首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
QRS波群的准确定位是ECG信号自动分析的基础。为提高QRS检测率,提出一种基于独立元分析(ICA)和联合小波熵(CWS)检测多导联ECG信号QRS的算法。ICA算法从滤波后的多导联ECG信号中分离出对应心室活动的独立元;然后对各独立元进行连续小波变换(CWT),重构小波系数的相空间,结合相空间中的QRS信息对独立元排序;最后检测排序后独立元的CWS得到QRS信息。实验对St.Petersburg12导联心率失常数据库及64导联犬心外膜数据库测试,比较本文算法与单导联QRS检测算法和双导联QRS检测算法的性能。结果表明,该文算法的性能最好,检测准确率分别为99.98%和100%。  相似文献   

2.
结合模板匹配和改进的导数阈值法,提出了一种QRS波群实时检测方法CT2(combination method of template matching and improved derivative threshold)。首先,预采集一段ECG信号,使用高斯函数构造QRS模板;然后将实时采集的ECG信号使用CT2检测R波位置。为了比较算法检测精度和效率,使用CT2和基于小波模极大值的方法进行了对比。结果表明,CT2检测精度与基于小波模极大值的方法相当,但运算时间大大缩短,适于实时检测。  相似文献   

3.
目的:为了更准确地利用心电图(ECG)进行临床生理疾病诊断,提高心电信号的自动分析准确度.介绍了一种利用小波变换的时频局部化特性以及多分辨率特性对心电信号进行处理的算法.方法:使用定位准确.计算简便的二阶微分Mart小波使用多孔算法来对ECG中QRS波群进行标定.结果:将算法应用到MIT/BIH国际标准心电数据库进行仿真.结论:通过仿真证明,该算法能够很精确地定位QRS波群,为心电信号的后续研究打好基础.  相似文献   

4.
QRS波群是ECG信号的重要组成部分,是心电信号分析的基础.QRS波群的检测方法已经有很多种实用有效的方法,并逐步地走向成熟,在实际应用中得到实现.本文就QRS波群的检测方法作了具体的整理与分析,较全面的阐述了实际应用中的各种算法,最后作者对检测算法的发展趋势进行了总结和展望.  相似文献   

5.
基于小波变换的混合二维ECG数据压缩方法   总被引:5,自引:0,他引:5  
提出了一种新的基于小波变换的混合二维心电(electrocardiogram,ECG)数据压缩方法。基于ECG数据的两种相关性,该方法首先将一维ECG信号转化为二维信号序列。然后对二维序列进行了小波变换,并利用改进的编码方法对变换后的系数进行了压缩编码:即先根据不同系数子带的各自特点和系数子带之间的相似性,改进了等级树集合分裂(setpartitioninghierarchicaltrees,SPIHT)算法和矢量量化(vectorquantization,VQ)算法;再利用改进后的SPIHT与VQ相混合的算法对小波变换后的系数进行了编码。利用所提算法与已有具有代表性的基于小波变换的压缩算法和其他二维ECG信号的压缩算法,对MIT/BIH数据库中的心律不齐数据进行了对比压缩实验。结果表明:所提算法适用于各种波形特征的ECG信号,并且在保证压缩质量的前提下,可以获得较大的压缩比。  相似文献   

6.
目的:心电信号(Electrocardio-signal,ECG)是人体中最重要的生物信号之一,是一种具有非平稳性和非线性特性的信号.分析ECG信号是诊断心脏疾病的有利工具,近年来国内外很多学者致力于这方面的研究.本文探讨短时Fourier变换(STFT)和离散小波变换(DWT)这两种时频分析方法在ECG信号分析中的应用.方法:本文采用麻省理工学院的MIT-BIH数据库中提供的数据,运用MATLAB软件编程,讨论短时Fourier变换和离散小波变换在ECG信号分析中的应用.结果:通过编程,做出了正常ECG信号和失常ECG信号的短时Fourier变换的时域图和频谱图以及正常ECG信号和失常ECG信号的单级离散小波变换的结果.结论:正常ECG信号和失常ECG信号的STFT变换的时域图和频谱图都能反应出信号的频率和时间的变化关系.但是,正常信号和失常信号的频率和时间有明显不同,正常信号的能量随时间和频率的变化关系有序整齐,而且周围有较少的杂波;失常信号的能量随时间和频率的变化关系杂乱,而且周围存在较多的杂波.通过离散小波变化后,正常信号和失常信号均产生了不同的离散小波系数,根据不同的离散小波系数,可以很容易判断正常信号和失常信号的区别.  相似文献   

7.
本文描述了一种基于两进小波变换(DYWT)的QRS波检测器。小波尺度的选择是基于心电信号的频谱的特点,并根据多尺度选择方法判决检测心电QRS波,实验结果表明,对于在有强大的噪声和严重的基线漂移干扰下的心电信号能够有效的识别。  相似文献   

8.
心音信号包含了关于人体丰富的病理信息,其分析与研究为心血管疾病的诊断提供了很重要的临床依据.本文探讨了心音信号分析的研究现状,及其短时傅立叶变换(STFT),小波变换(WT),Hilbert-Huang变换在心音信号分析中的应用以及需要解决的理论问题,并运用PhysioBank数据库中的ECG数据,将Hilbert变换运用于ECG信号的分析中,结合MATLAB软件,做出了较为理想的瞬时频率图.  相似文献   

9.
小波变换,由于其具有时频局部化的特性及多尺度特性,能敏感地反映突变信号,是一种理想的边缘提取方法.本文系统地介绍了作者在图像边缘检测方面所做的理论探讨、算法及应用研究工作.目前的边缘提取方法有多种,本文将重点集中于基于小波变换的图像边缘检测方法的理论推导和算法实现.  相似文献   

10.
小波变换已被很多心电学者用于ECG信号的特征分析检测,在虚拟心脏基础上,选取合适的小波,对心肌梗塞的仿真体表电位进行小波变换细节分量处理,提出了一种新的体表电位形态特征的分析方法。结果表明,基于小波变换处理后体表电位图可以更地提示不同部位心肌在体表电位分布的特征,其表征出的拓扑形态对体表电位和虚拟心脏方法用于心肌梗塞临床诊断提供了一种新的途径。  相似文献   

11.
《IRBM》2008,29(5):310-317
Among all electrocardiogram (ECG) components, the QRS complex is the most significant feature. This paper presents a new algorithm for recognition of QRS complexes in the electrocardiogram (ECG) based on support vector machine (SVM). Digital filtering techniques are used to remove power line interference and baseline wander in the ECG signal. SVM is used as a classifier to delineate QRS and non-QRS regions. Algorithm performance was evaluated against the standard CSE ECG database. The results indicated that the algorithm achieved 99.3% of the detection rate. The percentage of false positive and false negative was 12.4 and 0.7% respectively. It could function reliably even under the condition of poor signal quality of the ECG signal.  相似文献   

12.
《IRBM》2014,35(6):351-361
Nowadays, doctors use electrocardiogram (ECG) to diagnose heart diseases commonly. However, some nonideal effects are often distributed in ECG. Discrete wavelet transform (DWT) is efficient for nonstationary signal analysis. In this paper, the Symlets sym5 is chosen as the wavelet function to decompose recorded ECG signals for noise removal. Soft-thresholding method is then applied for feature detection. To detect ECG features, R peak of each heart beat is first detected, and the onset and offset of the QRS complex are then detected. Finally, the signal is reconstructed to remove high frequency interferences and applied with adaptive searching window and threshold to detect P and T waves. We use the MIT-BIH arrhythmia database for algorithm verification. For noise reduction, the SNR improvement is achieved at least 10 dB at SNR 5 dB, and most of the improvement SNR are better than other methods at least 1 dB at different SNR. When applying to the real portable ECG device, all R peaks can be detected when patients walk, run, or move at the speed below 9 km/h. The performance of delineation on database shows in our algorithm can achieve high sensitivity in detecting ECG features. The QRS detector attains a sensitivity over 99.94%, while detectors of P and T waves achieve 99.75% and 99.7%, respectively.  相似文献   

13.
This paper presents a new ECG denoising approach based on noise reduction algorithms in empirical mode decomposition (EMD) and discrete wavelet transform (DWT) domains. Unlike the conventional EMD based ECG denoising approaches that neglect a number of initial intrinsic mode functions (IMFs) containing the QRS complex as well as noise, we propose to perform windowing in the EMD domain in order to reduce the noise from the initial IMFs instead of discarding them completely thus preserving the QRS complex and yielding a relatively cleaner ECG signal. The signal thus obtained is transformed in the DWT domain, where an adaptive soft thresholding based noise reduction algorithm is employed considering the advantageous properties of the DWT compared to that of the EMD in preserving the energy in the presence of noise and in reconstructing the original ECG signal with a better time resolution. Extensive simulations are carried out using the MIT-BIH arrythmia database and the performance of the proposed method is evaluated in terms of several standard metrics. The simulation results show that the proposed method is able to reduce noise from the noisy ECG signals more accurately and consistently in comparison to some of the stateof-the-art methods.  相似文献   

14.
Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.  相似文献   

15.
In this work a new strategy for automatic detection of ischemic episodes is proposed. A new measure for ST deviation based on the time–frequency analysis of the ECG and the use of a reduced set of Hermite basis functions for T wave and QRS complex morphology characterization, are the key points of the proposed methodology.Usually, ischemia manifests itself in the ECG signal by ST segment deviation or by QRS complex and T wave changes in morphology. These effects might occur simultaneously. Time–frequency methods are especially adequate for the detection of small transient characteristics hidden in the ECG, such as ST segment alterations. A Wigner–Ville transform-based approach is proposed to estimate the ST shift. To characterize the alterations in the T wave and the QRS morphologies, each cardiac beat is described by expansions in Hermite functions. These demonstrated to be suitable to capture the most relevant morphologic characteristics of the signal. A lead dependent neural network classifier considers, as inputs, the ST segment deviation and the Hermite expansion coefficients. The ability of the proposed method in ischemia episodes detection is evaluated using the European Society of Cardiology ST–T database. A sensitivity of 96.7% and a positive predictivity of 96.2% reveal the capacity of the proposed strategy to perform ischemic episodes identification.  相似文献   

16.
The purpose of this research is to develop an intuitive and robust realtime QRS detection algorithm based on the physiological characteristics of the electrocardiogram waveform. The proposed algorithm finds the QRS complex based on the dual criteria of the amplitude and duration of QRS complex. It consists of simple operations, such as a finite impulse response filter, differentiation or thresholding without complex and computational operations like a wavelet transformation. The QRS detection performance is evaluated by using both an MIT-BIH arrhythmia database and an AHA ECG database (a total of 435,700 beats). The sensitivity (SE) and positive predictivity value (PPV) were 99.85% and 99.86%, respectively. According to the database, the SE and PPV were 99.90% and 99.91% in the MIT-BIH database and 99.84% and 99.84% in the AHA database, respectively. The result of the noisy environment test using record 119 from the MIT-BIH database indicated that the proposed method was scarcely affected by noise above 5 dB SNR (SE = 100%, PPV > 98%) without the need for an additional de-noising or back searching process.  相似文献   

17.
BACKGROUND: The presence of parasite interference signals could cause serious problems in the registration of ECG signals and many works have been done to suppress electromyogram (EMG) artifacts noises and disturbances from electrocardiogram (ECG). Recently, new developed techniques based on global and local transforms have become popular such as wavelet shrinkage approaches (1995) and time-frequency dependent threshold (1998). Moreover, other techniques such as artificial neural networks (2003), energy thresholding and Gaussian kernels (2006) are used to improve previous works. This review summarizes windowed techniques of the concerned issue. METHODS AND RESULTS: We conducted a mathematical method based on two sets of information, which are dominant scale of QRS complexes and their domain. The task is proposed by using a varying-length window that is moving over the whole signals. Both the high frequency (noise) and low frequency (base-line wandering) removal tasks are evaluated for manually corrupted ECG signals and are validated for actual recorded ECG signals. CONCLUSIONS: Although, the simplicity of the method, fast implementation, and preservation of characteristics of ECG waves represent it as a suitable algorithm, there may be some difficulties due to pre-stage detection of QRS complexes and specification of algorithm's parameters for varying morphology cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号