首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conjugating filaments of Spirogyra were examined with both light and electron microscopes. Initially 2 or more filaments of Spirogyra were attached by mucilagenous material. Papillae appeared first in one filament and then in adjacent positions on the other filament. Subsequent growth of papillae separated the conjugating filaments; wall microtubules disappeared in papillae as they elongated. Golgi activity then increased markedly only in the male filament; mucilage production by these Golgi coincided with contraction of the male gamete from its cell wall and may be responsible for its subsequent migration. The end walls separating papillae dissolved to form the conjugation tube, allowing gamete union. The male protoplast then migrated through the tube and further cytoplasmic condensation formed an elliptical-shaped zygote. During the migration phase, zygote wall formation was initiated and numerous active Golgi apparently contributed material to it. Early zygote maturation was characterized by rapid wall formation and an increase in lipid droplets.  相似文献   

2.
Electron microscopical observations of the course of acrosomal differentiation in Euhadra hickonis show that the vesicular component of the mature acrosome is produced by early Golgi activity, whereas an equivalent amount of material that forms a basal component is added later to the outside of the vesicle. It is also suggested that similar material which concurrently accumulates against part of the outer surface of the nuclear envelope is finally incorporated into the basal part of the acrosome.
In the early spermatid, which has a highly polymorphic nucleus, material derived from the well-developed Golgi complex accumulates within a network of tubules in its central maturing zone to form a single acrosomal vesicle ca. 150 nm in diameter. The next stage is characterized by the strikingly spherical shape of the nucleus, as well as by the addition of electron-dense material to the outside of the nuclear envelope over the future anterior surface, and to its inside in the posterior region where the centriolar fossa will form.
At mid-spermiogenesis the Golgi complex moves posteriorly away from the acrosomal vesicle, which remains in the anterior cytoplasm. A growing mass of densely filamentous material forms a hollowed hemisphere around one side of the vesicle. This complex approaches the coated anterior part of the nuclear envelope, turning if necessary so that the filamentous material is in the lead, and the latter merges with the electron-dense material at the center of the coated area. As the late spermatid nucleus elongates, this material passes through a series of changes in arrangement and electron density, finally forming a homogeneously particulate element of medium density that surrounds the proximal half of the acrosomal vesicle and caps the slender tip of the nucleus in the mature spermatozoon.  相似文献   

3.
Does the Golgi apparatus proliferate by adding new material to a permanent template, or do Golgi structures form de novo by a process of self-organization? Recent work suggests that the Golgi is capable of forming de novo.  相似文献   

4.
The heart-body of the marine worm Amphitrite, located within the supraesophageal dorsal vessel, is in the form of a cylinder the thin wall of which is deeply corrugated by luminal projections and folds along its entire length. It is anchored in places to the luminal surface of the dorsal vessel by an extracellular matrix containing collagen fibers. The luminal surfaces of both the heart-body and the dorsal vessel are covered by a basement membrane-like vascular lamina which in turn supports a discontinuous pseudoendothelium of littoral hemocytes. The cells of the heart-body constitute a pseudostratified, high columnar epithelium. They possess extensive rough endoplasmic reticulum (RER), a well developed Golgi zone, ferritin particles and granules, and several types of membrane-bound inclusions. Hemoglobin molecules identical to those in the circulation lie within cytoplasmic, membrane-bound vesicles. Analysis of our electron micrographs suggests the following sequence of hemoglobin production and secretion: Large quantities of a moderately dense flocculent material, probably globin, are synthesized in RER and move to the Golgi zone within partly rough- and partly smooth-surfaced transitional cisternae; small transport vesicles, formed from Golgi cisternae that have fused with transitional cisternae, convey the flocculent material from the convex to the concave face of the Golgi complex; a similar flocculent material and an amorphous, highly dense material are processed in the Golgi complex and are transferred to condensing vacuoles in which clearly identifiable hemoglobin molecules are first observed. Mature secretory vesicles containing only hemoglobin migrate to the cell periphery and discharge their contents by exocytosis. Hemoglobin molecules then cross the vascular lamina to reach the circulation.  相似文献   

5.
The Yip1 domain family (YIPF) proteins are homologues of yeast Yip1p and Yif1p, which are proposed to function in ER to Golgi transport. Here, we report the characterization of YIPF3 and YIPF4, homologues of human Yif1p and Yip1p, respectively. Immunofluorescence and immuno-electron microscopy showed that both YIPF3 and YIPF4 are clearly concentrated in the cis-Golgi. While YIPF4 was detected as a single mobility form consistent with its predicted molecular weight, three different mobility forms of YIPF3 were detected by western blotting. Biochemical and immunofluorescence experiments strongly indicated that YIPF3 is synthesized in the ER as a N-glycosylated form (40 kDa), is then O-glycosylated in the Golgi apparatus to become a lower mobility form (46 kDa) and finally becomes a higher mobility form cleaved at its C-terminal luminal domain (36 kDa). YIPF3 and YIPF4 form a complex in the Golgi apparatus, and this was suggested to be important for their proper localization and function. The knockdown of YIPF3 or YIPF4 in HeLa cells induced fragmentation of the Golgi apparatus, suggesting their involvement in the maintenance of the Golgi structure.  相似文献   

6.
 Tubules constitute an integral part of the Golgi apparatus and have been shown to form a complex and dynamic network at its trans side. We have studied in detail structural features of the trans Golgi network and its relationship with the cisternal stack in thin sections of Lowicryl K4M embedded human absorptive enterocytes by immunolectron microscopy. Immunoreactive sites for α1,3 N-acetylgalactosaminyltransferase and blood group A substance were detectable troughout the cisternal stack and the entire trans Golgi network. Furthermore, the entire trans Golgi network was reactive for CMPase activity. Evidence for two kinds of tubules at the trans side of the Golgi apparatus was found: tubules that laterally connect adjacent and distant cisternal stacks, and others extending from central and lateral portions of trans cisternae to form the complex and extensive trans Golgi network. Trans cisternae showed often the peeling-off phenomenon and were continuous with the trans Golgi network. Both, trans cisternae and tubules of the trans Golgi network exhibited regionally buds and vesicles with a lace-like, non clathrin coat, previously reported by others in NRK cells, which contained glycoproteins with terminal N-acetylgalactosamine residues. These buds and vesicle are therefore involved in constitutive exocytosis. Accepted: 12 January 1998  相似文献   

7.
The production of Golgi complexes was investigated in Amoeba proteus by introducing a nucleus into cells that had been enucleated for 5 days. Golgi complexes were not detected in 5 day enucleates, nor were they observed in amebae fixed 15 min after renucleation. Samples taken at longer intervals after the introduction of a nucleus exhibited an increase in the size and abundance of Golgi complexes. Small curved smooth cisternae, some of which were aligned in parallel to form small Golgi complexes, were observed 30 min after the operation. Aggregations of small Golgi complexes increased in number in amebae fixed 1 to 6 hr after renucleation. Golgi complexes of normal size were present 6 hr after the operation and became more abundant in samples fixed 12 hr, and 1, 2, and 3 days after renucleation. The possible participation of the granular endoplasmic reticulum in the development of Golgi complexes was suggested by two observations. First, the Golgi complexes in renucleates contained a dense material similar to the content of the endoplasmic reticulum in enucleates and early renucleates. Second, examples of continuity between the endoplasmic reticulum and Golgi cisternae were present in renucleates. The possibility that Golgi complexes can be produced in the absence of preexisting Golgi complexes is discussed.  相似文献   

8.
Recent data from several laboratories show that Brefeldin A (BFA) induces a microtubule-dependent back-flow of Golgi components to the endoplasmic reticulum (ER) thereby causing disassembly of the Golgi apparatus and its fusion with ER membranes. In order to delineate the effect of BFA on resident Golgi proteins, we investigated its effect on biosynthesis, maturation and intracellular transport of galactosyltransferase (gal-T), an established trans-Golgi enzyme. Using a protocol of metabolic labeling/immunoprecipitation followed by electrophoretic/fluorographic analysis, we show that in the presence of BFA, gal-T matures to a molecular form of 48.5 kD, a size intermediate between the 2 precursor forms of 44 and 47 and the mature form of 54 kD (Strous and Berger: J. Biol. Chem., 257:7623-28, 1982). Little mature form was detectable in the presence of BFA even after prolonged chase times of up to 28 hr. The intermediate form was sensitive to O-glycanase and endoglycosidase H, indicating early O-glycosylation without sialylation and lack of complex N-glycosylation, respectively. In order to define the compartment responsible for O-glycosylation in the presence of BFA, a temperature block of 25 degrees C was applied which inhibited recovery of Golgi elements from BFA-induced fusion with ER. At this temperature and in absence of BFA, biosynthesis of gal-T was not appreciably affected, while maturation was completely inhibited as indicated by the presence of unmodified precursor forms of gal-T. After 60 min preincubation with BFA, a time period sufficient to demonstrate complete fusion of Golgi with ER, subsequent biosynthesis of gal-T at 25 degrees C in absence of BFA led to the intermediate form, while precursor forms were not detectable. These data provide direct evidence for BFA-induced redistribution to the EF of Golgi enzymes involved in O-glycosylation and their early functional involvement in biosynthesis of newly synthesized gal-T.  相似文献   

9.
Electron microscopic observations showed that the fungal metabolite brefeldin A caused disassembly of the Golgi complex in human choriocarcinoma cells and accumulation of alkaline phosphatase (ALP) in the endoplasmic reticulum (ER) and nuclear envelope, where ALP was not apparently detectable in control cells. Pulse/chase experiments with [35S]methionine demonstrated that in the control cells, ALP synthesized as a 63-kDa precursor form was rapidly converted to a 66-kDa form, by processing of its N-linked oligosaccharides from the high-mannose type to the complex type, which was expressed on the cell surface after 30 min of chase. In contrast, in the brefeldin-A-treated cells the precursor was gradually converted to a 65-kDa form, slightly smaller than the control mature form, which was not expressed on the cell surface even after a prolonged time of chase. Kinetics of the ALP processing in the brefeldin-A-treated cells demonstrated that the precursor was initially converted to an intermediate form, partially sensitive to endo-beta-N-acetylglucosaminidase H (endo H), then to an endo-H-resistant 65-kDa form. In addition, this form was found to be sensitive to neuraminidase digestion, though its sialylation was not so complete as that of the control mature form. Taken together, these results suggest that under disassembly of the Golgi complex caused by brefeldin A, oligosaccharide-processing enzymes including sialyltransferase, an enzyme in the trans Golgi cisterna(e) and/or the trans Golgi network, might be redistributed into the ER and involved in processing of the oligosaccharides of ALP accumulating there.  相似文献   

10.
Wang Y  Wei JH  Bisel B  Tang D  Seemann J 《PloS one》2008,3(2):e1647
The Golgi apparatus in mammalian cells is composed of flattened cisternae that are densely packed to form stacks. We have used the Golgi stacking protein GRASP65 as a tool to modify the stacking state of Golgi cisternae. We established an assay to measure protein transport to the cell surface in post-mitotic cells in which the Golgi was unstacked. Cells with an unstacked Golgi showed a higher transport rate compared to cells with stacked Golgi membranes. Vesicle budding from unstacked cisternae in vitro was significantly increased compared to stacked membranes. These results suggest that Golgi cisternal stacking can directly regulate vesicle formation and thus the rate of protein transport through the Golgi. The results further suggest that at the onset of mitosis, unstacking of cisternae allows extensive and rapid vesiculation of the Golgi in preparation for its subsequent partitioning.  相似文献   

11.
12.
The general histological organization of Hydra is reviewed and electron microscopic observations are presented which bear upon the nature of the mesoglea, the mode of attachment of the contractile processes of the musculo-epithelial cells, and the cytomorphosis of the cnidoblasts. Particular attention is devoted to the changes in form and distribution of the cytoplasmic organelles in the course of nematocyst formation. The undifferentiated interstitial cell is characterized by a small Golgi complex, few mitochondria, virtual absence of the endoplasmic reticulum, and a cytoplasmic matrix crowded with fine granules presumed to be ribonucleoprotein. These cytological characteristics persist through the early part of the period of interstitial cell proliferation which leads to formation of clusters of cnidoblasts. With the initiation of nematocyst formation in the cnidoblasts, numerous membrane-bounded vesicles appear in their cytoplasm. These later coalesce to form a typical endoplasmic reticulum with associated ribonucleoprotein granules. During the ensuing period of rapid growth of the nematocyst the reticulum becomes very extensive and highly organized. Finally, when the nematocyst has attained its full size, the reticulum breaks up again into isolated vesicles. The Golgi complex remains closely applied to the apical pole of the nematocyst throughout its development and apparently contributes to its enlargement by segregating formative material in vacuoles whose contents are subsequently incorporated in the nematocyst. The elaboration of this complex cell product appears to require the cooperative participation of the endoplasmic reticulum and the Golgi complex. Their respective roles in the formative process are discussed.  相似文献   

13.
The general histological organization of Hydra is reviewed and electron microscopic observations are presented which bear upon the nature of the mesoglea, the mode of attachment of the contractile processes of the musculo-epithelial cells, and the cytomorphosis of the cnidoblasts. Particular attention is devoted to the changes in form and distribution of the cytoplasmic organelles in the course of nematocyst formation. The undifferentiated interstitial cell is characterized by a small Golgi complex, few mitochondria, virtual absence of the endoplasmic reticulum, and a cytoplasmic matrix crowded with fine granules presumed to be ribonucleoprotein. These cytological characteristics persist through the early part of the period of interstitial cell proliferation which leads to formation of clusters of cnidoblasts. With the initiation of nematocyst formation in the cnidoblasts, numerous membrane-bounded vesicles appear in their cytoplasm. These later coalesce to form a typical endoplasmic reticulum with associated ribonucleoprotein granules. During the ensuing period of rapid growth of the nematocyst the reticulum becomes very extensive and highly organized. Finally, when the nematocyst has attained its full size, the reticulum breaks up again into isolated vesicles. The Golgi complex remains closely applied to the apical pole of the nematocyst throughout its development and apparently contributes to its enlargement by segregating formative material in vacuoles whose contents are subsequently incorporated in the nematocyst. The elaboration of this complex cell product appears to require the cooperative participation of the endoplasmic reticulum and the Golgi complex. Their respective roles in the formative process are discussed.  相似文献   

14.
Transmission electron microscopy of the spermatozoa of five species from three families of bivalves has shown that each species has a sperm with unique morphology. However, the morphology of the acrosomes of each species is typical of the subclass of bivalve to which they belong. An examination of spermatogenesis in the five species, along with a re-examination of material from six other species of bivalves, has revealed that pre-spermiogenic cells possess flagella. In addition, acrosome formation begins in the spermatocytes with the formation of proacrosomal vesicles in the Golgi body. During spermiogenesis the proacrosomal vesicles coalesce at the presumptive posterior of the spermatid, with a larger vesicle produced by the Golgi body. The single acrosomal vesicle eventually migrates to the anterior of the spermatid where it assumes its mature form. © 1994 Wiley-Liss, Inc.  相似文献   

15.
CD1e is a membrane-associated protein predominantly detected in the Golgi compartments of immature human dendritic cells. Without transiting through the plasma membrane, it is targeted to lysosomes (Ls) where it remains as a cleaved and soluble form and participates in the processing of glycolipidic antigens. The role of the cytoplasmic tail of CD1e in the control of its intracellular pathway was studied. Experiments with chimeric molecules demonstrated that the cytoplasmic domain determines a cellular pathway that conditions the endosomal cleavage of these molecules. Other experiments showed that the C-terminal half of the cytoplasmic tail mediates the accumulation of CD1e in Golgi compartments. The cytoplasmic domain of CD1e undergoes monoubiquitinations, and its ubiquitination profile is maintained when its N- or C-terminal half is deleted. Replacement of the eight cytoplasmic lysines by arginines results in a marked accumulation of CD1e in trans Golgi network 46+ compartments, its expression on the plasma membrane and a moderate slowing of its transport to Ls. Fusion of this mutated form with ubiquitin abolishes the accumulation of CD1e molecules in the Golgi compartments and restores the kinetics of their transport to Ls. Thus, ubiquitination of CD1e appears to trigger its exit from Golgi compartments and its transport to endosomes. This ubiquitin-dependent pathway may explain several features of the very particular intracellular traffic of CD1e in dendritic cells compared with other CD1 molecules.  相似文献   

16.
Microtubules and the organization of the Golgi complex   总被引:42,自引:0,他引:42  
Electron microscopic and cytochemical studies indicate that microtubules play an important role in the organization of the Golgi complex in mammalian cells. During interphase microtubules form a radiating pattern in the cytoplasm, originating from the pericentriolar region (microtubule-organizing centre). The stacks of Golgi cisternae and the associated secretory vesicles and lysosomes are arranged in a circumscribed juxtanuclear area, usually centered around the centrioles, and show a defined orientation in relation to the rough endoplasmic reticulum. Exposure of cells to drugs such as colchicine, vinblastine and nocodazole leads to disassembly of microtubules and disorganization of the Golgi complex, most typically a dispersion of its stacks of cisternae throughout the cytoplasm. These alterations are accompanied by disturbances in the intracellular transport, processing and release of secretory products as well as inhibition of endocytosis. The observations suggest that microtubules are partly responsible for the maintenance and functioning of the Golgi complex, possibly by arranging its stacks of cisternae three-dimensionally within the cell and in relation to other organelles and ensuring a normal flow of material into and away from them. During mitosis, microtubules disassemble (prophase) and a mitotic spindle is built up (metaphase) to take care of the subsequent separation of the chromosomes (anaphase). The breaking up of the microtubular cytoskeleton is followed by vesiculation of the rough endoplasmic reticulum and partial atrophy, as well as dispersion of the stacks of Golgi cisternae. After completion of the nuclear division (telophase), the radiating microtubule pattern is re-established and the rough endoplasmic reticulum and the Golgi complex resume their normal interphase structure. This sequence of events is believed to fulfil the double function to provide tubulin units and space for construction of the mitotic spindle and to guarantee an approximately equal distribution of the rough endoplasmic reticulum and the Golgi complex on the two daughter cells.  相似文献   

17.
Prolactin endocytosis was studied by electron microscopy with 125I-prolactin 125I-hGH (human growth hormone) and prolactin-ferritin. Endocytosis and intracellular transit of the labelled hormone proceeded identically in epithelial cells isolated from the mammary glands of pseudopregnant rabbits and in surviving fragments from mammary glands of lactating rabbits. After binding of the hormone to its receptor, the labelled material was rapidly detectable in vesicles showing an homogeneous aspect; 15 min later part of the labelled material was still localized within the same kind of vesicles, but in addition it appeared to have migrated into microvesicles of the Golgi region and into vesicles of heterogeneous aspect tentatively identified with lysosomes. Endocytosis of bovine serum albumin, labelled with ferritin followed the same intracellular pathway. Native ferritin accumulated in vesicles of various sizes, but seemed excluded from the microvesicles of the Golgi zone. In the presence of lysosomotropic agents labelled prolactin accumulated in cytoplasmic vesicles. In the presence of dansylcadaverine, endocytosis of the labelled material proceeded unimpaired. Conversely, in the presence of bacitracin, the internalisation of labelled prolactin seemed to be reduced. These observations show that the endocytosis of the hormone/receptor complex is linked to membrane movements, which eventually lead to its location within both the Golgi apparatus and the lysosomes.  相似文献   

18.
Summary At the base of the optic tentacular ganglion there is a group of large monopolar cells containing numerous secretory inclusions. These are the collar cells. Secretory material can be seen accumulating in swollen portions of the granular endoplasmic reticulum. It is postulated that this material is transported to the Golgi bodies and thus the limiting membrane of the inclusions is derived from the Golgi membranes. The Golgi bodies appear to be polarized and small vesicles resembling secretory inclusions are associated with one face of these organelles. The secretory inclusions fuse together to form large membrane-bound secretory pools in the perikaryon. The collar-cell processes are packed with secretory inclusions. These processes traverse the digital extensions of the tentacular ganglion and pass into the epithelium covering the tip of the tentacle. The secretory inclusions do not resemble neurosecretory inclusions in other situations. The collar cell processes receive a nerve supply from single axons containing granular and agranular vesicles. The evidence that these cells may be modified neurons is only minimal.This work was supported by the Australian Research Grants Committee.  相似文献   

19.
Ultrastructural analysis of garlic roots treated for 24 h with sodium selenate or sodium selenite at the concentrations 80, 160, 320 microM revealed the presence of selenium deposits in meristematic cells. They appeared as small and large granules or aggregates of electron-dense material. Many small granules were localised in plastids but some in mitochondria, endoplasmic reticulum as well as in Golgi apparatus, nucleus and cytoplasm. Sometimes the large granules were seen in cytoplasm but aggregates of electron-dense material only in vacuoles. It seems possible that these deposits represent a non-dissolved form of selenium, i.e. elemental selenium or its complexes with other ions.  相似文献   

20.
The role of rab33b, a Golgi-specific rab protein, was investigated. Microinjection of rab33b mutants stabilised in the GTP-specific state resulted in a marked inhibition of anterograde transport within the Golgi and in the recycling of glycosyltransferases from the Golgi to the ER, respectively. A GST-rab33b fusion protein stabilised in its GTP form was found to interact by Western blotting or mass spectroscopy with Golgi protein GM130 and rabaptin-5 and rabex-5, two rab effector molecules thought to function exclusively in the endocytic pathway. A similar binding was seen to rab1 but not to rab6, both Golgi rabs. In contrast, rab5 was as expected, shown to bind rabaptin-5 and rabex-5 as well as the endosomal effector protein EEA1 but not GM130. No binding of EEA1 was seen to any of the Golgi rabs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号