首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Toxicity of DIMBOA, the major cyclic hydroxamic acid in maize extracts, to the aphid Schizaphis graminum, was decreased by addition of cysteine to the insect diet. The ld50 for DIMBOA on aphids was, after 24 hr, 2.1 and 0.9 mM in diets with and without added cysteine, respectively. DIMBOA decomposed 1.5 times faster in diets or buffer with added cysteine. Decomposition products of DIMBOA (4 mM) in insect diets with or without added cysteine were not toxic. It is suggested that the observed variations in toxicity of DIMBOA are a consequence of differences in its rate of disappearance from the diet.  相似文献   

2.
  • 1.1. In the developing silkmoth eggs, a high level of activity of a cGMP-dependent protein kinase (G-kinase) is found. Vitellin (Vn) is an excellent substrate for the kinase, suggestin that the kinase may be involved in the phosphorylaiton of Vn in intact developing eggs.
  • 2.2. To characterize this system in greater detail, the following experiments were performed: (a) changes in the levels of cyclic nucleotides and changes in cyclic nucleotide-dependent protein kinase activities were monitored in the eggs; (b) 32P-o-phosphate was microinjected into eggs to demonstrate the phosphorylation of Vn in vivo; (c) to determine the role, if any, in vivo of the phosphorylation of Vn, the effect of phosphorylation on the susceptibility of Vn to a cysteine proteinase after the phosphorylation of Vn by G-kinase was studied.
  • 3.3. The results revealed that the phosphorylation of Vn serves as the trigger for the proteolytic digestion of Vn during the developments, and may be able to provide the signal for the degradtion of Vn by the cysteine proteinase.
  相似文献   

3.
The meso- and (±)-isomers of dimethylmyleran (DMM) have been synthesised and their chemical reactivity towards selected nucleophiles has been investigated. Both isomers react in vitro by hydrolysis to give 2,5-dimethyltetrahydrofuran and with the thiol groups of cysteine, cysteine ethyl ester and glutathione forming 2,5-dimethyltetrahydrothiophene. As each of these cyclic compounds exists in the cis- and trans-configurations, their production in stereochemically quantitative yields from meso- and (±)-dimethylmyleran respectively, indicates that both isomers react by a bimolecular process and not a unimolecular one as has been generally accepted. A comparison of the activity of the isomers with that of Myleran on anti-fertility action, neutrophildepressant activity and effect on the weight response suggests that these esters could exert their biological actions in vivo by the same mechanism.  相似文献   

4.
Bacillus subtilis OhrR is a dimeric repressor that senses organic peroxides and regulates the expression of the OhrA peroxiredoxin. Derepression results from oxidation of an active site cysteine which ultimately results in formation of a mixed disulfide with a low molecular weight thiol, a cyclic sulfenamide, or overoxidation to the sulfinic or sulfonic acids. We expressed a single-chain OhrR (scOhrR) in which the two monomers were connected by a short amino-acid linker. scOhrR variants containing only one active site cysteine were fully functional as repressors and still responded, albeit with reduced efficacy, to organic peroxides in vivo. Biochemical analyses indicate that oxidation at a single active site is sufficient for derepression regardless of the fate of the active site cysteine. scOhrR with only one active site cysteine in the amino-terminal domain is inactivated at rates comparable to wild-type whereas when the active site is in the carboxyl-terminal domain the protein is inactivated much more slowly. The incomplete derepression noted for single active site variants of scOhrR in vivo is consistent with the hypothesis that protein reduction regenerates active repressor and that, in the cell, oxidation of the second active site may also contribute to derepression.  相似文献   

5.
Small cyclic nucleotide derivatives are employed as second messengers by both prokaryotes and eukaryotes to regulate diverse cellular processes responding to various signals. In bacteria, c-di-AMP has been discovered most recently, and some Gram-positive pathogens including S. pyogenes use this cyclic nucleotide derivative as a second messenger instead of c-di-GMP, a well-studied important bacterial second messenger. GdpP, c-di-AMP phosphodiesterase, is responsible for degrading c-di-AMP inside cells, and the cellular role of GdpP in S. pyogenes has not been examined yet. To test the cellular role of GdpP, we created a strain with a nonpolar inframe deletion of the gdpP gene, and examined the properties of the strain including virulence. From this study, we demonstrated that GdpP influences the biogenesis of SpeB, the major secreted cysteine protease, at a post-translational level, susceptibility to the beta lactam antibiotic ampicillin, and is necessary for full virulence in a murine subcutaneous infection model.  相似文献   

6.
In plants, proteins of the β-substituted alanine synthase (BSAS) enzyme family perform a diverse range of reactions, including formation of cysteine from O-acetylserine and sulfide, detoxification of cyanide by its addition to cysteine, the breakdown of cysteine into pyruvate, ammonia, and sulfide, and the synthesis of S-sulfocysteine. With the completed genome sequence of soybean (Glycine max (L.) Merr. cv. Williams 82), the functional diversity of the BSAS in this highly duplicated plant species was examined to determine whether soybean BSAS enzymes catalyze the various reactions connected to cysteine metabolism. The 16 soybean BSAS can be grouped into clades that are similar to those observed in Arabidopsis. Biochemical analysis of soybean BSAS proteins demonstrate that enzymes of clades I and III function as O-acetylserine sulfhydrylases for cysteine synthesis, clade II encodes cysteine desulfhydrase activity, and that clade V proteins function as β-cyanoalanine synthase for cyanide detoxification. Although clade IV is similar to Arabidopsis S-sulfocysteine synthase, this activity was not detected in the soybean homolog. Overall, our results show that bioinformatics approach provides a useful method to assess the biochemical properties of BSAS enzymes in plant species.  相似文献   

7.
Cyclic AMP phosphodiesterase has been extracted from Phycomyces sporangiophore. The material is stable at ?20° for several months. Activity depends on the presence of a divalent metal ion (e.g. magnesium. The enzyme may be multiple; at pH 8, two Kms are observed, 3 and 12.5 μM, and an Arrhenius plot has a ‘break’ at ca 21°. No cooperativity is seen. Inhibition by dibutyryl cyclic AMP is marked, but cyclic GMP is not inhibitory (except at lower pH and high concentration) and cyclic GMP is not hydrolysed. The enzyme is thermolabile above 30°. Calcium is not stimulatory. Millimolar concentrations of pyrophosphate and nucleoside triphosphates are required for significant inhibition. Reductants, ascorbic acid, cysteine, dithiothreitol, glutathione, β-mercaptoethanol, NADH, sodium dithionite, sodium suifite and the mild oxidant, ferricyanide, have little or no effect. Gallic acid, an abundant endogenous reducing agent, is inhibitory. Histamine and imidazole are slightly inhibitory. Methylxanthines are inhibitory but at high concentrations. Inhibition to 50% required 15, 15, 30 and > 4 mM for aminophylline, theophylline, caffeine and 3-isobutyl-l-methylxanthine, respectively. The enzyme may be involved in the behavioral responses of the organism.  相似文献   

8.
In order to determine whether vinyl chloride yields chloroethylene oxide in vivo, the biogenesis of the various urinary S-containing metabolites in rats has been investigated.N-Acetyl-S-(2-hydroxyethyl)cysteine is a major vinyl chloride metabolite in rats, but according to the method of protective esterification that is used, so either N-acetyl-S-(2-chloroethyl)cysteine or N-acetyl-S-(2-hydroxyethyl)cysteine may be isolated from the body fluids. N-Acetyl-S-vinylcysteine is a second related metabolite. These S-containing vinyl chloride metabolites are not mutagenic in S. typhimurium. Neutral methanol methylates N-acetyl-S-(2-hydroxyethyl)cysteine. N-Acetyl-S-(2-methoxyethyl)cysteine plus N-acetyl-S-vinylcysteine degrade to give the volatile S-(2-methoxyethyl)(prop-1 or 2-enyl)sulphide.Administration of several vinyl chloride metabolites and closely related compounds to rats shows that chloroacetaldehyde and S-(carboxymethyl)cysteine, but not chloroacetic acid, lie on a pathway or pathways connecting vinyl chloride with thiodiglycollic acid. The fact (a) that chloroacetaldehyde affords both thiodiglycollic acid and N-acetyl-S-(2-hydroxyethyl)cysteine in the animal and (b) that S-(carboxymethyl)cysteine has been identified amongst the hydrolytic products from an hepatic extract prepared from vinyl chloride-treated animals is consistent with the formation of chloroacetaldehyde, and with the reaction of chloroethylene oxide or chloroacetaldehyde with glutathione in the presence of a glutathione S-epoxide transferase to give the identified S-containing metabolites.  相似文献   

9.
An enzyme catalysing the conjugation of epoxides with glutathione   总被引:5,自引:3,他引:2       下载免费PDF全文
1. Liver supernatant preparations from rats and ferrets catalyse the conjugation of some epoxides with glutathione. The enzyme involved might be called `glutathione S-epoxidetransferase', as it is different from glutathione S-aryltransferase, the enzyme catalysing the conjugation of 1,2-dichloro-4-nitrobenzene, 4-nitro-pyridine N-oxide and other cyclic compounds with glutathione and from the enzyme catalysing the conjugation of iodomethane and glutathione. 2. The enzyme does not catalyse the reaction with cysteine. It is not inactivated by dialysis but is unstable at pH 5·0. 3. The role of the enzyme in metabolism of foreign compounds is discussed.  相似文献   

10.
Pancreatic polypeptide (PP), peptide YY (PYY) and neuropeptide Y (NPY), members of the PP-fold family share a high degree of sequence homology. Nuclear magnetic resonance (NMR) and X-ray crystallography studies have shown these peptides can adopt a tightly organized tertiary structure called the PP-fold, which has long been assumed to be the active structure of this family of peptides. To date, however, no studies have been completed with PYY and PP which confirm if the PP-fold structure is important for their physiological actions. The aim of the study was to test if PYY and PP locked into the PP-fold maintained biological activity. Therefore, we designed and produced analogs of PP and PYY in a cyclic conformation with two cysteine amino acid substitutions at the N-terminus and at position 27. These were oxidized to form a cysteine disulfide bond locking the peptides into the PP-fold structure. Studies demonstrate that the cyclic analogs have both similar in vivo activity to their parent molecules, and affinity for the Y2 and Y4 receptors. Results suggest that the proposed PP and PYY-fold is likely to be their biologically active conformation.  相似文献   

11.
《Gene》1997,187(1):29-34
The coding region of the involucrin gene of Tupaia glis has been cloned and sequenced. It resembles the involucrin coding region of other non-anthropoid mammals in possessing a segment of related, short tandem repeats at a defined location, but in Tupaia, there has been recent serial duplication of a repeat into which a cysteine codon had earlier been introduced. As a result of the duplication, there is a total of as many as six cysteine codons in the segment of repeats, a number larger than for any other species yet examined. In Rattus there has been a comparable but independent addition of cysteine codons, and both Tupaia and Rattus have eliminated an otherwise conserved cysteine codon 75 located close to but outside the segment of repeats. In Tupaia, this elimination probably occurred by gene conversion. Also independently, the gene of Canis has added cysteine codons to the segment of repeats but has not yet lost cysteine 75. It is proposed that the gain and the loss of cysteine codons are parts of a multi-stage program of cysteine relocation.  相似文献   

12.
A gas chromatographic–mass spectrometric (GC–MS) procedure for the determination of stable isotope labelled glutathione has been applied to animal and human samples. The method, based on preparation of the N,S-ethoxycarbonyl methyl ester derivative of the intact peptide, is rapid and requires little or minor tissue treatment. The same method was applied to cysteine. The method was found to be reliable in terms of within-day and between-day precision, accuracy and linearity. The procedure was applied in humans and animals to determine in vivo the glutathione fractional synthesis rate using labelled cysteine infusion. The glutathione fractional synthesis rate was found to be 22.5%/day in blood from a healthy volunteer and 337±29%/day in rat liver.  相似文献   

13.
The validity of using the binding-protein method for determining cyclic AMP in purified and partially purified extracts of Phaseolus tissues has been examined and confirmed. Measurement of cyclic AMP concentration by binding-protein gave similar results to those obtained by direct spectrophotometry of purified extracts. A cyclic AMP binding-protein and adenylate cyclase were demonstrated in Phaseolus extracts. Isolated intact chloroplasts were shown to possess adenylate cyclase activity but persistent cyclic AMP phosphodiesterase activity obviated quantitative assessment.  相似文献   

14.
Trichomonas vaginalis is a protozoan parasite of humans that is able to synthesize cysteine de novo using cysteine synthase but does not produce glutathione. In this study, high pressure liquid chromatography analysis confirmed that cysteine is the major intracellular redox buffer by showing that T. vaginalis contains high levels of cysteine (∼600 μm) comprising more than 70% of the total thiols detected. To investigate possible mechanisms for the regulation of cysteine levels in T. vaginalis, we have characterized enzymes of the mercaptopyruvate pathway. This consists of an aspartate aminotransferase (TvAspAT1), which transaminates cysteine to form 3-mercaptopyruvate (3-MP), and mercaptopyruvate sulfurtransferase (TvMST), which transfers the sulfur of 3-MP to a nucleophilic acceptor, generating pyruvate. TvMST has high activity with 3-MP as a sulfur donor and can use several thiol compounds as sulfur acceptor substrates. Our analysis indicated that TvMST has a kcat/Km for reduced thioredoxin of 6.2 × 107 m−1 s−1, more than 100-fold higher than that observed for β-mercaptoethanol and cysteine, suggesting that thioredoxin is a preferred substrate for TvMST. Thiol trapping and mass spectrometry provided direct evidence for the formation of thioredoxin persulfide as a product of this reaction. The thioredoxin persulfide could serve a biological function such as the transfer of the persulfide to a target protein or the sequestered release of sulfide for biosynthesis. Changes in MST activity of T. vaginalis in response to variation in the supply of exogenous cysteine are suggestive of a role for the mercaptopyruvate pathway in the removal of excess intracellular cysteine, redox homeostasis, and antioxidant defense.  相似文献   

15.
The development of synthetic methodologies for cyclic peptides is driven by the discovery of cyclic peptide drug scaffolds such as the plant-derived cyclotides, sunflower trypsin inhibitor 1 (SFTI-1) and the development of cyclized conotoxins. Currently, the native chemical ligation reaction between an N-terminal cysteine and C-terminal thioester group remains the most robust method to obtain a head-to-tail cyclized peptide. Peptidyl thioesters are effectively generated by Boc SPPS. However, their generation is challenging using Fmoc SPPS because thioester linkers are not stable to repeated piperidine exposure during deprotection. Herein we describe a Fmoc-based protocol for synthesizing cyclic peptides adapted for microwave assisted solid phase peptide synthesis. The protocol relies on the linker Di-Fmoc-3,4-diaminobenzoic acid, and we demonstrate the use of Gly, Ser, Arg and Ile as C-terminal amino acids (using HBTU and HATU as coupling reagents). Following synthesis, an N-acylurea moiety is generated at the C-terminal of the peptide; the resin bound acylurea peptide is then deprotected and cleaved from the resin. The fully deprotected peptide undergoes thiolysis in aqueous buffer, generating the thioester in situ. Ultimately, the head-to-tail cyclized peptide is obtained via native chemical ligation. Two naturally occurring cyclic peptides, the prototypical Möbius cyclotide kalata B1 and SFTI-1 were synthesized efficiently, avoiding potential branching at the diamino linker, using the optimized protocol. In addition, we demonstrate the possibility to use the approach for the synthesis of long and synthetically challenging linear sequences, by the ligation of two truncated fragments of a 50-residue long plant defensin.  相似文献   

16.
Leishmania parasites lack catalase and therefore, their anti-oxidant system hinges primarily upon non-protein thiols; accordingly, depletion of thiols could potentially serve as an effective drug target. We have developed a flow cytometry based assay using 5-chloromethyl fluorescein diacetate based upon its selective staining of non-protein thiols. Its specificity was confirmed using buthionine sulphoximine (a γ-glutamyl cysteine synthetase inhibitor), diamide (an oxidizing agent of intracellular thiols) and N-ethylmaleimide (a covalent modifier of cysteine residues) as evidenced by reduction in fluorescence; furthermore, restoration of fluorescence by N-acetyl cysteine corroborated specificity of 5-chloromethyl fluorescein diacetate to measure non-protein thiols. Differences in basal level of thiols in antimony sensitive and antimony resistant Leishmania field isolates were detected. The depletion of non-protein thiols by conventional anti-leishmanial drugs e.g. antimony and miltefosine was demonstrated. Furthermore, fluorescence was unaffected by depletion of ATP in majority of the strains studied, indicating that 5-chloromethyl fluorescein diacetate is not a substrate for the pump operative in most Leishmania donovani strains. Taken together, measurement of 5-chloromethyl fluorescein diacetate fluorescence is an effective method for monitoring non-protein thiols in Leishmania promastigotes.  相似文献   

17.
Attachment of Entamoeba histolytica and of Giardia lamblia trophozoites to glass was monitored during the culture cycle. Attachment of each parasite was greatest during the exponential phase of axenic growth. The effects of l-cysteine upon the kinetics of attachment of trophozoites to glass were determined quantitatively. Attachment in complex growth media required cysteine, even under N2, atmosphere. With cysteine, the rates of attachment were greatest for the first 2 hr, then continued more slowly. The numbers of attached trophozoites decreased immediately upon exposure to medium without cysteine. The role of cysteine in protecting trophozoites of both species from the lethal effects of oxygen was assessed using clonal growth in agar or agarose medium to determine viability following exposure to varying oxygen tensions in liquid medium. Cysteine was required for viability of trophozoites. Without cysteine, decreasing the oxygen tension prolonged survival. Under increased oxygen tension, cysteine delayed the onset of exponential killing. Although it has no thiol reducing group, l-cystine similarly protected E. histolytica.  相似文献   

18.
Interference with the glucose oxidase-peroxidase method of glucose determination by the sulfhydryl agents cysteine and reduced glutathione can be overcome simply by adding N-ethylmaleimide to the assay system. A 30-fold molar excess of N-ethylmaleimide over the amount of glucose present produced no interference of its own and completely prevented the effects of cysteine and glutathione. It is suggested that this agent be added to the reaction mixture whenever it is suspected that low molecular weight sulfhydryl compounds may be present in samples to be analyzed for glucose.  相似文献   

19.
Conformational aspects of N-glycosylation of glycoproteins have been studied by using a series of peptides which contained, in addition to the `marker sequence' Asn-Gly-Thr, two cysteine residues in various positions of the peptide chain. The presence of two cysteines permitted a partial fixation of the above triplet sequence in cyclic structures of various size by intramolecular disulphide bond formation. Comparison of the glycosyl acceptor properties of the linear peptides and their corresponding cyclic analogues allows the following statements. The considerably lower acceptor capabilities of the cyclic derivatives indicate that the restriction of rotational degrees of freedom imposed by disulphide bonding results in a conformation which hinders a favourable interaction of the peptide substrate with the N-glycosyltransferase. On the other hand, the glycosylation rate of linear peptides increases with increasing chain length, suggesting that the amino acids on both the N- and C-terminal side of the `marker sequence' may contribute to a considerable extent to the induction of an `active' conformation. Realization of a potential sugar attachment site requires a hydrogen bond interaction within the `marker sequence' between the oxygen of threonine (serine) as the hydrogen bond acceptor and the β-amide of asparagine as the donor [Bause & Legler (1981) Biochem. J. 195, 639–644]. This interaction is obviously facilitated when the peptide chain can adopt a conformation which resembles a β-turn or other loop structure. The available experimental and statistical data are discussed in terms of possible structural features for N-glycosylation, with the aid of space-filling models.  相似文献   

20.
Giardia duodenalis cysteine proteases have been identified as key virulence factors and have been implicated in alterations to intestinal goblet cell activity and mucus production during Giardia infection. The present findings demonstrate a novel mechanism by which Giardia cysteine proteases modulate goblet cell activity via cleavage and activation of protease-activated receptor 2. Giardia duodenalis (assemblage A) increased MUC2 mucin gene expression in human colonic epithelial cells in a manner dependent upon both protease-activated receptor 2 activation and Giardia cysteine protease activity. Protease-activated receptor 2 cleavage within the N-terminal activation domain by Giardia proteases was confirmed using a nano-luciferase tagged recombinant protease-activated receptor 2. In keeping with these observations, the synthetic protease-activated receptor 2-activating peptide 2fLIGRLO-amide increased Muc2 gene expression in a time-dependent manner. Calcium chelation and inhibition of the ERK1/2 mitogen activated protein kinase pathway inhibited Muc2 upregulation during Giardia infection, consistent with canonical protease-activated receptor 2 signaling pathways. Giardia cysteine proteases cleaved both recombinant protease-activated receptor 1 and protease-activated receptor 2 within their extracellular activation domains with isolate-dependent efficiency that correlated with the production of cysteine protease activity. Protease-activated receptors represent a novel target for Giardia cysteine proteases, and these findings demonstrate that protease-activated receptor 2 can regulate mucin gene expression in intestinal goblet cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号