首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Rulli K  Lenz J  Levy LS 《Journal of virology》2002,76(5):2363-2374
A time course analysis of SL3-3 murine leukemia virus (SL3) infection in thymus and bone marrow of NIH/Swiss mice was performed to assess changes that occur during the early stages of progression to lymphoma. Virus was detectable in thymocytes, bone marrow, and spleen as early as 1 to 2 weeks postinoculation (p.i.). In bone marrow, virus infection was detected predominantly in immature myeloid or granulocytic cells. Flow cytometry revealed significant reductions of the Ter-119(+) and Mac-1(+) populations, and significant expansions of the Gr-1(+) and CD34(+) populations, between 2 and 4 weeks p.i. Analysis of colony-forming potential confirmed these findings. In the thymus, SL3 replication was associated with significant disruption in thymocyte subpopulation distribution between 4 and 7 weeks p.i. A significant thymic regression was observed just prior to the clonal outgrowth of tumor cells. Proviral long terminal repeats (LTRs) with increasing numbers of enhancer repeats were observed to accumulate exclusively in the thymus during the first 8 weeks p.i. Observations were compared to the early stages of infection with a virtually nonpathogenic SL3 mutant, termed SL3DeltaMyb5, which was shown by real-time PCR to be replication competent. Comparison of SL3 with SL3DeltaMyb5 implicated certain premalignant changes in tumorigenesis, including (i) increased proportions of Gr-1(+) and CD34(+) bone marrow progenitors, (ii) a significant increase in the proportion of CD4(-) CD8(-) thymocytes, (iii) thymic regression prior to tumor outgrowth, and (iv) accumulation of LTR enhancer variants. A model in which disrupted bone marrow hematopoiesis and thymopoiesis contribute to the development of lymphoma in the SL3-infected animal is discussed.  相似文献   

4.
A new strain of Friend recombinant mink cell focus-inducing retrovirus, FMCF -1-E, was found to induce leukemias in NFS and IRW mice. Although the isolate was obtained from a stock of FMCF -1 ( Troxler et al., J. Exp. Med. 148:639-653, 1978), FMCF -1-E was distinguishable from FMCF -1 by oligonucleotide fingerprinting and antigenic analysis, using monoclonal antibodies. These analyses suggested that FMCF -1-E is a distinct FMCF isolate rather than a simple variant of FMCF -1. After neonatal inoculation, the latency for leukemia induction was 3 to 8 months. A similar long latency was also seen when Friend murine leukemia virus 57 was inoculated into adult (6-week-old) IRW mice. However, sequential inoculation of FMCF -1-E at birth followed by Friend murine leukemia 57 at 6 weeks of age led to a shortened latency period (2.5 to 4 months). Only neonatal inoculation of Friend murine leukemia virus 57 was able to induce a more rapid appearance of leukemia. The leukemia cell type in the majority of cases, regardless of virus inoculation protocol, was erythroid, but occasional myeloid, lymphoid, and mixed leukemias were also observed. In contrast to NFS and IRW mice, BALB/c mice were resistant to leukemia induction by FMCF -1-E and also showed some transient resistance to leukemia induction by Friend murine leukemia virus 57.  相似文献   

5.
Most simple retroviruses induce tumors of a single cell type when infected into susceptible hosts. The SRS 19-6 murine leukemia virus (MuLV), which originated in mainland China, induces leukemias of multiple cellular origins. Indeed, infected mice often harbor more than one tumor type. Since the enhancers of many MuLVs are major determinants of tumor specificity, we tested the role of the SRS 19-6 MuLV enhancers in its broad disease specificity. The enhancer elements of the Moloney MuLV (M-MuLV) were replaced by the 170-bp enhancers of SRS 19-6 MuLV, yielding the recombinants DeltaMo+SRS(+) and DeltaMo+SRS(-) M-MuLV. M-MuLV normally induces T-lymphoid tumors in all infected mice. Surprisingly, when neonatal mice were inoculated with DeltaMo+SRS(+) or DeltaMo+SRS(-) M-MuLV, all tumors were of T-lymphoid origin, typical of M-MuLV rather than SRS 19-6 MuLV. Thus, the SRS 19-6 MuLV enhancers did not confer the broad disease specificity of SRS 19-6 MuLV to M-MuLV. However, all tumors contained DeltaMo+SRS M-MuLV proviruses with common enhancer alterations. These alterations consisted of tandem multimerization of a subregion of the SRS 19-6 enhancers, encompassing the conserved LVb and core sites and adjacent sequences. Moreover, when tumors induced by the parental SRS 19-6 MuLV were analyzed, most of the T-lymphoid tumors had similar enhancer alterations in the same region whereas tumors of other lineages retained the parental SRS 19-6 MuLV enhancers. These results emphasize the importance of a subregion of the SRS 19-6 MuLV enhancer in induction of T-cell lymphoma. The relevant sequences were consistent with crucial sequences for T-cell lymphomagenesis identified for other MuLVs such as M-MuLV and SL3-3 MuLV. These results also suggest that other regions of the SRS 19-6 MuLV genome contribute to its broad leukemogenic spectrum.  相似文献   

6.
7.
Moloney murine leukemia virus (MuLV) can be a potent inducer of promonocytic leukemias in mice that are undergoing a chronic inflammatory response. The neoplasms are, at least in part, associated with insertional mutagenesis of the c-myb locus. Evidence is presented for the existence of at least two genetic elements of the virus that are crucial to induction of this disease but are not required for viral replication in hematopoietic tissues or induction of lymphoid disease. These genetic elements were detected by testing the pathogenicity of recombinants between Moloney and Friend MuLVs, the latter of which is nonleukemic to myeloid cells under these conditions, and by testing Moloney MuLV-based viruses that have nonretroviral sequences inserted at specific endonuclease sites in their long terminal repeats (LTRs). Analysis of the Moloney/Friend recombinants showed that there are sequences within the structural gene domain of Moloney, but not Friend, MuLV that are necessary for promonocytic leukemia, whereas the LTRs of the MuLVs are equally effective for promonocytic tumor formation and insertional mutagenesis of the c-myb gene. Experiments with viruses which were mutagenized in the LTR by insertions demonstrated that there is a specific genetic element in the U3 region of the LTR of Moloney MuLV, upstream of the 75-base-pair enhancer which, when interrupted, results in loss of leukemogenicity for cells in the monocytic lineage but not cells in the lymphoid lineage. We conclude, therefore, that promonocytic leukemia induction, in Moloney MuLV-infected mice undergoing a chronic inflammatory response, requires specific sequences in the structural gene region of Moloney MuLV as well as other sequences in the regulatory region of the virus.  相似文献   

8.
9.
The Graffi murine leukemia virus (MuLV) was isolated in 1954 by Arnold Graffi, who characterized it as a myeloid leukemia-inducing retrovirus. He and his team, however, soon observed the intriguing phenomenon of hematological diversification, which corresponded to a decrease of myeloid leukemias and an increase of other types of leukemias. Recently, we derived two different molecular clones corresponding to ecotropic nondefective genomes that were named GV-1.2 and GV-1.4. The induced leukemias were classified as myeloid based on morphological analysis of blood smears. In this study, we further characterized the two variants of the Graffi murine retrovirus, GV-1.2 and GV-1.4, in three different strains of mice. We show that the Graffi MuLV is a multipotent retrovirus capable of inducing both lymphoid (T- and B-cell) and nonlymphoid (myeloid, erythroid, megakaryocytic) leukemia. Many of these are very complex with concomitant expression of different hematopoietic lineages. Interestingly, a high percentage of megakaryocytic leukemias, a type of leukemia rarely observed with MuLVs, arise in the FVB/n strain of mice. The genetic backgrounds of the different strains of mice influence greatly the results. Furthermore, the enhancer region, different for GV-1.2 and GV-1.4, plays a pivotal role in the disease specificity: GV-1.2 induces more lymphoid leukemias, and GV-1.4 induces more nonlymphoid ones.  相似文献   

10.
11.
The murine leukemia retrovirus SL3-3 induces lymphomas in the T-cell compartment of the hematopoetic system when it is injected into newborn mice of susceptible strains. Previously, our laboratory reported on a deletion mutant of SL3-3 that induces T-cell tumors faster than the wild-type virus (S. Ethelberg, A. B. Sorensen, J. Schmidt, A. Luz, and F. S. Pedersen, J. Virol. 71:9796-9799, 1997). PCR analyses of proviral integrations in the promoter region of the c-myc proto-oncogene in lymphomas induced by wild-type SL3-3 [SL3-3(wt)] and the enhancer deletion mutant displayed a difference in targeting frequency into this locus. We here report on patterns of proviral insertions into the c-myc promoter region from SL3-3(wt), the faster variant, as well as other enhancer variants from a total of approximately 250 tumors. The analysis reveals (i) several integration site hot spots in the c-myc promoter region, (ii) differences in integration patterns between SL3-3(wt) and enhancer deletion mutant viruses, (iii) a correlation between tumor latency and the number of proviral insertions into the c-myc promoter, and (iv) a [5'-(A/C/G)TA(C/G/T)-3'] integration site consensus sequence. Unexpectedly, about 12% of the sequenced insertions were associated with point mutations in the direct repeat flanking the provirus. Based on these results, we propose a model for error-prone gap repair of host-provirus junctions.  相似文献   

12.
13.
1255 cases of leukemia-lymphoma were tested between 1972 and 1984 by multiple marker analysis. Routine leukemia phenotyping was performed using standard morphological and cytochemical techniques in combination with clinical and histo-pathological information; the main emphasis was put on immunological surface marker analysis using erythrocyte rosette assays, TdT and a large panel of poly- and monoclonal antibody tests. The 1255 cases were divided into these major types and subtypes: 349 cases of ALL and related immature T- and Burkitt-lymphomas (cALL, pre B-ALL, B-ALL and Burkitt-lymphomas, T-ALL and immature, mostly leukemic T-lymphomas, Null-ALL), 454 cases of mature T- and B-cell malignancies (T-CLL, mycosis fungoides, Sezary-syndrome, T-lymphomas, B-CLL, hairy cell leukemia, multiple myeloma, B-lymphomas), 263 cases of acute myeloid leukemias (AML, AMMoL/AMoL), 182 cases of chronic myeloid leukemias (CML in chronic phase, CMoL, CML in blast crisis), 6 cases of erythroleukemia and 1 case of megakaryoblastic leukemia. A simplified classification scheme which has been used in our laboratories is presented. Phenotyping is of diagnostic, prognostic and therapeutic relevance, most evidently for patients with ALL. Routine leukemia phenotyping should be performed with highly standardized techniques and reagents and by combining information from several fields in the multiple marker analysis. New areas of leukemia research might become very useful for the routine procedure of phenotyping.  相似文献   

14.
Despite the high degree of homology (91%) between the nucleotide sequences of the Friend-mink cell focus-forming (MCF) and the Moloney murine leukemia virus (MuLV) genomic long terminal repeats (LTRs), the pathogenicities determined by the LTR sequences of the two viruses are quite different. Friend-MCF MuLV is an erythroid leukemia virus, and Moloney MuLV is a lymphoid leukemia virus. To map the LTR sequences responsible for the different disease specificities, we constructed nine viruses with LTRs recombinant between the Friend-MCF and Moloney MuLVs. Analysis of the leukemia induced with the recombinant viruses showed that a 195-base-pair nucleotide sequence, including a 75-base-pair nucleotide Moloney enhancer, is responsible for the tissue-specific leukemogenicity of Moloney MuLV. However, not only the enhancer but also its downstream sequences appear to be necessary. The Moloney virus enhancer and its downstream sequence exerted a dominant effect over that of the Friend-MCF virus, but the enhancer sequence alone did not. The results that three of the nine recombinant viruses induced both erythroid and lymphoid leukemias supported the hypothesis that multiple viral genetic determinants control both the ability to cause leukemia and the type of leukemia induced.  相似文献   

15.
The human BCR-ABL oncogenes encoded by the Philadelphia chromosome (Ph) affect the pathogenesis of diverse types of leukemia and yet are rarely associated with T-lymphoid leukemia. To determine whether BCR-ABL kinases are inefficient in transforming T lymphocytes, BCR-ABL-expressing retroviruses were injected intrathymically into mice. Thymomas that expressed BCR-ABL kinase developed after a relatively long latent period. In most thymomas, deletion of 3' proviral sequences resulted in loss of tk-neo and occasionally caused expression of kinase-active carboxy-terminally truncated BCR-ABL oncoprotein. In contrast, deletion of 3' proviral sequences was not observed in thymomas induced with Abelson murine leukemia virus (A-MuLV). BCR-ABL viruses induced distinct patterns of disease and involved different thymocyte subsets than A-MuLV and Moloney murine leukemia virus (Mo-MuLV). While Mo-MuLV only induced Thy-1+ thymomas, v-abl- and BCR-ABL-induced thymomas often contained mixed populations of B220+ and Thy-1+ lymphocytes in the same tumor. In most v-abl and BCR-ABL tumors, Thy-1+ lymphoid cells expressed CD8 and a continuum of CD4 ranging from negative to positive. Conversely, Mo-MuLV thymomas contained distinct populations of CD4+ cells that were either CD8+ or CD8-. A-MuLV-transformed T-lymphoid cells did not express the CD3/T-cell receptor complex, while BCR-ABL tumors were CD3+. Thus, BCR-ABL viruses preferentially induce somewhat more differentiated T lymphocytes than are transformed by A-MuLV. Furthermore, rare B220+ lymphocytes may represent preferred v-abl and BCR-ABL transformation targets in the thymus.  相似文献   

16.
The Graffi murine leukemia virus (MuLV) is a nondefective retrovirus that induces granulocytic leukemia in BALB/c and NFS mice. To identify genes involved in Graffi MuLV-induced granulocytic leukemia, tumor cell DNAs were examined for genetic alterations at loci described as common proviral integration sites in MuLV-induced myeloid, lymphoid, and erythroid leukemias. Southern blot analysis revealed rearrangements in c-myc, Fli-1, Pim-1, and Spi-1/PU.1 genes in 20, 10, 3.3, and 3.3% of the tumors tested, respectively. These results demonstrate for the first time the involvement of those genes in granulocytic leukemia.  相似文献   

17.
The aim of this study was to investigate to which extent acute leukemias could be monitored for residual disease by using atypical antigen combinations as leukemia-related markers. Atypical antigenic features were determined by double color flow cytometry and included coexpression of lymphoid and myeloid related antigens, unphysiological coexpression of immature and mature antigens, and lack of an antigen that is normally expressed during maturation. Atypical immunophenotypes were detected in 35 of 68 patients with AML (51.5%) and 15 of 24 patients with ALL (62.5%). When 12 patients with leukemia-associated markers were again analyzed at relapse, the relevant antigen combinations were retained in 11 of them. The sensitivity of this two color flow cytometric assay as determined in dilution experiments was 1 in 10(3) to 10(4) cells. Follow-up studies of bone marrow samples revealed that, after induction chemotherapy cells with leukemia-associated markers were detectable in several patients at a frequency of 0.5 to 4%, but only patients in whom the cells with atypical antigens never disappeared suffered from relapse. In contrast, patients who became negative for the atypical cells remained in complete remission (median remission duration after the first negative bone marrow assessment by flow cytometry 52 weeks, range 20-102). We conclude that atypical antigen combinations, which are present in a meaningful number of acute leukemias, are a valuable means of monitoring acute leukemia patients during follow-up. This flow cytometric approach can complement other strategies to get a more accurate definition of remission in acute leukemia.  相似文献   

18.
19.
Transient expression assays were used to determine the sequences within the long terminal repeat (LTR) that define the high activity in T-lymphoma cells of the leukemogenic SL3-3 virus in comparison with that of the nonleukemogenic Akv virus. Each of these viruses contains sequences related to the consensus element, the enhancer core. The SL3-3 and Akv enhancer cores differ at a single base pair. Substitution of the Akv core element into the SL3-3 LTR decreased expression in T-lymphoma cells but not in other cell types. Likewise, substitution of the SL3-3 core sequence into the Akv LTR increased expression in T-lymphoma cells but not in other types of hematopoietic cells. These data indicate that the SL3-3 enhancer core sequence functions better than that of Akv in T-lymphoma cells, but in other hematopoietic cell types the two are approximately equivalent. Competition DNA-protein binding assays were used to assess what nuclear factors from T-lymphoma lines and non-T lines bound to the SL3-3 and Akv core elements. Factors were detected that bound specifically to either the SL3-3 or Akv core but not to the other. Another factor was detected that bound equally well to both. However, none of these factors was specific to T-lymphoma cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号