首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 569 毫秒
1.
  1. Download : Download high-res image (245KB)
  2. Download : Download full-size image
Highlights
  • •Acute inhibition of growth-regulatory AGC-kinases Sch9, PKA and Ypk1.
  • •Phospho-proteomic profiling of 6373 phsopho-sites.
  • •Ypk1 regulates phospho-sites in RRxS/T-context and functionally overlaps with PKA.
  • •Ypk1 and PKA activate trehalase activity of Nth1.
  相似文献   

2.
Ischemic myocardial disease is a major cause of death among humans worldwide; it results in scarring and pallor of the myocardium and triggers an inflammatory response that contributes to impaired left ventricular function. This response includes and is evidenced by the production of several inflammatory cytokines including TNFα, IL1β, IL4, IFNγ, IL10 and IL6. In the current study, myocardial infarcts were induced in 6 mo old male castrated sheep by ligation of the left circumflex obtuse marginal arteries (OM 1 and 2). MRI was used to measure parameters of left ventricular function that include EDV, ESV, EF, SVI, dp/dt max and dp/dt min at baseline and at 4 wk and 3 mo after infarct induction. We also measured serum concentrations of an array of cytokines. Postmortem histologic findings corroborate the existence of left ventricular myocardial injury and deterioration. Our data show a correlation between serum cytokine concentrations and the development of myocardial damage and left ventricular functional compromise.

Heart failure is a globally significant problem in both humans and lower animals.3,18 The medical literature is replete with predisposing causes of heart disease,13 yet the prevalence of heart failure remained high.4,5,16 Regardless of the cause of myocardial damage and subsequent left ventricular compromise, the literature indicated that the proinflammatory response that occurs after myocardial infarction is an important contributor to the deterioration of the myocardium1,9,12,14,17,18,20,21 Sheep and pigs are excellent translational models of human cardiology because their hearts bear many physiologic and anatomic similarities to the human heart.4,8,15 The primary use of these models in cardiology is primarily to study myocardial infarction5,13,16 and to a lesser extent, physiologic processes that develop after myocardial insult.Our study measured some of the major proinflammatory cytokines that contribute to myocardial damage. Most of these cytokines, including: TNFα, IL6, and IFNγ, are important correlates of myocardial ischemia that contribute to a decline in left ventricular myocardial function.1,9,14 In our study, we detected left ventricular compromise as early as 4 wk after the infarction, while the proinflammatory response was recorded at 48 h after the infarct and peaked at 4 wk. Cardiac functional parameters began to decline early in the study consistent with the proinflammatory response. The cardiac functional parameters continued to decline until 3 mo, which was the termination of the study. These findings may support antiinflammatory intervention as an important adjunct of any therapeutic regimen.  相似文献   

3.
4.
5.
6.
  1. Download : Download high-res image (218KB)
  2. Download : Download full-size image
Highlights
  • •SRPK1 is overexpressed in endometrial cancer and associated with poor survival.
  • •SRPK1 promotes endometrial cancer cell growth under nutrient-deprived conditions.
  • •Activation of EGFR-IGF1R-AKT signaling promotes resistance to SRPK1 inhibitors.
  • •Co-targeting SRPK1 and EGFR-IGF1R synergize blocking endometrial cancer cell growth.
  相似文献   

7.
8.
  1. Download : Download high-res image (183KB)
  2. Download : Download full-size image
Highlights
  • •Integrated phosphoproteomics and analyses of newly synthesized proteins in neurons.
  • •Resource of temporal mGluR-induced signaling pathways upon DHPG stimulation.
  • •Validation of PKC, MAPK1, CAMKIIa, and CDK2 in mGluR-activation and signaling.
  • •Validation of Intersectin-1 in DHPG-induced AMPAR internalization.
  相似文献   

9.
10.
  1. Download : Download high-res image (435KB)
  2. Download : Download full-size image
Highlights
  • •Proteome of airway secretions derived from mock- and hRSV-infected WD-PBEC cultures.
  • •A polarised secretome in uninfected WD-PBECs, skewed in hRSV-infected cultures.
  • •CXCL6, CXCL16, CECACAM1 and CSF3 induced only upon hRSV-infection.
  • •Detection of CXCL6, CXCL16 and CSF3 in NPAs from hRSV-positive children.
  相似文献   

11.
12.
  1. Download : Download high-res image (225KB)
  2. Download : Download full-size image
Highlights
  • •Curation of 2066 phosphorylated HLA class I peptides from immunopeptidomics data.
  • •Determination of 22 HLA class I binding motifs for phosphorylated peptides.
  • •Observation of a higher frequency of phosphorylated ligands binding HLA-C molecules.
  • •Development of a predictor of phosphorylated peptide interactions with HLA class I.
  相似文献   

13.
  1. Download : Download high-res image (233KB)
  2. Download : Download full-size image
Highlights
  • •Modern DIA methods contain high quality MS1 and MS2.
  • •We developed a statistical procedure incorporating MS1 and MS2.
  • •Benchmarking, the combined method outperformed the individual use of MS1 or MS2.
  相似文献   

14.
  1. Download : Download high-res image (90KB)
  2. Download : Download full-size image
Highlights
  • •Laser microdissection of highly vulnerable hippocampal region.
  • •Proteomic analysis of postmortem human brain tissue of AD and control cases.
  • •Decreased levels of presynaptic proteins, but not postsynaptic proteins, in AD.
  • •Immunohistochemistry verifies decreased levels of selected presynaptic proteins.
  相似文献   

15.
  1. Download : Download high-res image (187KB)
  2. Download : Download full-size image
Highlights
  • •Automated statistical approach for detecting uninformative features and outliers.
  • •Improved performance on relative protein quantification.
  • •An option in the open-source R-based software MSstats.
  相似文献   

16.
17.
  1. Download : Download high-res image (158KB)
  2. Download : Download full-size image
Highlights
  • P. aeruginosa grown with exosiderophores and analyzed by proteomic and RT-qPCR.
  • •Catechol-type exosiderophores strongly induce the expression of their transporters.
  • •Repression of the endogenous iron uptake pathways.
  • •Complex phenotypic plasticity in the expression of the various iron-uptake pathways.
  相似文献   

18.
The symbiosis between scleractinian corals and photosynthetic algae from the family Symbiodiniaceae underpins the health and productivity of tropical coral reef ecosystems. While this photosymbiotic association has been extensively studied in shallow waters (<30 m depth), we do not know how deeper corals, inhabiting large and vastly underexplored mesophotic coral ecosystems, modulate their symbiotic associations to grow in environments that receive less than 1% of surface irradiance. Here we report on the deepest photosymbiotic scleractinian corals collected to date (172 m depth), and use amplicon sequencing to identify the associated symbiotic communities. The corals, identified as Leptoseris hawaiiensis, were confirmed to host Symbiodiniaceae, predominantly of the genus Cladocopium, a single species of endolithic algae from the genus Ostreobium, and diverse communities of prokaryotes. Our results expand the reported depth range of photosynthetic scleractinian corals (0–172 m depth), and provide new insights on their symbiotic associations at the lower depth extremes of tropical coral reefs.Subject terms: Symbiosis, Microbial ecology

The ecological success of scleractinian corals, the engineers of one of the most productive and diverse ecosystems on Earth, relies on a myriad of symbiotic associations with microorganisms [1]. Among these symbioses, the association between the coral host and unicellular algae from the family Symbiodiniaceae is central to coral health and powers the metabolically expensive process of calcification [2]. The coral host provides limited inorganic nutrients, while Symbiodiniaceae share essential organic compounds derived from their photosynthetic activity [3]. This light-dependent association has mainly been studied in shallow waters (<30 m) because of technical limitations imposed by traditional scientific scuba diving. However, photosynthetic scleractinian corals have been observed in the mesophotic reef slope down to 150–165 m depth [4, 5].As depth increases, the waveband of solar radiation used by most algae for photosynthesis (from 400–700 nm) becomes attenuated in both intensity and width. Even in clear tropical waters, the irradiance levels below 120 m depth can be less than 1% of surface values, and the light spectrum is shifted toward the blue and blue–green wavelengths (~475 nm) (e.g. [4]). These light limitations pose a major constraint for the productivity of benthic organisms that rely on photosynthetic symbionts [6], including reef-building corals (scleractinians). While the scleractinian coral species Leptoseris hawaiiensis has been reported to occur as deep as 153 m in Hawaii and 165 m at Johnston atoll (reviewed in [4]), no live specimens were collected at these extreme depths. The fact that Symbiodiniaceae have been found at much greater depth in association with Antipatharians (396 m) [7], raises the possibility that they might also be present in scleractinian corals deeper than 165 m. Previous studies have genetically confirmed and identified endosymbiotic Symbiodiniaceae in Leptoseris down to 70 m on the Great Barrier Reef [8] and down to 125 m depth in Hawaii [911]. A specific host-Symbiodiniaceae association was reported between deep L. hawaiiensis and a Cladocopium from the ancestral C1 radiation [911], which represents a diverse group of Symbiodiniaceae commonly found in association with scleractinians on shallow coral reefs [8, 9, 12, 13]. To better understand how scleractinian corals can survive so far away from their presumed light optimum, it is critical to determine if these deep specimens (1) maintain their association with photosynthetic algae and/or (2) if their survival in the deepest mesophotic coral ecosystems requires a shift in their microbial communities, including Symbiodiniaceae and other microorganisms such as endolithic algae and bacteria.Here we report on the observation and collection of the deepest scleractinian corals in association with Symbiodiniaceae and other photosymbionts. Technical divers using closed-circuit rebreathers recovered three L. hawaiiensis colonies from the Gambier archipelago (French Polynesia, Fig. 1A) at 154, 168, and 172 m depth (n = 2 subsamples for each depth; Fig. 1B–D). Irradiance measured at 120 m depth was <2% of that recorded at 6 m depth and irradiance at 172 m was predicted to be <1% (Fig.(Fig.1E1E and S1). ITS2 sequencing revealed Symbiodiniaceae presence in all three lower mesophotic colonies sampled, with nearly all of the retrieved amplicon sequence variants (ASVs; with most of these representing intragenomic sequence variants) classified as Cladocopium (Fig. 2). The most common ITS2 ASV representative sequence associated with these Leptoseris hosts (S-01, Fig. 2 and S2; 50–57% of total ASVs in each sample) was C1 (GeoSymbio and SymPortal databases; see supplementary methods). This represents one of the most common groups of Symbiodiniaceae, and it has previously been reported in Leptoseris [9, 10, 14], as well as other host species at depths ranging from the surface to 125 m [8, 10, 11, 1315]. As a complementary approach, ITS2 profiles predicted by SymPortal were used as proxy for Symbiodiniaceae genotypes ([16]; see supplementary methods and data files S1–S4). These predicted ITS2 profiles were largely consistent among replicates but confirmed a different profile for the colony at 172 m depth compared to those at 154 and 168 m depth (Fig. S2). Nonetheless, the Symbiodiniaceae communities shared three ASVs that exactly matched C89 (S-02: 5% at 172 m vs. 17–19% at 154–168 m) and two different C variants (both S-05 and S-07: 7% at 172 m vs. ~2% at 154–168 m) in public databases (Fig. S3; GeoSymbio, SymPortal or Genbank). Of the 26 ASVs identified across all samples, one sequence originated from Durusdinium (S-24 D1 with GeoSymbio and SymPortal databases). This sequence is found in multiple heat-tolerant Durusdinium species including the enigmatic, cosmopolitan [17], host generalist D. trenchii [18]. However, whether or not the Symbiodiniaceae sampled here is D. trenchii or indeed thermally tolerant cannot be confirmed without further genetic and phenotypic data. Low abundance ASVs were observed at all three depths (172 m: 8 ASVs, 154 and 168 m: 10 ASVs, Fig. S3), including nine ASV sequences (Fig. 2) that have not been reported previously in the GeoSymbio [13] and SymPortal (access date: 2020-05-19_07-23-40) [16] databases (Fig. S3). Comparison of the overall Symbiodiniaceae SymPortal predicted ITS2 profiles (Fig. S2) did not confidently identify matches with previously encountered profiles (predominantly from shallow reef environments), indicating that they might be specific to this species and/or mesophotic environment. Given the extreme paucity of light at these depths, we hypothesize that lower mesophotic L. hawaiiensis may use different strategies to photoacclimate. Morphologically, the coral species were characterized by a thin flat skeleton (Fig. 1B–D), which is optimal for light harvesting and reducing skeletal carbonate deposition [19]. Leptoseris hawaiiensis has also been shown to display depth-associated physiological specialization and trophic plasticity (acquiring energy from different food sources) [9], and an unusual light-harvesting system, which enlarges the spectrum of wavelengths for photosynthesis by transforming the short, blue-shifted wavelength with their autofluorescent pigments [19].Open in a separate windowFig. 1Sampling location of the deepest photosymbiotic scleractinian coral recorded to date.A Map of the Gambier archipelago, French Polynesia. Pictures of Leptoseris hawaiiensis collected at 172 m depth in the Gambier archipelago (B) during the in situ sampling (screenshot of video © UTP III), (C) after reaching the surface and (D) after bleaching for taxonomic identification with the green color indicating the presence of endolithic algae. E Variation of the optical index of irradiance (in PAR) along the coral reef depth gradient from 6 to 120 m depth (predictions for 150 and 172 m depths) at Mangareva. For each depth, the three values represent a mean value for 3 days of measurements recorded every 5 min with a PAR logger (DEFI2-L Advantech) at three different time periods of the day (9 h30–10 h00, 12 h30–13 h00 and 15 h30–16 h00).Open in a separate windowFig. 2Microbial communities harbored by the three deep colonies.Composition of the microbial community in Leptoseris hawaiiensis collected at 172, 168, and 154 m. At each depth, two subsamples were analyzed for each colony. The ITS2 marker shows the relative proportion of different Symbiodiniaceae ASVs (with GeoSymbio and SymPortal v.2020-05-19_07-23-40 affiliations). The 16S rDNA marker shows the relative proportions of different ASVs for endolithic algae chloroplast composition and bacteria classes. Asterisk represents sequences with no exact match in the SymPortal database for Symbiodiniaceae.To identify other microorganisms associated with our lower mesophotic scleractinian colonies, we targeted the 16S rRNA gene (V4–V5 region; see supplementary methods). Sequencing data revealed the presence of green algal chloroplast sequences belonging to the genus Ostreobium (Fig. 2). This endolithic alga was abundant in the deep coral colonies as suggested by the marked green color observed below the living tissues (Fig. 1C) and within the skeleton after removing the soft tissues in bleach (Fig. 1D). We identified a single Ostreobium species (ASV ga-01), belonging to clade 2, that was dominant in all the colonies (Fig. 2 and S4), and has been previously reported across the depth gradient in scleractinian corals and octocorals worldwide [20, 21]. The nature of the interaction between corals and Ostreobium has been debated. Evidence supports a mutualistic association under extreme conditions such as coral stress (inducing bleaching) [22] or drastically reduced light exposure [23]. Under the low light conditions of the deep mesophotic fore reef slope, Ostreobium might complement Symbiodiniaceae’s function by providing photosynthates to the host. These endolithic algae are adapted to photosynthesize in near-darkness with increased numbers of light-harvesting xanthophyll pigments that can use shorter wavelengths compared to other green algae and optimize light capture (e.g. [24]).Bacteria associated with the lower mesophotic scleractinian colonies had an observed richness ranging from 106 to 211 ASVs per sample (Fig. S5). These bacteria mainly belonged to the classes Alpha- (19-49%) and Gamma-proteobacteria (8–17%), Bacteroidia (6–20%) and subgroup-6 of Acidobacteria (1–17%) (Fig. 2), which are known to associate with corals [25]. In total, we detected 843 different bacterial ASVs, among which 67–89% were unique to one colony or even unique to one subsample (Fig. S6 and Table S1). Our data suggest that the coral hosts displayed individual microbial signatures with some common ASVs shared between subsamples of the same colony (Fig. S6). However, this result might have been affected by the low-sequencing depth of the microbiome following the removal of the Ostreobium reads. Our results corroborate previous reports describing the high intra-specific variability of coral-associated bacterial communities at different spatial scales (e.g. [25, 26]), which might be driven by biological traits, such as the age [27] or diets of the colonies [28].This study reports a new depth record for scleractinian corals associated with symbiotic algae at 172 m. Similar to conspecifics previously sampled in mesophotic environments between 115 and 125 m depth [10], the deepest L. hawaiiensis reported here associated with symbiotic-microalgae belonging to the highly diverse C1 lineage. The deep colonies were also characterized by the presence and abundance of a single species of endolithic alga from the genus Ostreobium (clade 2). These filamentous green algae adapted to thrive in extreme low light conditions [24] might highly contribute to the survival of L. hawaiiensis at depth through photosynthates translocation [29]. In addition, bacterial communities were diverse, with intraspecific differences in community composition. Our findings provide new insights into the symbioses of scleractinian corals at depth, through the conservation of their associated photosymbiotic algae, raising important questions about the nature and mechanisms involved in the interactions between host and Symbiodiniaceae and/or Ostreobium (e.g. evolutionary theory of symbiosis [30]). Future studies should establish the contribution of photosynthetic symbionts to the energy budget of mesophotic corals. Understanding the biology of ecosystem engineers, such as tropical reef corals, living at the edge of their habitat range is important to determine the plasticity of these organisms and their ability to withstand environmental pressure.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号