNG-antibodies, but whereas added recombinant SMUG1 could partially restore repair of U/G mispairs, it was unable to restore repair of U/A pairs in UNG2-ARC. Neutralizing antibodies to APE1 and POLbeta, and depletion of XRCC1 strongly reduced short-patch BER, and a fraction of long-patch repair was POLbeta dependent. In conclusion, UNG2 is present in preassembled complexes proficient in BER. Furthermore, UNG2 is the major enzyme initiating BER of deaminated cytosine (U/G), and possibly the sole enzyme initiating BER of misincorporated uracil (U/A).  相似文献   

5.
DNA glycosylases UNG and SMUG1 excise uracil from DNA and belong to the same protein superfamily. Vertebrates contain both SMUG1 and UNG, but their distinct roles in base excision repair (BER) of deaminated cytosine (U:G) are still not fully defined. Here we have examined the ability of human SMUG1 and UNG2 (nuclear UNG) to initiate and coordinate repair of U:G mismatches. When expressed in Escherichia coli cells, human UNG2 initiates complete repair of deaminated cytosine, while SMUG1 inhibits cell proliferation. In vitro, we show that SMUG1 binds tightly to AP-sites and inhibits AP-site cleavage by AP-endonucleases. Furthermore, a specific motif important for the AP-site product binding has been identified. Mutations in this motif increase catalytic turnover due to reduced product binding. In contrast, the highly efficient UNG2 lacks product-binding capacity and stimulates AP-site cleavage by APE1, facilitating the two first steps in BER. In summary, this work reveals that SMUG1 and UNG2 coordinate the initial steps of BER by distinct mechanisms. UNG2 is apparently adapted to rapid and highly coordinated repair of uracil (U:G and U:A) in replicating DNA, while the less efficient SMUG1 may be more important in repair of deaminated cytosine (U:G) in non-replicating chromatin.  相似文献   

6.
Base excision repair (BER) corrects a variety of small base lesions in DNA. The UNG gene encodes both the nuclear (UNG2) and the mitochondrial (UNG1) forms of the human uracil-DNA glycosylase (UDG). We prepared mitochondrial extracts free of nuclear BER proteins from human cell lines. Using these extracts we show that UNG is the only detectable UDG in mitochondria, and mitochondrial BER (mtBER) of uracil and AP sites occur by both single-nucleotide insertion and long-patch repair DNA synthesis. Importantly, extracts of mitochondria carry out repair of modified AP sites which in nuclei occurs through long-patch BER. Such lesions may be rather prevalent in mitochondrial DNA because of its proximity to the electron transport chain, the primary site of production of reactive oxygen species. Furthermore, mitochondrial extracts remove 5' protruding flaps from DNA which can be formed during long-patch BER, by a "flap endonuclease like" activity, although flap endonuclease (FEN1) is not present in mitochondria. In conclusion, combined short- and long-patch BER activities enable mitochondria to repair a broader range of lesions in mtDNA than previously known.  相似文献   

7.
8.
Luo Y  Walla M  Wyatt MD 《DNA Repair》2008,7(2):162-169
Thymidylate synthase (TS) is an important target of several chemotherapeutic agents, including 5-FU and raltitrexed (Tomudex). During TS inhibition, TTP levels decrease with a subsequent increase in dUTP. Uracil incorporated into the genome is removed by base excision repair (BER). Thus, BER initiated by uracil DNA glycosylase (UDG) activity has been hypothesized to influence the toxicity induced by TS inhibitors. In this study we created a human cell line expressing the Ugi protein inhibitor of UNG family of UDGs, which reduces cellular UDG activity by at least 45-fold. Genomic uracil incorporation was directly measured by mass spectrometry following treatment with TS inhibitors. Genomic uracil levels were increased over 4-fold following TS inhibition in the Ugi-expressing cells, but did not detectably increase in UNG proficient cells. Despite the difference in genomic uracil levels, there was no difference in toxicity between the UNG proficient and UNG-inhibited cells to folate or nucleotide-based inhibitors of TS. Cell cycle analysis showed that UNG proficient and UNG-inhibited cells arrested in early S-phase and resumed replication progression during recovery from RTX treatment almost identically. The induction of gamma-H2AX was measured following TS inhibition as a measure of whether uracil excision promoted DNA double strand break formation during S-phase arrest. Although gamma-H2AX was detectable following TS inhibition, there was no difference between UNG proficient and UNG-inhibited cells. We therefore conclude that uracil excision initiated by UNG does not adequately explain the toxicity caused by TS inhibition in this model.  相似文献   

9.
尿嘧啶糖基化酶是碱基切除修复过程的起始酶,对于维护基因稳定具有重要意义。在不同组织及不同细胞周期中,该酶的表达水平存在差异。通过反转录PCR克隆了人尿嘧啶糖基化酶的cDNA编码序列,进一步以克隆所得的已知UNG基因拷贝数的重组质粒作为定量标准,通过实时荧光定量RT-PCR测定了食管癌病人手术切除组织中尿嘧啶糖基化酶的mRNA水平,探讨了尿嘧啶糖基化酶表达水平与食管癌之间的联系。  相似文献   

10.
Sung JS  Mosbaugh DW 《Biochemistry》2003,42(16):4613-4625
The rate, extent, and DNA synthesis patch size of base excision repair (BER) were measured using Escherichia coli GM31 cell-free extracts and a pGEM (form I) DNA substrate containing a site-specific uracil or ethenocytosine target. The rate of complete BER was stimulated (approximately 3-fold) by adding exogenous E. coli DNA ligase to the cell-free extract, whereas addition of E. coli Ung, Nfo, Fpg, or Pol I did not stimulate BER. Hence, DNA ligation was identified as the rate-limiting step in the E. coli BER pathway. The addition of exogenous DNA polymerase I caused modest inhibition of BER, which was overcome by concomitant addition of DNA ligase. Repair patch size determinations were performed to assess the distribution of DNA synthesis associated with both uracil- and ethenocytosine-initiated BER. During the early phase (0-5 min) of the BER reaction, the large majority of repair events resulted from short patch (1-nucleotide) DNA synthesis. However, during the late phase (>10 min) both short and long (2-20 nucleotide) patches were observed, with long patch BER progressively dominating the repair process. In addition, the patch size distribution was influenced by the ratio of DNA polymerase I to DNA ligase activity in the reaction. A novel mode of BER was identified that involved DNA synthesis tracts of >205 nucleotides in length and termed very-long patch BER. This BER process was dependent upon DNA polymerase I since very-long patch BER was inhibited by DNA polymerase I antibody and addition of excess DNA polymerase I reversed this inhibition.  相似文献   

11.
Mammalian cells repair apurinic/apyrimidinic (AP) sites in DNA by two distinct pathways: a polymerase beta (pol beta)-dependent, short- (one nucleotide) patch base excision repair (BER) pathway, which is the major route, and a PCNA-dependent, long- (several nucleotide) patch BER pathway. The ability of a cell-free lysate prepared from asexual Plasmodium falciparum malaria parasites to remove uracil and repair AP sites in a variety of DNA substrates was investigated. We found that the lysate contained uracil DNA glycosylase, AP endonuclease, DNA polymerase, flap endonuclease, and DNA ligase activities. This cell-free lysate effectively repaired a regular or synthetic AP site on a covalently closed circular (ccc) duplex plasmid molecule or a long (382 bp), linear duplex DNA fragment, or a regular or reduced AP site in short (28 bp), duplex oligonucleotides. Repair of the AP sites in the various DNA substrates involved a long-patch BER pathway. This biology is different from mammalian cells, yeast, Xenopus, and Escherichia coli, which predominantly repair AP sites by a one-nucleotide patch BER pathway. The apparent absence of a short-patch BER pathway in P. falciparum may provide opportunities to develop antimalarial chemotherapeutic strategies for selectively damaging the parasites in vivo and will allow the characterization of the long-patch BER pathway without having to knock-out or inactivate a short-patch BER pathway, which is necessary in mammalian cells.  相似文献   

12.
Liu X  Liu J 《DNA Repair》2005,4(11):1295-1305
Repair of damaged DNA is of great importance in maintaining genome integrity, and there are several pathways for repair of damaged DNA in almost all organisms. Base excision repair (BER) is a main process for repairing DNA carrying slightly damaged bases. Several proteins are required for BER; these include DNA glycosylases, AP endonuclease, DNA polymerase, and DNA ligase. In some bacteria the single-stranded specific exonuclease, RecJ, is also involved in BER. In this research, six Chlamydiophila pneumoniae (C. pneumoniae) genes, encoding uracil DNA glycosylase (CpUDG), endonuclease IV (CpEndoIV), DNA polymerase I (CpDNApolI), endonuclease III (CpEndoIII), single-stranded specific exonuclease RecJ (CpRecJ), and DNA ligase (CpDNALig), were inserted into the expression vector pET28a. All proteins, except for CpDNALig, were successfully expressed in E. coli, and purified proteins were characterized in vitro. C. pneumoniae BER was reconstituted in vitro with CpUDG, CpEndoIV, CpDNApolI and E. coli DNA ligase (EcDNALig). After uracil removal by CpUDG, the AP site could be repaired by two BER pathways that involved in the replacement of either one (short patch BER) or multiple nucleotides (long patch BER) at the lesion site. CpEndoIII promoted short patch BER via its 5'-deoxyribophosphodiesterase (5'-dRPase) activity, while CpRecJ had little effect on short patch BER. The flap structure generated during DNA extension could be removed by the 5'-exonuclease activity of CpDNApolI. Based on these observations, we propose a probable mechanism for BER in C. pneumoniae.  相似文献   

13.
Post-replicative base excision repair in replication foci.   总被引:11,自引:0,他引:11       下载免费PDF全文
Base excision repair (BER) is initiated by a DNA glycosylase and is completed by alternative routes, one of which requires proliferating cell nuclear antigen (PCNA) and other proteins also involved in DNA replication. We report that the major nuclear uracil-DNA glycosylase (UNG2) increases in S phase, during which it co-localizes with incorporated BrdUrd in replication foci. Uracil is rapidly removed from replicatively incorporated dUMP residues in isolated nuclei. Neutralizing antibodies to UNG2 inhibit this removal, indicating that UNG2 is the major uracil-DNA glycosylase responsible. PCNA and replication protein A (RPA) co-localize with UNG2 in replication foci, and a direct molecular interaction of UNG2 with PCNA (one binding site) and RPA (two binding sites) was demonstrated using two-hybrid assays, a peptide SPOT assay and enzyme-linked immunosorbent assays. These results demonstrate rapid post-replicative removal of incorporated uracil by UNG2 and indicate the formation of a BER complex that contains UNG2, RPA and PCNA close to the replication fork.  相似文献   

14.
Mammalian mitochondria contain several 16.5 kb circular DNAs (mtDNA) encoding electron transport chain proteins. Reactive oxygen species formed as byproducts from oxidative phosphorylation in these organelles can cause oxidative deamination of cytosine and lead to uracil in mtDNA. Upon mtDNA replication, these lesions, if unrepaired, can lead to mutations. Until recently, it was thought that there was no DNA repair in mitochondria, but lately there is evidence that some lesions are efficiently repaired in these organelles. In the study of nuclear DNA repair, the in vitro repair measurements in cell extracts have provided major insights into the mechanisms. The use of whole-cell extract based DNA repair methods has revealed that mammalian nuclear base excision repair (BER) diverges into two pathways: the single-nucleotide replacement and long patch repair mechanisms. Similar in vitro methods have not been available for the study of mitochondrial BER. We have established an in vitro DNA repair system supported by rat liver mitochondrial protein extract and DNA substrates containing a single uracil opposite to a guanine. Using this approach, we examined the repair pathways and the identity of the DNA polymerase involved in mitochondrial BER (mtBER). Employing restriction analysis of in vitro repaired DNA to map the repair patch size, we demonstrate that only one nucleotide is incorporated during the repair process. Thus, in contrast to BER in the nucleus, mtBER of uracil in DNA is solely accomplished by single-nucleotide replacement.  相似文献   

15.
Base excision repair (BER) is a critical pathway in cellular defense against endogenous or exogenous DNA damage. This elaborate multistep process is initiated by DNA glycosylases that excise the damaged base, and continues through the concerted action of additional proteins that finally restore DNA to the unmodified state. BER has been subject to detailed biochemical analysis in bacteria, yeast and animals, mainly through in vitro reproduction of the entire repair reaction in cell‐free extracts. However, an understanding of this repair pathway in plants has consistently lagged behind. We report the extension of BER biochemical analysis to plants, using Arabidopsis cell extracts to monitor repair of DNA base damage in vitro. We have used this system to demonstrate that Arabidopsis cell extracts contain the enzymatic machinery required to completely repair ubiquitous DNA lesions, such as uracil and abasic (AP) sites. Our results reveal that AP sites generated after uracil excision are processed both by AP endonucleases and AP lyases, generating either 5′‐ or 3′‐blocked ends, respectively. We have also found that gap filling and ligation may proceed either through insertion of just one nucleotide (short‐patch BER) or several nucleotides (long‐patch BER). This experimental system should prove useful in the biochemical and genetic dissection of BER in plants, and contribute to provide a broader picture of the evolution and biological relevance of DNA repair pathways.  相似文献   

16.
Deoxyuridine 5′-triphosphate pyrophosphatase (dUTPase) and uracil-DNA glycosylase (UNG) are key enzymes involved in the control of the presence of uracil in DNA. While dUTPase prevents uracil misincorporation by removing dUTP from the deoxynucleotide pool, UNG excises uracil from DNA as a first step of the base excision repair pathway (BER). Here, we report that strong down-regulation of dUTPase in UNG-deficient Trypanosoma brucei cells greatly impairs cell viability in both bloodstream and procyclic forms, underscoring the extreme sensitivity of trypanosomes to uracil in DNA. Depletion of dUTPase activity in the absence of UNG provoked cell cycle alterations, massive dUTP misincorporation into DNA and chromosomal fragmentation. Overall, trypanosomatid cells that lack dUTPase and UNG activities exhibited greater proliferation defects and DNA damage than cells deficient in only one of these activities. To determine the mutagenic consequences of uracil in DNA, mutation rates and spectra were analyzed in dUTPase-depleted cells in the presence of UNG activity. These cells displayed a spontaneous mutation rate 9-fold higher than the parental cell line. Base substitutions at A:T base pairs and deletion frequencies were both significantly enhanced which is consistent with the generation of mutagenic AP sites and DNA strand breaks. The increase in strand breaks conveyed a concomitant increase in VSG switching in vitro. The low tolerance of T. brucei to uracil in DNA emphasizes the importance of uracil removal and regulation of intracellular dUTP pool levels in cell viability and genetic stability and suggests potential strategies to compromise parasite survival.  相似文献   

17.
Using isogenic mouse embryonic fibroblasts and human cancer cell lines, we show that cells defective in base excision repair (BER) display a cisplatin-specific resistant phenotype. This was accompanied by enhanced repair of cisplatin interstrand cross-links (ICLs) and ICL-induced DNA double strand breaks, but not intrastrand adducts. Cisplatin induces abasic sites with a reduced accumulation in uracil DNA glycosylase (UNG) null cells. We show that cytosines that flank the cisplatin ICLs undergo preferential oxidative deamination in vitro, and AP endonuclease 1 (APE1) can cleave the resulting ICL DNA substrate following removal of the flanking uracil. We also show that DNA polymerase β has low fidelity at the cisplatin ICL site after APE1 incision. Down-regulating ERCC1-XPF in BER-deficient cells restored cisplatin sensitivity. Based on our results, we propose a novel model in which BER plays a positive role in maintaining cisplatin cytotoxicity by competing with the productive cisplatin ICL DNA repair pathways.  相似文献   

18.
尿嘧啶N糖基化酶(UNG)的研究进展   总被引:4,自引:0,他引:4  
尿嘧啶N糖基化酶是碱基切除修复过程中的重要组分。本文从酶的概况、在生物体内的分布范围、人尿嘧啶N糖基化酶的基因结构、基因表达与调控、酶的作用机制等方面进行了介绍,并讨论了进一步研究的意义与方向。  相似文献   

19.
Enzymes involved in genomic maintenance of human parasites are attractive targets for parasite-specific drugs. The parasitic protozoan Trypanosoma cruzi contains at least two enzymes involved in the protection against potentially mutagenic uracil, a deoxyuridine triphosphate nucleotidohydrolase (dUTPase) and a uracil-DNA glycosylase belonging to the highly conserved UNG-family. Uracil-DNA glycosylase activities excise uracil from DNA and initiate a multistep base-excision repair (BER) pathway to restore the correct nucleotide sequence. Here we report the biochemical characterisation of T.cruzi UNG (TcUNG) and its contribution to the total uracil repair activity in T.cruzi. TcUNG is shown to be the major uracil-DNA glycosylase in T.cruzi. The purified recombinant TcUNG exhibits substrate preference for removal of uracil in the order ssU>U:G>U:A, and has no associated thymine-DNA glycosylase activity. T.cruzi apparently repairs U:G DNA substrate exclusively via short-patch BER, but the DNA polymerase involved surprisingly displays a vertebrate POLdelta-like pattern of inhibition. Back-up UDG activities such as SMUG, TDG and MBD4 were not found, underlying the importance of the TcUNG enzyme in protection against uracil in DNA and as a potential target for drug therapy.  相似文献   

20.
Replication Protein A (RPA) is a single-stranded DNA binding protein that interacts with DNA repair proteins including Uracil DNA Glycosylase (UNG2). Here, I report DNA binding and activity assays using purified recombinant RPA and UNG2. Using synthetic DNA substrates, RPA was found to promote UNG2's interaction with ssDNA-dsDNA junctions regardless of the DNA strand polarity surrounding the junction. RPA stimulated UNG2's removal of uracil bases paired with adenine or guanine in DNA as much as 17-fold when the uracil was positioned 21 bps from ssDNA-dsDNA junctions, and the largest degree of UNG2 stimulation occurred when RPA was in molar excess compared to DNA. I found that RPA becomes sequestered on ssDNA regions surrounding junctions which promotes its spatial targeting of UNG2 near the junction. However, when RPA concentration exceeds free ssDNA, RPA promotes UNG2's activity without spatial constraints in dsDNA regions. These effects of RPA on UNG2 were found to be mediated primarily by interactions between RPA's winged-helix domain and UNG2's N-terminal domain, but when the winged-helix domain is unavailable, a secondary interaction between UNG2's N-terminal domain and RPA can occur. This work supports a widespread role for RPA in stimulating uracil base excision repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号