首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular mobility and nucleocytoplasmic flux in hepatoma cells   总被引:17,自引:10,他引:17       下载免费PDF全文
Fluorescence microphotolysis (photobleaching) was used to measure, in single polyethylene glycol-induced polykaryons of hepatoma tissue culture cells, nucleocytoplasmic flux and intracellular mobility for a series of dextrans ranging in molecular mass from 3 to 150 kD and for bovine serum albumin. For the dextrans, the cytoplasmic and the nucleoplasmic translational diffusion coefficients amounted to approximately 9 and approximately 15%, respectively, of the value in dilute buffer. The diffusion coefficients depended inversely on molecular radius, suggesting that diffusion was dominated by viscosity effects. By application of the Stokes-Einstein equation, cytoplasmic and nucleoplasmic viscosities were derived to be 6.6 and 8.1 cP, respectively, at 23 degrees C. Between 10 and 37 degrees C nucleoplasmic diffusion coefficients increased by approximately 45-85%, whereas cytoplasmic diffusion coefficients were virtually independent of temperature. In contrast to that of the dextrans, diffusion of bovine serum albumin was more restricted. In the cytoplasm the diffusion coefficient was approximately 1.5% of the value in dilute buffer; in the nucleus albumin was largely immobile. This indicated that albumin mobility is dominated by association with immobile cellular structures. Nucleocytoplasmic flux of dextrans depended inversely on molecular mass with an exclusion limit between 17 and 41 kD. This agrees with previous measurements on primary hepatocytes (Peters, R., 1984, EMBO [Eur. Mol. Biol. Organ.] J. 3:1831-1836), suggesting that in both cell types the nuclear envelope has properties of a molecular sieve with a functional pore radius of approximately 55 A.  相似文献   

2.
Fluorescence recovery after photobleaching with an unmodified confocal laser scanning microscope (confocal FRAP) was used to determine the diffusion properties of network forming biological macromolecules such as aggrecan. The technique was validated using fluorescein isothiocyanate (FITC)-labeled dextrans and proteins (molecular mass 4-2000 kDa) at 25 degrees C and with fluorescent microspheres (207 nm diameter) over a temperature range of 5-50 degrees C. Lateral diffusion coefficients (D) were independent of the focus position, and the degree and extent of bleach. The free diffusion coefficient (Do) of FITC-aggrecan determined by confocal FRAP was 4.25 +/- 0.6 x 10(-8) cm2 s-1, which is compatible with dynamic laser light scattering measurements. It appeared to be independent of concentration below 2.0 mg/ml, but at higher concentrations (2-20 mg/ml) the self-diffusion coefficient followed the function D = Do(e)(-Bc). The concentration at which the self-diffusion coefficient began to fall corresponded to the concentration predicted for domain overlap. Multimolecular aggregates of aggrecan ( approximately 30 monomers) had a much lower free diffusion coefficient (Do = 6.6 +/- 1.0 x 10(-9) cm2 s-1) but showed a decrease in mobility with concentration of a form similar to that of the monomer. The method provides a technique for investigating the macromolecular organization in glycan-rich networks at concentrations close to those found physiologically.  相似文献   

3.
Urea permeability of human red cells   总被引:5,自引:1,他引:4       下载免费PDF全文
The rate of unidirectional [14C]urea efflux from human red cells was determined in the self-exchange and net efflux modes with the continuous flow tube method. Self-exchange flux was saturable and followed simple Michaelis-Menten kinetics. At 38 degrees C the maximal self-exchange flux was 1.3 X 10(-7) mol cm-2 s-1, and the urea concentration for half-maximal flux, K1/2, was 396 mM. At 25 degrees C the maximal self-exchange flux decreased to 8.2 X 10(-8) mol cm-2 s-1, and K1/2 to 334 mM. The concentration-dependent urea permeability coefficient was 3 X 10(-4) cm s-1 at 1 mM and 8 X 10(-5) cm s-1 at 800 mM (25 degrees C). The latter value is consonant with previous volumetric determinations of urea permeability. Urea transport was inhibited competitively by thiourea; the half-inhibition constant, Ki, was 17 mM at 38 degrees C and 13 mM at 25 degrees C. Treatment with 1 mM p-chloromercuribenzosulfonate inhibited urea permeability by 92%. Phloretin reduced urea permeability further (greater than 97%) to a "ground" permeability of approximately 10(-6) cm s-1 (25 degrees C). This residual permeability is probably due to urea permeating the hydrophobic core of the membrane by simple diffusion. The apparent activation energy, EA, of urea transport after maximal inhibition was 59 kJ mol-1, whereas in control cells EA was 34 kJ mol-1 at 1 M and 12 kJ mol-1 at 1 mM urea. In net efflux experiments with no extracellular urea, the permeability coefficient remained constantly high, independent of a variation of intracellular urea between 1 and 500 mM, which indicates that the urea transport system is asymmetric. It is concluded that urea permeability above the ground permeability is due to facilitate diffusion and not to diffusion through nonspecific leak pathways as suggested previously.  相似文献   

4.
Fluorescence recovery after photobleaching (FRAP) is a widely used tool for estimating mobility parameters of fluorescently tagged molecules in cells. Despite the widespread use of confocal laser scanning microscopes (CLSMs) to perform photobleaching experiments, quantitative data analysis has been limited by lack of appropriate practical models. Here, we present a new approximate FRAP model for use on any standard CLSM. The main novelty of the method is that it takes into account diffusion of highly mobile molecules during the bleach phase. In fact, we show that by the time the first postbleach image is acquired in a CLSM a significant fluorescence recovery of fast-moving molecules has already taken place. The model was tested by generating simulated FRAP recovery curves for a wide range of diffusion coefficients and immobile fractions. The method was further validated by an experimental determination of the diffusion coefficient of fluorescent dextrans and green fluorescent protein. The new FRAP method was used to compare the mobility rates of fluorescent dextrans of 20, 40, 70, and 500 kDa in aqueous solution and in the nucleus of living HeLa cells. Diffusion coefficients were lower in the nucleoplasm, particularly for higher molecular weight dextrans. This is most likely caused by a sterical hindrance effect imposed by nuclear components. Decreasing the temperature from 37 to 22 degrees C reduces the dextran diffusion rates by approximately 30% in aqueous solution but has little effect on mobility in the nucleoplasm. This suggests that spatial constraints to diffusion of dextrans inside the nucleus are insensitive to temperature.  相似文献   

5.
D E Wolf  P Henkart  W W Webb 《Biochemistry》1980,19(17):3893-3904
Fluorescence-labeled trinitrophenylated stearoylated dextrans have been used as controllable analogues of cell membrane proteins on model membranes and on a variety of natural cell membranes. This paper reports their behavior on 3T3 mouse fibroblast plasma membranes. Spatial distribution on the membrane was studied by fluorescence microscopy, and molecular mobility was measured by fluorescence photobleaching recovery. At concentrations from 10(2) to 3 X 10(3) molecules/micron2 essentially homogeneous fluorescence was observed after treatment with these stearoyldextrans in culture. Diffusion coefficients and fractional recovery of fluorescence after photobleaching were cvoncentration independent. For 3 X 10(3) molecules/micron2 we found at 23 degrees C D = (3.0 +/- 1.8) X 10(-10) cm2/s with 65 +/- 17% recovery and at 37 degrees C D = (7.0 +/- 5.0) X 10(-10) cm2/s without a change of the fractional recovery. Cross-linking with antibodies stopped diffusion on a macroscopic scale and sometimes induced patching, mottling (defined as the development of gaps in the fluorescence layer), and capping (defined as the confinement of the fluorescence to less than 50% of the cell). Capping required approximately 3 h at 37 degrees C and was inhibited by metabolic poisons and cytochalasin B. These drugs did not affect stearoyldextran diffusion or fractional recovery. Colchicine, which did not dramatically affect capping, slowed diffusion two- to threefold but did not affect fractional recovery. The antibody inhibition of the diffusion of stearoyldextrans precedent to capping did not affect the diffusion of a lipid probe or fluorescein isothiocyanate labeled membrane proteins. When the trinitrophenylated stearoyldextran was cleared from most of the surface by capping and the surface subsequently relabeled with stearoyldextran, the diffusion coefficient and fractional recovery of the second label were identical with those of the first label prior to capping. Thus, capping does not clear an immobilizing factor from the membrane.  相似文献   

6.
Cyclic GMP (cGMP) is the intracellular messenger mediating phototransduction in retinal rods, with its longitudinal diffusion in the rod outer segment (ROS) likely to be a factor in determining light sensitivity. From the kinetics of cGMP-activated currents in the truncated ROS of the salamander (Ambystoma tigrinum), the cGMP diffusion coefficient was previously estimated to be approximately 60 x 10(-8) cm2 s-1. On the other hand, fluorescence measurements in intact salamander ROS using 8-(fluoresceinyl)thioguanosine 3',5'-cyclic monophosphate (Fl-cGMP) led to a diffusion coefficient for this compound of 1 x 10(-8) cm2 s-1; after corrections for differences in size and in binding to cellular components between cGMP and Fl-cGMP, this gave an upper limit of 11 x 10(-8) cm2 s-1 for the cGMP diffusion coefficient. To properly compare the two sets of measurements, we have examined the diffusion of Fl-cGMP in the truncated ROS. From the kinetics of Fl-cGMP-activated currents, we have obtained a diffusion coefficient of 3 x 10(-8) cm2 s-1 for this analog; the cGMP diffusion coefficient measured from the same truncated ROSs was approximately 80 x 10(-8) cm2 s-1. Thus, a factor of 27 appears appropriate for correcting differences in size and intracellular binding between cGMP and Fl-cGMP. Application of this correction factor to the Fl-cGMP diffusion coefficient measurements by Olson and Pugh (1993) gives a cGMP diffusion coefficient of approximately 30 x 10(-8) cm2 s-1, in reasonable agreement with the value measured from the truncated ROS.  相似文献   

7.
Size-dependent DNA mobility in cytoplasm and nucleus   总被引:20,自引:0,他引:20  
The diffusion of DNA in cytoplasm is thought to be an important determinant of the efficacy of gene delivery and antisense therapy. We have measured the translational diffusion of fluorescein-labeled double-stranded DNA fragments (in base pairs (bp): 21, 100, 250, 500, 1000, 2000, 3000, 6000) after microinjection into cytoplasm and nucleus of HeLa cells. Diffusion was measured by spot photobleaching using a focused argon laser spot (488 nm). In aqueous solutions, diffusion coefficients of the DNA fragments in water (D(w)) decreased from 53 x 10(-8) to 0.81 x 10(-8) cm(2)/s for sizes of 21-6000 bp; D(w) was related empirically to DNA size: D(w) = 4.9 x 10(-6) cm(2)/s.[bp size](-0.72). DNA diffusion coefficients in cytoplasm (D(cyto)) were lower than D(w) and depended strongly on DNA size. D(cyto)/D(w) decreased from 0.19 for a 100-bp DNA fragment to 0.06 for a 250-bp DNA fragment and was <0.01 for >2000 bp. Diffusion of microinjected fluorescein isothiocyanate (FITC) dextrans was faster than that of comparably sized DNA fragments of 250 bp and greater. In nucleus, all DNA fragments were nearly immobile, whereas FITC dextrans of molecular size up to 580 kDa were fully mobile. These results suggest that the highly restricted diffusion of DNA fragments in nucleoplasm results from extensive binding to immobile obstacles and that the decreased lateral mobility of DNAs >250 bp in cytoplasm is because of molecular crowding. The diffusion of DNA in cytoplasm may thus be an important rate-limiting barrier in gene delivery utilizing non-viral vectors.  相似文献   

8.
Dynamic and static light scattering, CD, and optical melting experiments have been conducted on M13mp19 viral circular single-strand DNA as a function of NaCl concentration. Over the 10,000-fold range in concentration from 100 microM to 1.0 M NaCl, the melting curves and CD spectra indicate an increase in base stacking and stability of stacked regions with increased salt concentration. Analysis of dynamic light scattering measurements of the single-strand DNA solutions as a function of K2 from 1.56 to 20 X 10(10) cm-2 indicates the collected autocorrelation functions are biexponential, thus revealing the presence of two decaying dynamic components. These components are taken to correspond to (1) global translational motions of the molecular center of mass and (2) motions of the internal molecular subunits. From the evaluated relaxation rates of these components, diffusion coefficients D0 and Dplat are determined. The center of mass translational diffusion coefficient D0, varies in a nonmonotonic manner, by 10%, from 3.75 X 10(-8) to 3.39 X 10(-8) cm2/s over the NaCl concentration range from 100 microM to 1.0 M. Likewise, the radius of gyration RG, obtained from static light scattering experiments, varies by 15% from 699 to 830 A over the same NaCl range Dplat, the diffusion coefficient of the internal subunits, displays a different dependence on the NaCl concentration and decreases, by nearly 22% in a titratable fashion, from 12.46 X 10(-8) to 10.26 X 10(-8) cm2/s, when the salt is increased from 100 microM to 1.0 M. A semiquantitative interpretation of these results is provided by analysis of the light scattering data in terms of the circular Rouse-Zimm chain. Rouse-Zimm model parameters are estimated from the experimental results, assuming the circular chains are composed of a fixed number of Gaussian segments, N + 1 = 15. The rms displacement of the internal segments, b, is estimated to be the smallest (442 A) in 100 mM NaCl. Increases of b to 467 A in 100 microM and 524 A in 1.0 M NaCl are observed. Meanwhile, the hypothetical friction factor of the internal subunits, f, progressively increases as the NaCl concentration is raised. It is inferred from the evaluated Rouse-Zimm model parameters that both the static flexibility of the circular chain and diffusive displacements of the internal subunits decrease with increases in NaCl concentration from 100 mM to 1.0 M.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
This paper describes the theory of an integrative optical imaging system and its application to the analysis of the diffusion of 3-, 10-, 40-, and 70-kDa fluorescent dextran molecules in agarose gel and brain extracellular microenvironment. The method uses a precisely defined source of fluorescent molecules pressure ejected from a micropipette, and a detailed theory of the intensity contributions from out-of-focus molecules in a three-dimensional medium to a two-dimensional image. Dextrans tagged with either tetramethylrhodamine or Texas Red were ejected into 0.3% agarose gel or rat cortical slices maintained in a perfused chamber at 34 degrees C and imaged using a compound epifluorescent microscope with a 10 x water-immersion objective. About 20 images were taken at 2-10-s intervals, recorded with a cooled CCD camera, then transferred to a 486 PC for quantitative analysis. The diffusion coefficient in agarose gel, D, and the apparent diffusion coefficient, D*, in brain tissue were determined by fitting an integral expression relating the measured two-dimensional image intensity to the theoretical three-dimensional dextran concentration. The measurements in dilute agarose gel provided a reference value of D and validated the method. Values of the tortuosity, lambda = (D/D*)1/2, for the 3- and 10-kDa dextrans were 1.70 and 1.63, respectively, which were consistent with previous values derived from tetramethylammonium measurements in cortex. Tortuosities for the 40- and 70-kDa dextrans had significantly larger values of 2.16 and 2.25, respectively. This suggests that the extracellular space may have local constrictions that hinder the diffusion of molecules above a critical size that lies in the range of many neurotrophic compounds.  相似文献   

10.
Connectin (titin) is a large filamentous protein (single peptide) with a molecular mass of approximately 3 MDa, contour length approximately 900 nm, and diameter approximately 4 nm, and resides in striated muscle. Connectin links the thick filaments to the Z-lines in a sarcomere and produces a passive elastic force when muscle fiber is stretched. The aim of this study is to elucidate some aspects of physical properties of isolated beta-connectin (titin 2), a proteolytic fragment of connectin, by means of dynamic light-scattering (DLS) spectroscopy. The analysis of DLS spectra for beta-connectin gave the translational diffusion coefficient of 3.60 x 10(-8) cm2/s at 10 degrees C (or the hydrodynamic radius of 44.1 nm), molecular mass little smaller than 3.0 MDa (for a literature value of sedimentation coefficient), the root-mean-square end-to-end distance of 163 nm (or the radius of gyration of 66.6 nm), and the Kuhn segment number of 30 and segment length of 30 nm (or the persistence length of 15 nm). These results permitted to estimate the flexural rigidity of 6.0 x 10(-20) dyn x cm2 for filament bending, and the elastic constant of 7 dyn/cm for extension of one persistence length. Based on a simple model, implications of the present results in muscle physiology are discussed.  相似文献   

11.
A method is described for determining the diffusion coefficients of small solutes in limited volumes (approximately equal to 4-9 ml) of fluid. Diffusion is measured in a three-chamber diffusion cell across a central unstirred compartment. Compartments are separated by nitrocellulose membranes. The instantaneous concentration gradient and the instantaneous flux of solute into the dilute end compartment are derived from changes in the concentration of solute in the two stirred end compartments through time. The diffusion coefficient is calculated from the slope of the least-squares regression line relating the magnitude of the instantaneous solute flux to that of the instantaneous concentration gradient. The apparatus is calibrated with a solute of known diffusivity (KCl). Diffusion coefficients thus determined in water at 25 degrees C for CaCl2 (7.54 X 10(-6) cm2.s-1), Na2-ATP (7.01 X 10(-6) cm2.s-1), 2-deoxyglucose (5.31 X 10(-6) cm2.s-1), and D-Na-lactate (5.62 X 10(-6) cm2.s-1) differed by an average of 3.7% from literature values. The method described results in accurate estimates of diffusion coefficients by a simple and relatively rapid procedure.  相似文献   

12.
We studied the lateral mobility of membrane components in cell- substrate focal contacts using the fluorescence photobleaching recovery method. The measurements were performed on isolated substrate-attached membranes of chicken gizzard fibroblasts. The diffusion coefficients of a fluorescent lipid probe and rhodamine-conjugated surface proteins within contact regions (identified by interference-reflection microscopy) were significantly lower than those measured in nonattached areas along the ventral membrane. Complete recovery of fluorescence after photobleaching of the lipid probe was measured both in focal contacts and in nonattached areas with lateral diffusion coefficient (D) of approximately 10(-8) cm2/s. This indicated that the lipid probe is free to diffuse from and into the contact regions. Rhodamine-labeled surface components (mostly proteins) exhibited almost complete recovery after bleaching (approximately 90%) in unattached regions of the ventral membrane with D congruent to 10(-9 cm2/s. The rhodamine-labeled proteins in focal contacts showed only partial recovery (approximately 50%), suggesting that large proportion of the membrane proteins in cell- substrate contacts are immobile (within the time scale of the experiments, D less than or equal to 5 x 10(-12) cm2/s. The implications of these findings on the molecular dynamics of cell contacts are discussed.  相似文献   

13.
The flux of calcium through an aqueous compartment was determined in a flow-dialysis cell in which two dialysis membranes separated the middle aqueous compartment from two outer compartments. The contribution of convection to the total calcium flux was large but could be removed by addition of 1% agar. The flux of calcium through the gelled aqueous compartment agreed with theoretical expectations. The self-diffusion coefficient for calcium from these results was calculated to be 0.81 X 10(-5) cm2 X s-1. Carp parvalbumin significantly enhanced the calcium flux at 2.3 X 10(-6)M free calcium. The calcium flux increased linearly with parvalbumin concentration. These observations are consistent with the hypothesis that the overall unidirectional calcium flux J is the sum of free calcium diffusion and protein-calcium diffusion: J = D[Ca] + D'[CaPr]. The value of D', the self-diffusion coefficient for parvalbumin, was calculated from the flux data to be 13.7 X 10(-7) cm2 X s-1.  相似文献   

14.
By using both a 3 to 4 ms quenched-86Rb+ flux assay and native acetylcholine receptor (AChR) rich electroplaque vesicles on which 50-60% of acetylcholine activation sites were blocked with alpha-BTX, we determined apparent rates of agonist-induced inactivation in AChR from Torpedo under conditions where measured flux response was directly proportional to initial 86Rb+ influx rate. Inactivation kinetics with acetylcholine in both the activating range (10 microM-10 mM) and the self-inhibiting range (15-100 mM) were measured at 4 degrees C. In the presence of 10 microM-1 mM acetylcholine, inactivation is characterized by a single exponential rate constant, kd (fast desensitization). Plots of kd vs. acetylcholine concentration display maximum kds [kd(max)] of 6.6-8.0 s-1, half-maximal kd at 102 +/- 16 microM, and a Hill coefficient of 1.6 +/- 0.3, closely paralleling the initial ion flux response of AChR. Thus, fast desensitization probably occurs from a doubly-liganded preopen state or the open channel state. In the self-inhibiting acetylcholine concentration range, inactivation is biphasic. A "rapid inactivation" phase is complete within 30 ms, followed by fast desensitization at a rate close to kd(max). Both the rate and extent of rapid inactivation increase with acetylcholine concentration, indicating that acetylcholine binds to its self-inhibition site with apparent kon approximately equal to 10(3) M-1s-1 and koff approximately equal to 40 s-1. This slow kon suggests either hindered access to the inhibitory allosteric site or that a fast binding step is followed by a slower conformational change leading to channel inhibition. Overall, our data suggest that acetylcholine binds preferentially to its inhibitory site when the receptor is in the open-channel conformation and that fast desensitization can occur from all multiple-liganded states.  相似文献   

15.
Eight Xenopus laevis were injected intraperitoneally with 45CaCl2 and 16-18 h later an unbranched section from each sciatic nerve was removed. Efflux measurements of nerve from which the perineurial sheath had been removed could be described by three compartments of approximately equal size with half-lifes of 2.37 +/- 0.76 (SD), 30.3 +/- 17.3 and 196 +/- 61 min, the shortest lived compartment representing diffusion from the extracellular space with a coefficient of diffusion of 2.1 +/- 0.7 X 10(-6) cm2/s. Efflux from nerve in which the perineurium remained intact was characterized by a half-life of 862 +/- 399 min resulting from the sheath acting as a diffusion barrier of permeability 3.4 +/- 1.6 X 10(-7) cm/s. The perineurium was found to bind or sequester a quantity of calcium 1-2 times that contained in an equal volume of plasma.  相似文献   

16.
Previous work has shown that bovine prothrombin fragment 1 binds to substrate-supported planar membranes composed of phosphatidylcholine (PC) and phosphatidylserine (PS) in a Ca(2+)-specific manner. The apparent equilibrium dissociation constant is 1-15 microM, and the average membrane residency time is approximately 0.25 s-1. In the present work, fluorescence pattern photobleaching recovery with evanescent interference patterns (TIR-FPPR) has been used to measure the translational diffusion coefficients of the weakly bound fragment 1. The results show that the translational diffusion coefficients on fluid-like PS/PC planar membranes are on the order of 10(-9) cm2/s and are reduced when the fragment 1 surface density is increased. Control measurements were carried out for fragment 1 on solid-like PS/PC planar membranes. The dissociation kinetics were similar to those on fluid-like membranes, but protein translational mobility was not detected. TIR-FPPR was also used to measure the diffusion coefficient of the fluorescent lipid NBD-PC in fluid-like PS/PC planar membranes. In these measurements, the diffusion coefficient was approximately 10(-8) cm2/s, which is consistent with that measured by conventional fluorescence pattern photobleaching recovery. This work represents the first measurement of a translational diffusion coefficient for a protein weakly bound to a membrane surface.  相似文献   

17.
An image-based technique of fluorescence recovery after photobleaching (video-FRAP) was used to measure the lateral diffusion coefficients of a series of nine fluorescent probes in two model lipid bilayer systems, dimyristoylphosphatidylcholine (DMPC) and DMPC/cholesterol (40 mol%), as well as in human stratum corneum-extracted lipids. The probes were all lipophilic, varied in molecular weight from 223 to 854 Da, and were chosen to characterize the lateral diffusion of small compounds in these bilayer systems. A clear molecular weight dependence of the lateral diffusion coefficients in DMPC bilayers was observed. Values ranged from 6.72 x 10(-8) to 16.2 x 10(-8) cm2/s, with the smaller probes diffusing faster than the larger ones. Measurements in DMPC/cholesterol bilayers, which represent the most thorough characterization of small-solute diffusion in this system, exhibited a similar molecular weight dependence, although the diffusion coefficients were lower, ranging from 1.62 x 10(-8) to 5.60 x 10(-8) cm2/s. Lateral diffusion measurements in stratum corneum-extracted lipids, which represent a novel examination of diffusion in this unique lipid system, also exhibited a molecular weight dependence, with values ranging from 0.306 x 10(-8) to 2.34 x 10(-8) cm2/s. Literature data showed that these strong molecular weight dependencies extend to even smaller compounds than those examined in this study. A two-parameter empirical expression is presented that describes the lateral diffusion coefficient in terms of the solute's molecular weight and captures the size dependence over the range examined. This study illustrates the degree to which small-molecule lateral diffusion in stratum corneum-extracted lipids can be represented by diffusion in DMPC and DMPC/cholesterol bilayer systems, and may lead to a better understanding of small-solute transport across human stratum corneum.  相似文献   

18.
Surface diffusion in human serum lipoproteins   总被引:1,自引:0,他引:1  
From the viscosity dependence of the 31P NMR signals, the diffusion coefficients DT of phospholipid molecules in the surface monolayer of HDL, LDL and VLDL have been determined. DT for HDL3 and HDL2 are found to be 2.3 X 10(-8) cm2/s and 1.8 X 10(-8) cm2/s, respectively. These values are similar to values reported for diffusion of phospholipid molecules in phospholipid bilayers above the gel to liquid crystalline phase transition temperature. Viscosity dependence of [16,16,16-2H3]phosphatidylcholine incorporated into HDL2 yielded a value similar to that determined by 31P (DT = 1.9 X 10(-8) cm2/s). Slower diffusion coefficients were measured for LDL2 and VLDL. VLDL had a value DT = 9.1 X 10(-9) cm2/s. The diffusion coefficient for LDL2 was 1.4 X 10(-9) cm2/s. Thus, diffusion of phospholipids in LDL2 is a full order of magnitude slower at 25 degrees C than diffusion of phospholipids in the HDLs.  相似文献   

19.
Measurement of the rate of glucose diffusion from EUDGRAGIT RL and HEMA-MMA microcapsules coupled with a Thiele modulus/Biot number analysis of the glucose utilization rate suggests that pancreatic islets and CHO (Chinese hamster ovary) cells (at moderate to high cell densities) should not be adversely affected by the diffusion restrictions associated with these capsule membranes. The mass transfer coefficients for glucose at 20 degrees C were of the same order of magnitude for both capsules, based on release measurements: approximately 5 x 10(-6) cm/s for EUDRAGIT RL and approximately 2 x 10(-6) for HEMA-MMA. Inulin release from EUDRAGIT RL was slower than for glucose (mass transfer coefficient 14 +/- 4 x 10(-8) cm/s). The Thiele moduli were much less than 1, either for a single islet at the center of a capsule or CHO cells uniformly distributed throughout a capsule at 10(-6) cells/ mL, so that diffusion restrictions within the cells in EUDRAGIT RL or 800 mum HEMA-MMA capsules should be negligible. The ratio of external to internal diffusion resistance (Biot number) was less than 1, so that at most, only a small diffusion effect on glucose utilization should be expected (i.e., the overall effectiveness factors were greater than 0.8). These calculations were consistent with experimental observation of encapsulated islet behavior but not fully with CHO cell behavior. Permeability restricted cell viability and growth is potentially a major limitation of encapsulated cells; further analysis is warranted.  相似文献   

20.
The lateral mobility of the lipid analog N-4-nitrobenzo-2-oxa-1,3 diazole phosphatidylethanolamine and of the integral protein glycophorin in giant dimyristoylphosphatidylcholine vesicles was studied by the photobleaching technique. Above the temperature of the chain-melting transition (Tm = 23 degrees C), the diffusion coefficient, Dp, of the protein [Dp = (4 +/- 2) X 10(-8) cm2/s at 30 degrees C] was within the experimental errors equal to the corresponding values DL of the lipid analog. In the P beta 1 phase the diffusion of lipid and glycophorin was studied as a function of the probe and the protein concentration. (a) At low lipid-probe content (cL less than 5 mmol/mol of total lipid), approximately 20% of the probe diffuses fast (D approximately equal to 10(-8) - 10(-9) cm2/s), while the mobility of the rest is strongly reduced (D less than 10(-10) cm2/s). At a higher concentration (cp approximately 20 mmol), all probe is immobilized (D less than 10(-10) cm2/s). (b) Incorporation of glycophorin up to cp = 0.4 mmol/mol of total lipid leads to a gradual increase of the fraction of mobile lipid probe due to the lateral-phase separation into a pure P beta 1 phase and a fraction of lipid that is fluidized by strong hydrophilic lipid-protein interaction. (c) The diffusion of the glycophorin molecules is characterized by a slow and a fast fraction. The latter increases with increasing protein content, which is again due to the lateral-phase separation caused by the hydrophilic lipid-protein interaction. The results are interpreted in terms of a fast transport along linear defects in the P beta 1 phase, which form quasi-fluid paths for a nearly one dimensional and thus very effective transport. Evidence for this interpretation of the diffusion measurements is provided by freeze-fracture electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号