首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Determining the interaction and impact of surface runoff and subsurface flow processes on the environment has been hindered by our inability to characterize subsurface soil structures on a watershed scale. Ground penetrating radar (GPR) data were collected and evaluated in determining subsurface hydrology at four small watersheds in Beltsville, MD. The watersheds have similar textures, organic matter contents, and yield distributions. Although the surface slope was greater on one of the watersheds, slope alone could not explain why it also had a nitrate runoff flux that was 18 times greater than the other three watersheds. Only with knowledge of the subsurface hydrology could the surface runoff differences be explained. The subsurface hydrology was developed by combining GPR and surface topography in a geographic information system. Discrete subsurface flow pathways were identified and confirmed with color infrared imagery, real-time soil moisture monitoring, and yield monitoring. The discrete subsurface flow patterns were also useful in understanding observed nitrate levels entering the riparian wetland and first order stream. This study demonstrated the impact that subsurface stratigraphy can have on water and nitrate (NO3-N) fluxes exiting agricultural lands, even when soil properties, yield distributions, and climate are similar. Reliable protocols for measuring subsurface fluxes of water and chemicals need to be developed.  相似文献   

2.
Water and dissolved nitrogen flows through the hyporheic zone of a 3rd-order mountain stream in Hokkaido, northern Japan were measured during a small storm in August 1997. A network of wells was established to measure water table elevations and to collect water samples to analyze dissolved nitrogen concentrations. Hydraulic conductivity and the depth to bedrock were surveyed. We parameterized the groundwater flow model, MODFLOW, to quantify subsurface flows of both stream water and soil water through the hyporheic zone. MODFLOW simulations suggest that soil water inflow from the adjacent hill slope increased by 1.7-fold during a small storm. Dissolved organic nitrogen (DON) and ammonium (NH 4 + ) in soil water from the hill slope were the dominant nitrogen inputs to the riparian zone. DON was consumed via mineralization to NH 4 + in the hyporheic zone. NH 4 + was the dominant nitrogen species in the subsurface, and showed a net release during both base and storm flow. Nitrate appeared to be lost to denitrification or immobilized by microorganisms and/or vegetation in the riparian zone. Our results indicated that the riparian and hyporheic system was a net source of NH 4 + to the stream.  相似文献   

3.
Stream discharge and chemistry (total suspended solids TSS, nitrogen N, and phosphorus P) were monitored for 15 months in six agricultural watersheds on the U.S. Mid-Atlantic coastal plain. Watersheds with similar land uses and a range of hydric soils were used to test the hypothesis that hydric soils generate large storm discharges due to low permeability, resulting in watershed areas with high loss rates of N, P, and TSS. To test the hypothesis, discharge was monitored continuously, and a flow separation method quantified the base and stormflow contributions. Another primary goal was to measure base and stormflow chemistry to quantify N, P, and TSS export. Baseflow chemistry was monitored monthly, and 31 storm events were sampled. Baseflow chemistry varied little over the 15 months, but stormflow chemistry was dynamic, with three major patterns: (1) TSS and particulate N and P had large, brief peaks during the rising limb of storm hydrographs; (2) phosphate and ammonium had broader peaks close to maximum discharges; and (3) nitrate concentrations decreased during the rising limb, slowly returning to pre-storm levels. Event water yields were correlated with volume-weighted mean concentrations (VWMs) of N, P, and TSS, providing a basis for estimating VWMs of unsampled events. Export coefficients (kg ha?1 year?1) ranged over 22–33 for TN, 0.9–1.4 for TP, and 240–1140 for TSS. Most P and TSS export occurred during storms (71–99%), while most N export occurred during baseflow (52–84%). The discharge data did not support the hypothesis, and watershed slope, not hydric soils, was the major control on storm discharge. Surface ponding of water on hydric soils intercepted runoff, reducing the impacts of the low infiltration rates.  相似文献   

4.
The influence of storm runoff processes on stream nitrogen dynamics was investigated in a headwater riparian swamp on the Oak Ridges moraine in southern Ontario. Hydrologic data were combined with analysis of an isotopic tracer (180) and nitrogen (NH 4 + , NO 3 ) concentrations in saturation overland flow and stream discharge. Storm runoff was separated into its event and pre-event components using18O in order to examine the effect of water source on nitrogen chemistry. Laboratory experiments were also used to study nitrogen transformation associated with storm runoff-surface substrate interactions in the swamp. In most storms N03-N and NH4-N concentrations in the initial 3–4 mm throughfall increment were 10–20x and 20–100x higher respectively than stream base flow concentrations. Maximum stream N03-N concentrations were < 2x to 6x higher than base flow concentrations and preceded or coincided with peak stream discharge. Storm-to-storm variations in stream N03-N behaviour also occurred during the hydrograph recession phase. NH4-N concentrations attained an initial peak on the rising hydrograph limb, or at peak stream discharge. A second NH4-N increase occurred during the late recession phase 3–5 h after maximum stream discharge. Inorganic-N concentrations in surface runoff were similar to peak streamflow.The close agreement between observed N03-N concentrations and values predicted from a chemical mixing model indicate that stream N03-N variations were controlled mainly by the mixture of throughfall and groundwater in surface stormflow from the swamp. Laboratory experiments also indicated that N03-N in surface runoff behaved conservatively when mixed with swamp substrates. With the exception of the late hydrograph recession phase, observed stream NH4-N concentrations were much lower than concentrations predicted by the chemical mixing model. The rapid loss of NH4-N from mixtures of surface stormflow and swamp substrates in laboratory experiments and the absence of uptake in sterilized substrates indicated that NH4-N retention in surface storm runoff was due to biotic processes.  相似文献   

5.
Quantitative prediction of environmental impacts of land-use and climate change scenarios in a watershed can serve as a basis for developing sound watershed management schemes. Water quantity and quality are key environmental indicators which are sensitive to various external perturbations. The aim of this study is to evaluate the impacts of land-use and climate changes on water quantity and quality at watershed scale and to understand relationships between hydrologic components and water quality at that scale under different climate and land-use scenarios. We developed an approach for modeling and examining impacts of land-use and climate change scenarios on the water and nutrient cycles. We used an empirical land-use change model (Conversion of Land Use and its Effects, CLUE) and a watershed hydrology and nutrient model (Soil and Water Assessment Tool, SWAT) for the Teshio River watershed in northern Hokkaido, Japan. Predicted future land-use change (from paddy field to farmland) under baseline climate conditions reduced loads of sediment, total nitrogen (N) and total phosphorous (P) from the watershed to the river. This was attributable to higher nutrient uptake by crops and less nutrient mineralization by microbes, reduced nutrient leaching from soil, and lower water yields on farmland. The climate changes (precipitation and temperature) were projected to have greater impact in increasing surface runoff, lateral flow, groundwater discharge and water yield than would land-use change. Surface runoff especially decreased in April and May and increased in March and September with rising temperature. Under the climate change scenarios, the sediment and nutrient loads increased during the snowmelt and rainy seasons, while N and P uptakes by crops increased during the period when fertilizer is normally applied (May through August). The sediment and nutrient loads also increased with increasing winter rainfall because of warming in that season. Organic nutrient mineralization and nutrient leaching increased as well under climate change scenarios. Therefore, we predicted annual water yield, sediment and nutrient loads to increase under climate change scenarios. The sediment and nutrient loads were mainly supplied from agricultural land under land use in each climate change scenario, suggesting that riparian zones and adequate fertilizer management would be a potential mitigation strategy for reducing these negative impacts of land-use and climate changes on water quality. The proposed approach provides a useful source of information for assessing the consequences of hydrology processes and water quality in future land-use and climate change scenarios.  相似文献   

6.
Since 1987 we have studied weekly change in winter (December–April) precipitation, snowpack, snowmelt, soil water, and stream water solute flux in a small (176-ha) Northern Michigan watershed vegetated by 65–85 year-old northern hardwoods. Our primary study objective was to quantify the effect of change in winter temperature and precipitation on watershed hydrology and solute flux. During the study winter runoff was correlated with precipitation, and forest soils beneath the snowpack remained unfrozen. Winter air temperature and soil temperature beneath the snowpack increased while precipitation and snowmelt declined. Atmospheric inputs declined for H+, NO3, NH4+, dissolved inorganic nitrogen (DIN), and SO42−. Replicated plot-level results, which could not be directly extrapolated to the watershed scale, showed 90% of atmospheric DIN input was retained in surface shallow (<15 cm deep) soils while SO42− flux increased 70% and dissolved organic carbon (DOC) 30-fold. Most stream water base cation (CB), HCO3, and Cl concentrations declined with increased stream water discharge, K+, NO3, and SO42− remained unchanged, and DOC and dissolved organic nitrogen (DON) increased. Winter stream water solute outputs declined or were unchanged with time except for NO3 and DOC which increased. DOC and DIN outputs were correlated with the percentage of winter runoff and stream discharge that occurred when subsurface flow at the plot-level was shallow (<25 cm beneath Oi). Study results suggest that the percentage of annual runoff occurring as shallow lateral subsurface flow may be a major factor regulating solute outputs and concentrations in snowmelt-dominated ecosystems.  相似文献   

7.
Restoring urban infrastructure and managing the nitrogen cycle represent emerging challenges for urban water quality. We investigated whether stormwater control measures (SCMs), a form of green infrastructure, integrated into restored and degraded urban stream networks can influence watershed nitrogen loads. We hypothesized that hydrologically connected floodplains and SCMs are “hot spots” for nitrogen removal through denitrification because they have ample organic carbon, low dissolved oxygen levels, and extended hydrologic residence times. We tested this hypothesis by comparing nitrogen retention metrics in two urban stream networks (one restored and one urban degraded) that each contain SCMs, and a forested reference watershed at the Baltimore Long-Term Ecological Research site. We used an urban watershed continuum approach which included sampling over both space and time with a combination of: (1) longitudinal reach-scale mass balances of nitrogen and carbon conducted over 2 years during baseflow and storms (n = 24 sampling dates × 15 stream reaches = 360) and (2) 15N push–pull tracer experiments to measure in situ denitrification in SCMs and floodplain features (n = 72). The SCMs consisted of inline wetlands installed below a storm drain outfall at one urban site (restored Spring Branch) and a wetland/wet pond configured in an oxbow design to receive water during high flow events at another highly urbanized site (Gwynns Run). The SCMs significantly decreased total dissolved nitrogen (TDN) concentrations at both sites and significantly increased dissolved organic carbon concentrations at one site. At Spring Branch, TDN retention estimated by mass balance (g/day) was ~150 times higher within the stream network than the SCMs. There were no significant differences between mean in situ denitrification rates between SCMs and hydrologically connected floodplains. Longitudinal N budgets along the stream network showed that hydrologically connected floodplains were important sites for watershed nitrogen retention due to groundwater–surface water interactions. Overall, our results indicate that hydrologic variability can influence nitrogen source/sink dynamics along engineered stream networks. Our analysis also suggests that some major predictors for watershed N retention were: (1) streamwater and groundwater flux through stream restoration or stormwater management controls, (2) hydrologic residence times, and (3) surface area of hydrologically connected features.  相似文献   

8.
黄土高原不同植被覆盖对流域水文的影响   总被引:7,自引:0,他引:7  
张建军  纳磊  董煌标  王鹏 《生态学报》2008,28(8):3597-3605
以山西省吉县蔡家川流域为对象,研究了植被覆盖类型对流域水文的影响.结果表明:不同植被覆盖的流域年径流系数分别为:林地流域1.6%~2.3%,以农、牧为主的流域3.1%~3.9%;各流域基流系数差异显著,人工林流域为零,次生林为主的流域1.0%~1.5%,以农、牧为主的流域2.5%~2.8%;在雨季人工林流域的径流总量是次生林流域的3.37倍、农地流域的1.9倍,而农地流域的基流量是次生林流域的2.2倍;短历时高强度降雨条件下,人工林流域、次生林流域地表径流量分别是农地流域的10.8倍和2.2倍;在历时较长的暴雨条件下,人工林流域单位面积上的洪峰流量是农地流域的3.4倍,次生林流域的6.9倍;在长历时、大雨量条件下,农地流域的径流量是次生林流域的1.8倍.水平梯田的水源涵养功能与次生林植被相当,次生林植被的水源涵养功能远好于人工植被,在水资源短缺的黄土高原应提倡植被的自然恢复.  相似文献   

9.
Water quality in Upper Sandy Creek, a headwater stream for the Cape Fear River in the North Carolina Piedmont, is impaired due to high N and P concentrations, sediment load, and coliform bacteria. The creek and floodplain ecosystem had become dysfunctional due to the effects of altered storm water delivery following urban watershed development where the impervious surface reached nearly 30% in some sub-watersheds. At Duke University, an 8-ha Stream and Wetland Assessment Management Park (SWAMP) was created in the lower portion of the watershed to assess the cumulative effect of restoring multiple portions of stream and former adjacent wetlands, with specific goals of quantifying water quality improvements. To accomplish these goals, a three-phase stream/riparian floodplain restoration (600 m), storm water reservoir/wetland complex (1.6 ha) along with a surface flow treatment wetland (0.5 ha) was ecologically designed to increase the stream wetland connection, and restore groundwater wetland hydrology. The multi-phased restoration of Sandy Creek and adjacent wetlands resulted in functioning riparian hydrology, which reduced downstream water pulses, nutrients, coliform bacteria, sediment, and stream erosion. Storm water event nutrient budgets indicated a substantial attenuation of N and P within the SWAMP project. Most notably, (NO2 + NO3)-N loads were reduced by 64% and P loads were reduced by 28%. Sediment retention in the stormwater reservoir and riparian wetlands showed accretion rates of 1.8 cm year−1 and 1.1 cm year−1, respectively. Sediment retention totaled nearly 500 MT year−1.  相似文献   

10.
Urbanization alters stream and watershed hydrology so that fish from urban stream systems are confronted with extreme flows during storms and runoff events. To test whether residence in urban streams is associated with altered swimming ability, we compared sprint and endurance swimming performances of eight populations of blacknose dace (Rhinichthys atratulus) from different watersheds along an urban/rural gradient. Watershed impervious surface cover, a measure of urbanization, was significantly correlated with sprint performance in dace from all stream types and endurance swimming performance (U(crit)) when only fish from urban streams were analyzed. Three estimators of water flow in a stream system, watershed area, mean annual discharge, and base-flow current speed, were all related to U(crit) in fish from nonurban streams. The U(crit) was significantly repeatable after 6 mo in the laboratory, but dace populations with exceptional U(crit) values lost ability under no-flow, "detraining" conditions. Sprint performance changed substantially in individual dace after 10 wk under no-flow conditions and was a significant function of the animal's original performance. Animals with high sprint performance tended to lose ability, whereas those with poor performance gained ability. Interpopulation differences in both sprint and endurance swimming were robust over multiple years of collection from the same sites.  相似文献   

11.
Dissolved organic nitrogen (DON) can comprise a large and biologically important fraction of total dissolved N in surface water. Biotic and abiotic processes result in heterogeneous DON concentrations and bioavailability in soils, and as hydrologic connectivity expands and flow paths change in watersheds, novel sources of DON can be mobilized and transported to surface water. Although the relationship between in-stream DOC concentration and stream discharge has previously been examined in the literature, up to now there has not been a synthesis examining how DON concentrations, loads, and composition change during transitions from base flow to pulse flow conditions. We present a meta-analysis examining the effect of high flow on DON concentration ([DON]). The ratio of mean pulse flow [DON] to mean base flow [DON] (P:B) was calculated for individual events and averaged (geometric) within and then across sites to generate an overall effect size. For 47 sites (78 events), mean P:B was 1.58, which was significantly different from unity. This moderate increase in DON concentration contributed to over a more than 10-fold average increase in the rate of DON yield from base flow to high flow. The response of [DON] to high flow was significant in catchments where individual storm events or snowmelt runoff events were responsible for elevated flows, whereas the response was not significant in catchments where high discharge resulted from a mixture of upstream snowmelt and rain events. Additionally, an examination of DOC:DON ratios during high flow indicates that multiple sources of DON may be mobilized during high flow. Finally, current models of annual DON export may be improved by including a positive relationship between discharge and DON.  相似文献   

12.
The importance of agricultural land use activities for supplying nutrients (N, P) to the Chesapeake Bay is examined and nutrient sources for a typical agricultural hill-land watershed within the Chesapeake Basin are identified and assessed. Based on up to 30 years of experimental and monitoring data, the outflow, N, and P exported from this Pennsylvania watershed is examined in terms of critical source areas. Most of the surface runoff and P export occurs from areas near the stream. About 90% of the algal-available P exported in outflow was generated during the largest 7 storms/year. In contrast, nearly all the nitrate (NO3) exported originated as subsurface flow entering the soil or ground water some distance from the stream, and mostly occurred during nonstorm flow periods. The NO3 export observed over the long term corresponds to the N excess computed by N balance obtained by farmer survey for agricultural land. By combining land use, hydrologic processes, watershed position, soil P status, and N balance information for agricultural land, the major source areas for P and N are predictable and identifiable. We apply these ideas and techniques to our research watershed and present the results as an example of this approach.  相似文献   

13.
Present day hydrologic and nutrient budgets have been measured and presettlement budgets estimated for a small urban watershed in Madison, Wisconsin. The importance of different seasons and sources to the total loading were compared for past and present conditions. The seasonal budget revealed that while spring contributes the greatest loadings in both scenarios, summer exhibits the greatest change in loadings from past to present. As for sources this seepage lake receives most of its water and N from groundwater; however, most P comes from surface runoff. The greatest impact on the watershed since settlement appears to be the large increase in runoff matched by a decrease in evapotranspiration and subsurface flow. This shift in hydrology is largely responsible for the substantial increase in P loading and the decrease in the N : P ratio of total loading. The significance of the lake's modified morphometry to areal and volumetric loading is also explored.  相似文献   

14.
社区尺度绿色基础设施暴雨径流消减模拟研究   总被引:8,自引:5,他引:3  
刘文  陈卫平  彭驰 《生态学报》2016,36(6):1686-1697
当前快速的城市化进程导致了城市地区内涝事件频繁发生。绿色基础设施是减轻城市洪涝的有效措施之一。SWMM(Storm Water Management Model)等模型的复杂性使得规划管理者对模型的操作和应用存在困难,而且缺乏对绿色基础设施径流消减机制的展现。目前的研究中,比较单个与综合绿色基础设施配置径流消减效果的研究相对较少。基于水量平衡和城市水文过程,开发了社区尺度绿色基础设施消减作用的暴雨径流模型,并以北京市一典型社区为例,模拟研究了一年一遇和五年一遇两种暴雨条件下不同绿色基础设施配置对暴雨径流流量和峰值的消减效率。结果表明:用两场野外监测的降雨和径流数据验证模型得到的决定系数分别为0.68和0.71,纳什效率系数分别达到0.99和0.96,表明模型是可靠的。在一年一遇和五年一遇两种暴雨条件下,将常规绿地改造成5 cm深度的下凹式绿地,径流量分别减少了8.23%和23.30%,径流峰值分别减少了20.31%和29.11%;在建造300 m3调蓄池的情景下,径流量分别减少了84.90%和20.97%,径流峰值分别减少了88.99%和0.10%;在50%的不透水地表铺装透水砖情景下,径流量分别减少了46.51%和38.52%,径流峰值分别减少了39.96%和35.48%。3种绿色基础设施都可以较好的消减社区暴雨径流,但是随着暴雨强度的增强,下凹式绿地的消减效果略增强,调蓄池的消减效果变差,透水砖铺装的消减效果较稳定。综合3种措施对暴雨径流具有显著消减效果,可以100%消减一年一遇暴雨产生的径流,在五年一遇设计暴雨条件下,分别消减75.47%的总径流量和64.52%的径流峰值。  相似文献   

15.
Runoff quantity and quality from a 248 m2 extensive green roof and a control were compared in Connecticut using a paired watershed study. Weekly and individual rain storm samples of runoff and precipitation were analyzed for TKN, NO3 + NO2-N, NH3-N, TP, PO4-P, and total and dissolved Cu, Pb, Zn, Cd, Cr, and Hg. The green roof watershed retained 51.4% of precipitation during the study period based on area extrapolation. Overall, the green roof retained 34% more precipitation than predicted by the paired watershed calibration equation. TP and PO4-P mean concentrations in green roof runoff were higher than in precipitation but lower than in runoff from the control. The green roof was a sink for NH3-N, Zn, and Pb, but not for TP, PO4-P, and total Cu. It also reduced the mass export of TN, TKN, NO3 + NO2-N, Hg, and dissolved Cu primarily through a reduction in stormwater runoff. Greater than 90% of the total Cu, Hg, and Zn concentrations in the green roof runoff were in the dissolved form. The growing media and slow release fertilizer were probable sources of P and Cu in green roof runoff. Overall, the green roof was effective in reducing stormwater runoff and overall pollutant loading for most water quality contaminants.  相似文献   

16.
Extreme-flow events have been a central point of interest in hydrology and recent developments suggest that their role could be critical in the overall functioning of watershed systems. The development of modelling techniques that can effectively reproduce the hydrological dynamics of watersheds during extreme events is one of the challenges of the contemporary modelling practice. In this study, we present a season-specific, multi-site calibration framework that accommodates the variability in the hydrological responses induced by the agricultural landscape changes during different periods of the year. Our case study is the Hamilton Harbour watershed in southern Ontario, Canada, where discharge data from three main tributaries and six gauging stations were available to constrain the Soil and Water Assessment Tool (SWAT) model. Two distinct values are assigned to the Curve Number for antecedent runoff condition II (CN2), relating surface runoff to precipitation as a function of land uses and soil characteristics, in order to reproduce flow patterns during the growing and dormant seasons. Overall, notwithstanding the model performance decline in the most urbanized catchment of Redhill Creek, our season-specific calibration strategy improved the predictive capacity of the model in the predominantly agricultural catchments of Grindstone Creek and Spencer Creek. Counter to our season-specific process characterization, an alternative calibration strategy postulating a differential watershed response, depending on the magnitude of individual precipitation events, appears to fair better in urbanized settings. The water budget displays significant disparities among the different land uses in the Hamilton Harbour watershed. Our analysis also suggests that the runoff generated from urban sites during the growing season (May–October), i.e., the period when the receiving waterbody is most sensitive to eutrophication, is six times higher than the average contribution from pasture, forest, and cropland areas. The potential implications of the on-going land-use and climate-change trends for the water cycle at both local and catchment scales are also discussed.  相似文献   

17.
The seasonal pattern and primary mechanism of nitrogen (N) export by surface runoff from the Wuchuan subwatershed (WCW), an agricultural upper watershed (1.88 km2) located in southeast China, were investigated based on extensive streamwater measurements in 2004–2005 under subtropical climatic conditions. The results disclosed a highly variable but strong linkage between hydrological and anthropogenic controls and N export. N export via surface runoff presented a significant seasonal pattern caused by changes in rainfall and watershed N input. Approximately 75% of the annual N export (67 kg ha−1) was flushed by those storm runoff mainly occurred during the wet season (March through September). The WCW dataset of N concentrations and loads during both baseflow and stormflow implied an interactive effects of anthropogenetic N input and hydrology conditions: N export was flush-driven in late spring, summer and autumn (wet season), but highly related with soil N in winter and early spring. Compared to undisturbed watersheds under similar rainfall conditions, WCW exported a considerable amount of N due to intensive fertilizer application (a mean of 690 kg N ha−1 year−1, commonly as surface applications). This work provides a first characterization of a small agricultural Chinese catchment under subtropical climates and its associated N export behavior.  相似文献   

18.
Peatlands are important contributors of dissolved organic matter (DOM) to downstream aquatic systems. We investigated the effects of storm events on dissolved organic carbon (DOC) concentrations and DOM quality in a stream draining a Welsh peatland catchment. Intensive stream samples were collected and analysed for pH, DOC, dissolved organic nitrogen (DON), absorbance and fluorescence. Soil water samples and samples of sphagnum pore water were also collected, and a simple end-member mixing model was applied to account for changes occurring during the events. Fluorescence data were interpreted using parallel factor analysis (PARAFAC). DOC concentrations increased and pH decreased during the storm events. The soil water data and the mixing model indicated that this was due to a change of flow paths and draining of the DOC-rich acrotelm. Absorbance indices and the DOC/DON ratio suggested that the DOM released during events was less degraded. There was a striking, inversely related diurnal pattern in absorbance and fluorescence after the discharge peak. The diurnal pattern and a lack of fit with the mixing model suggested that fluorescing DOM was mainly produced in-stream. Fluorescence has been found to peak in the morning and decline during day-time due to photo-bleaching. We hypothesise that the input of additional DOM during events causes a change in the diurnal pattern, giving a peak at mid-day, when the processing of the additional DOM is highest.  相似文献   

19.
We examined patterns of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) loading to a small urban stream during baseflow and stormflow. We hypothesized that lower DOC and TDN contributions from impervious surfaces would dilute natural hydrologic flowpath (i.e., riparian) contributions during storm events in an urban watershed, resulting in lower concentrations of DOC and TDN during storms. We tested these hypotheses in a small urban watershed in Portland, Oregon, over a 3-month period during the spring of 2003. We compared baseflow and stormflow chemistry using Mann–Whitney tests (significant at p<0.05). We also applied a mass balance to the stream to compare the relative significance of impervious surface contributions versus riparian contributions of DOC and TDN. Results showed a significant increase in stream DOC concentrations during stormflows (median baseflow DOC = 2.00 mg l−1 vs. median stormflow DOC = 3.46 mg l−1). TDN streamwater concentrations, however, significantly decreased with stormflow (median baseflow TDN = 0.75 mg l−1 vs. median stormflow TDN = 0.56 mg l−1). During storms, remnant riparian areas contributed 70–74% of DOC export and 38–35% of TDN export to the stream. The observed pattern of increased DOC concentrations during stormflows in this urban watershed was similar to patterns found in previous studies of forested watersheds. Results for TDN indicated that there were relatively high baseflow nitrogen concentrations in the lower watershed that may have partially masked the remnant riparian signal during stormflows. Remnant riparian areas were a major source of DOC and TDN to the stream during storms. These results suggest the importance of preserving near-stream riparian areas in cities to maintain ambient carbon and nitrogen source contributions to urban streams.  相似文献   

20.
Although many climate predictions suggest that the frequency and intensity of large storm events might increase in the coming decades, few studies document the full impact of such events along their path. Here, we synthesize information on the impact of Hurricane Irene (formed August 21 2011) and Tropical Storm Lee (formed August 30, 2011) on erosion and sediment transport, lake metabolism, riparian hydrology and biogeochemistry, and stream water quality, from North Carolina to Maine. In almost all cases, these storms generated unprecedented changes in water quality (concentrations, loads), from tenfold increases in DOC and 100-fold increases in POC in Maryland, to 100-fold increases in TSS concentrations in Pennsylvania. Overbank flooding and up to 200-year streamflow events were recorded in New York and Vermont. In many cases, particulate loads (e.g. POC, PP, TSS) occurring during Irene and Lee represented more than 30% of the annual load. The dominance of particulate exports over solutes during Irene and Lee is consistent with the mobilization of normally immobile sediment pools, and massive erosion as reported at many locations across the Northeastern US. Several studies reported long lasting (> 1 year) effects of Irene and Lee on cyanobacterial blooms, erosion, or stream suspended sediment concentrations. However, this review also highlighted the lack of a consistent strategy in terms of methods, and measured water quality parameters. This strongly hinders our ability to fully assess the large-scale impact of such events on our environment, and ultimately their impact on our economy and society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号