首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dictyostelium discoideum development is regulated through receptor/G protein signal transduction using cAMP as a primary extracellular signal. Signaling pathways will be discussed as well as the regulation and function of individual cAMP receptors and G alpha subunits. Finally potential downstream targets including protein kinases and nuclear events will be explored.  相似文献   

2.
Many photosynthetic microorganisms have evolved the ability to sense light quality and/or quantity and can steer themselves into optimal conditions within the environment. Phototaxis and gliding motility in unicellular cyanobacteria require type IV pili, which are multifunctional cell surface appendages. Screens for cells exhibiting aberrant motility uncovered several non-motile mutants as well as some that had lost positive phototaxis (consequently, they were negatively phototactic). Several negatively phototactic mutants mapped to the tax1 locus, which contains five chemotaxis-like genes. This locus includes a gene that encodes a putative photoreceptor (TaxD1) for positive phototaxis. A second chemotaxis-like cluster (tax3 locus) appears to be involved in pilus biogenesis. The biosynthesis and regulation of type IV pilus-based motility as well as the communication between the pilus motor and photosensory molecules appear to be complex and tightly regulated. Furthermore, the discovery that cyclic AMP and novel gene products are necessary for phototaxis/motility suggests that there might be additional levels of communication and signal processing.  相似文献   

3.
4.
Photosynthetic prokaryotes have highly developed abilities to detect and react to environmental signals. Light sensing is one of the most important capabilities of organisms that use light for photosynthesis and photomorphogenesis. This review addresses photoreception in cyanobacteria from the perception of light through the physiological responses observed in response to light-dependent signalling. Recent progress made in our understanding of the structure and function of photosensory receptors and their downstream effector molecules is discussed.  相似文献   

5.
6.
The objective of this study was to determine whether activation of protein kinase B (PKB) is involved in the production of nitric oxide (NO) induced by cAMP signal transduction. Mongrel dogs were used for this study. Coronary microvessels were isolated from the left ventricular free wall of these dog hearts. Forskolin (an activator of adenylyl cyclase that increases intracellular cAMP level) and 8-bromo-cAMP (a membrane-permeable cAMP analog) were used to stimulate NO release and activation of PKB and endothelial NO synthase (eNOS) in these blood vessels. We found that forskolin and 8-bromo-cAMP increased NO release (quantified by using the Griess reaction) from coronary microvessels by 80 +/- 6 and 78 +/- 11 pmol/mg (mean +/- SE), respectively (P < 0.05 vs. control). Western blot analysis showed that forskolin elicited a significant increase in eNOS phosphorylation (59 +/- 11%) at serine-1177 (a positively regulatory phosphorylation site for eNOS) and a significant increase in dephosphorylation (28 +/- 6%) at threonine-495 (a negatively regulatory phosphorylation site of eNOS) (P < 0.05 vs. control). Interestingly, forskolin also increased the phosphorylation of PKB at serine-473 (by 49 +/- 17%) and threonine-308 (by 53 +/- 17%), respectively (P < 0.05 vs. control; phosphorylation of both sites is required for a full activation of PKB). N(omega)-nitro-l-arginine methyl ester (an NOS inhibitor) blocked NO formation, Rp diastereomer of cAMP (a PKA inhibitor), and LY-294002 [a PI3-kinase (an activator of PKB) inhibitor] prevented the production of NO, phosphorylation of PKB, and eNOS induced by forskolin. Our data clearly show an involvement of PKB activation in cAMP signal-induced NO production. We are reporting for the first time that cAMP signal transduction stimulates eNOS activation through a PKB-mediated mechanism.  相似文献   

7.
Terminal differentiation of both stalk and spore cells in Dictyostelium can be triggered by activation of cAMP-dependent protein kinase (PKA). A screen for mutants where stalk and spore cells mature in isolation produced three genes which may act as negative regulators of PKA: rdeC (encoding the PKA regulatory subunit), regA and rdeA. The biochemical properties of RegA were studied in detail. One domain is a cAMP phosphodiesterase (Km approximately 5 microM); the other is homologous to response regulators (RRs) of two-component signal transduction systems. It can accept phosphate from acetyl phosphate in a reaction typical of RRs, with transfer dependent on Asp212, the predicted phosphoacceptor. RegA phosphodiesterase activity is stimulated up to 8-fold by the phosphodonor phosphoramidate, with stimulation again dependent on Asp212. This indicates that phosphorylation of the RR domain activates the phosphodiesterase domain. Overexpression of the RR domain in wild-type cells phenocopies a regA null. We interpret this dominant-negative effect as due to a diversion of the normal flow of phosphates from RegA, thus preventing its activation. Mutation of rdeA is known to produce elevated cAMP levels. We propose that cAMP breakdown is controlled by a phosphorelay system which activates RegA, and may include RdeA. Cell maturation should be triggered when this system is inhibited.  相似文献   

8.
We have examined the regulation of three early developmentally regulated genes in Dictyostelium. Two of these genes (D2 and M3) are induced by pulses of cAMP and the other (K5) is repressed. Expression of these genes has been examined in a number of developmental mutants that are specifically blocked in various aspects of the signal transduction/cAMP relay system involved in aggregation and control of early development. The mutant strains include Synag mutants, which are blocked in receptor-mediated activation of adenylate cyclase and do not relay cAMP pulses; FrigidA mutants, which are blocked in receptor-mediated activation of both adenylate cyclase and the putative phosphoinositol bisphosphate (PIP2) turnover pathway and appear to be mutations in the gene encoding one of the G alpha protein subunits; and a StreamerF allele, which lacks cGMP-specific cGMP phosphodiesterase. From the analysis of the developmental expression of these genes under a variety of conditions in these mutant strains, we have drawn a number of conclusions concerning the modes of regulation of these genes. Full induction of D2 and M3 genes requires cAMP interaction with the cell surface receptor and an "oscillation" of the receptor between active and adapted forms. Induction of these genes does not require activation of the signal transduction pathway that leads to adenylate cyclase activation and cAMP relay, but does require activation of other receptor-mediated intracellular signal transduction pathways, possibly that involving PIP2 turnover. Likewise, repression of the K5 gene requires pulses of cAMP. Expression of this gene is insensitive to cAMP pulses in FrigidA mutants, suggesting that a signal transduction pathway is necessary for its repression. Results using the StreamerF mutant suggest that the rise in cGMP in response to cAMP/receptor interactions may not be directly related to control of the pulse-induced genes. In addition, we have examined the effect of caffeine, which M. Brenner and S.D. Thomas (1984, Dev. Biol., 101, 136-146) showed preferentially blocks the cAMP relay system by blocking receptor-mediated activation of adenylate cyclase. We show that in many of the mutants and in an axenic wild-type strain, caffeine causes the induction of pulse-induced gene expression to almost wild-type levels or in some cases to higher than wild-type levels. Our data suggest that caffeine works by activating some step in the signal transduction pathway that must lie downstream from both the receptor and at least one of the G proteins and thus has effects other than simply blocking the receptor-mediated cAMP relay system.  相似文献   

9.
The participation of cAMP in photosignal transduction in cyanobacteria was investigated. When cells of the cyanobacterium Synechocystis sp. PCC 6803 were exposed to light, cellular cAMP contents increased within a few minutes. Among incident monochromatic lights, blue light (450 nm) markedly increased cellular cAMP content, while red (630 nm) and far-red (720 nm) lights did not. Disruption of the cya1 gene encoding an adenylate cyclase caused the insensitivity of cellular cAMP level to blue light. Treatment of wild-type cells with the flavin antagonist phenylacetic acid inhibited this blue light effect. The motility of wild-type cells was enhanced by blue light, whereas that of cya1 mutant cells was not. Based on these results, we concluded that a blue light-cAMP signal transduction system stimulates the motility of Synechocystis sp. PCC 6803.  相似文献   

10.

Background  

Duplicate genes are considered to have evolved through the partitioning of ancestral functions among duplicates (subfunctionalization) and/or the acquisition of novel functions from a beneficial mutation (neofunctionalization). Additionally, an increase in gene dosage resulting from duplication may also confer an advantageous effect, as has been suggested for histone, tRNA, and rRNA genes. Currently, there is little understanding of the effect of increased gene dosage on subcellular networks like signal transduction pathways. Addressing this issue may provide further insights into the evolution by gene duplication.  相似文献   

11.
12.
Intracellular signal transduction pathways require a high degree of spatial and temporal resolution in order to deliver the appropriate outputs. Specific signaling mediated by the ubiquitous second messenger cAMP and its effector, the cAMP-dependent protein kinase (PKA), is governed by the spatial organization of different pathway components by A-kinase anchoring proteins (AKAPs). This review discusses the history and future of anchored cAMP signaling pathways.  相似文献   

13.
Phosphorylation in halobacterial signal transduction.   总被引:9,自引:2,他引:9       下载免费PDF全文
Regulated phosphorylation of proteins has been shown to be a hallmark of signal transduction mechanisms in both Eubacteria and Eukarya. Here we demonstrate that phosphorylation and dephosphorylation are also the underlying mechanism of chemo- and phototactic signal transduction in Archaea, the third branch of the living world. Cloning and sequencing of the region upstream of the cheA gene, known to be required for chemo- and phototaxis in Halobacterium salinarium, has identified cheY and cheB analogs which appear to form part of an operon which also includes cheA and the following open reading frame of 585 nucleotides. The CheY and CheB proteins have 31.3 and 37.5% sequence identity compared with the known signal transduction proteins CheY and CheB from Escherichia coli, respectively. The biochemical activities of both CheA and CheY were investigated following their expression in E.coli, isolation and renaturation. Wild-type CheA could be phosphorylated in a time-dependent manner in the presence of [gamma-32P]ATP and Mg2+, whereas the mutant CheA(H44Q) remained unlabeled. Phosphorylated CheA was dephosphorylated rapidly by the addition of wild-type CheY. The mutant CheY(D53A) had no effect on phosphorylated CheA. The mechanism of chemo- and phototactic signal transduction in the Archaeon H.salinarium, therefore, is similar to the two-component signaling system known from chemotaxis in the eubacterium E.coli.  相似文献   

14.
Intramolecular signal transduction in c-Jun.   总被引:8,自引:2,他引:8       下载免费PDF全文
The DNA-binding activity of c-Jun is determined by the phosphorylation state of a cluster of threonine and serine residues located near its COOH-terminus. We have analyzed the events that lead to c-Jun activation via dephosphorylation of these sites in response to phorbol esters. Our results indicate that COOH-terminal dephosphorylation is an indirect consequence of a separate phosphorylation event targeted to the NH2-terminus of c-Jun. Thus, the activation of c-Jun DNA-binding potential, caused by COOH-terminal dephosphorylation, may not require the regulation of the kinase/phosphatase system that brings about this change, but rather an alteration in the accessibility of the COOH-terminal phosphoacceptor sites of c-Jun.  相似文献   

15.
Intracellular signal transduction pathways require a high degree of spatial and temporal resolution in order to deliver the appropriate outputs. Specific signaling mediated by the ubiquitous second messenger cAMP and its effector, the cAMP-dependent protein kinase (PKA), is governed by the spatial organization of different pathway components by A-kinase anchoring proteins (AKAPs). This review discusses the history and future of anchored cAMP signaling pathways.  相似文献   

16.
Oncogenes and signal transduction.   总被引:384,自引:0,他引:384  
  相似文献   

17.
18.
Integrin-mediated signal transduction pathways.   总被引:19,自引:0,他引:19  
Integrins serve as adhesion receptors for extracellular matrix proteins and also transduce biochemical signals into the cell. They regulate a variety of cellular functions, including spreading, migration, proliferation and apoptosis. Many signaling pathways downstream of integrins have been identified and characterized and are discussed here. In particular, integrins regulate many protein tyrosine kinases and phosphatases, such as FAK and Src, to coordinate many of the cell processes mentioned above. The regulation of MAP kinases by integrins is important for cell growth or other functions, and the putative roles of Ras and FAK in these pathways are discussed. Phosphatidylinositol lipids and their modifying enzymes, particularly PI 3-kinase, are strongly implicated as mediators of integrin-regulated cytoskeletal changes and cell migration. Similarly, actin cytoskeleton regulation by the Rho family of GTPases is coordinated with integrin signaling to regulate cell spreading and migration, although the exact relationship between these pathways is not clear. Finally, intracellular pH and calcium fluxes by integrins are suggested to affect a variety of cellular proteins and functions.  相似文献   

19.
PII signal transduction plays a pervasive role in microbial nitrogen control. Different phylogenetic lineages have developed various signal transduction schemes around the highly conserved core of the signalling system, which consists of the PII proteins. Among all various bacterial PII signalling systems, the one in cyanobacteria is so far unique: in unicellular strains, the mode of covalent modification is by serine phosphorylation and the interpretation of the cellular nitrogen status occurs by measuring the 2-oxoglutarate levels. Recent advances have been the identification of the phospho-PII phosphatase, the resolution of the crystal structure of PII proteins from Synechococcus and Synechocystis strains and the identification of novel functions of PII regulation in cyanobacteria, which highlight the central role of PII signalling for the acclimation to changing carbon-nitrogen regimes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号