首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructure of the early stages of carposporophyte development in the marine red algaChondria tenuissima has been studied. The diploid carposporophyte grows on the gametophyte. Apical gonimoblast cells develop into diploid carpospores. The basal gonimoblast cells cease to divide and undergo considerable cytoplasmic changes before they become incorporated into the expanding fusion cell. Nucleus and plastids degenerate gradually, while mitochondria remain intact. The smooth endoplasmic reticulum becomes prominent, it seems to produce small vesicles with electron dense contents. Simultaneously, numerous mucilage sacs are formed, presumably from dilating ER cisternae. The contents of the mucilage sacs are secreted by exocytosis. The pit connections between gonimoblast cells flare out. They remain as isolated bodies without connection to a wall after fusion. Secondary pit connections occur between vegetative gametophyte cells and sterile carposporophyte cells. There are three different morphological types of pit connections.  相似文献   

2.
Leachiella pacifica, gen. et sp. nov., a marine alloparasitic red alga is described from Washington and California. Several species of Polysiphonia and Pterosiphonia are hosts for this parasite. The thallus is a white, multiaxial, unbranched pustule with rhizoidal filaments that ramify between host cells, forming numerous secondary pit connections with host cells. All reproductive structures develop from outer cortical cells. Tetrasporocytes, situated on stalk cells, undergo simultaneous, tetrahedral cleavage to form tetraspores. Spermatia are formed continuously by oblique cleavages of the elongate spermatial generating cells. This results in spermatial clusters consisting of 4–8 spermatia in an alternate arrangement. Carposporophyte development is procarpial. The carpogonium is part of a six-celled branch including a sterile cell that is formed by the basal cell. The carpogonial branch is attached laterally to an obovate supporting cell that also forms an auxiliary cell, presumably formed prior to fertilization. After fertilization the carpogonium temporarily fuses with the auxiliary cell apparently to transfer the diploid nucleus and initiate further fusion with the subtending supporting cell to form an incipient fusion cell. The auxiliary cell portion of this fusion cell divides to form gonimoblast initials that continue to divide, forming gonimoblast filaments whose terminal cells differentiate into carpospores. The remainder of the fusion cell enlarges by continual fusion with adjacent vegetative cells. The resultant carposporophyte consists of a basal, multinucleate fusion cell supporting a hemispherical cluster of gonimoblast filaments with terminally borne carpospores. Vegetatively, Leachiella resembles several other parasitic red algae but it is clearly separated by the procarp, carposporophyte development and structure, and tetrasporocyte cleavage.  相似文献   

3.
Following fertilization, the carposporophyte of Nemalion helminthoides (Velley in With.) Batters differentiates into four distinct regions: the fusion cell, the sterile gonimoblast cells, the carposporangial mother cells and the carposporangia. The gonimoblast is formed by apically dividing, monopodial filaments of limited growth which may later become pseudodichotomous. Upon differentiation of a terminal carposporangium, a gonimoblast filament may continue to grow sympodially. A single carposporangial mother cell may produce carposporangia in several different directions as well as proliferate successive carposporangia within the sporangial walls that remain after carpospore liberation. As the carposporophyte matures, the gonimoblast initial, the stalk cell, the hypogynous and subhypogynous cells fuse. Except for the fusion cell, all cells of the carposporophyte show organelle polarity and contain a distally located, lobed chloroplast and proximal nucleus.  相似文献   

4.
The ultrastructure of the carposporophyte and carposporogenesis is described for the parasitic red alga Plocamiocolax pulvinata Setch. After presumed fertilization the zygote nucleus is apparently transferred to the auxiliary cell which initiates gonimoblast cell production. These gonimoblast cells differentiate into storage or generative cells. Storage gonimoblast cells (SGC) are large and multinucleate, contain large quantities of starch and are located nearest the auxiliary cell, when compared to the smaller uninucleate, devoid of starch, generative gonimoblast cells (GGC) that form terminal lobes of carpospores. In addition, compressed membrane bodies and annulate lamellae are common in these cells. During carposporophyte maturation the amount of starch in the SGC's decreases and eventually the auxiliary cell, as well as SGC's, degenerate. Generative gonimoblast cells (GGC's) cleave repeatedly to form carpospores which are interconnected by small pit connections. Stage one-carpospores are recognized by their elongated shape, the formation of small  相似文献   

5.
The ultrastructure of the carposporophyte and carposporogenesis is described for the red alga Scinaia articulata Setch. After fertilization, the trichogyne disappears, and the pericarp develops to form a thick protective tissue that surrounds the carposporophyte. The hypogynous cell cuts off both one-celled and two-celled sterile branches. Patches of chromatin are frequently observed in evaginations of the nuclear envelope, which appear to produce vesicles in the cytoplasm of the cell of the sterile branch. Large gonimoblast lobes extend from the carpogonium and cleave to form gonimoblast initials. Subsequently, a fusion cell is formed from fusions of the carpogonium, the hypogynous cell and the basal cell of the carpogonial branch. The mature carposporophyte comprises the fusion cell that is connected to the sterile branch cells, gonimoblast cells and carpospores and is surrounded by extensive mucilage. Young carpospores possess a large nucleus and proplastids with a peripheral thylakoid, but they have few dictyosomes and starch granules and are indistinguishable from gonimoblast cells. Subsequently, dictyosomes are formed, which produce vesicles with an electron-dense granule, which indicates an initiation of wall deposition. Thylakoid formation coincides with incipient starch granule deposition. The nuclear envelope produces fibrous vacuoles and concentric membrane bodies. Carpospores are interconnected by pit connections with two cap layers. Dictyosome activity increases, resulting in the production of vesicles, which either continue to deposit wall material or coalesce to form fibrous vacuoles. The final stage of carposporogenesis is characterized by the massive production of cored vesicles from curved dictyosomes. Mature carpospores are uninucleate and contain fully developed chloroplasts, numerous cored vesicles, numerous starch granules and fibrous vacuoles. The mature carpospore is surrounded by a wall layer and a separating layer, but a carposporangial wall is lacking.  相似文献   

6.
The only member of the red algal family Solieriaceae known from New Zealand is the endemic Sarcodiotheca colensoi (Hook. & Harv.) Kylin. This study shows that it differs in several respects from the type S. furcata (Setch. & Gard.) Kylin; thus a new genus Placentophora is created for the New Zealand alga. Although P. colensoi nov. comb. is retained in the Solieriaceae on the basis of vegetative, spermatangial, tetrasporangial, carpogonial-branch and early gonimoblast features, it differs from typical members of that family in its pattern of later carposporophyte development. After a single gonimoblast initial is cut off from the auxiliary cell towards the center of the thallus, further gonimoblasts develop from the initial as ramifying, radiating filaments. These filaments enter an extensive “nutritive-cell” region surrounding the auxiliary cell, form, numerous connections to the “nutritive” cells, and incorporate most of them into a central placenta of interconnected, and variously-fused vegetative and gonimoblast cells. Carpo-sporangia then form in short chains around the periphery of the placenta. The cystocarp lacks both a central fusion cell and a sterile-celled investment, or “Faserhülle.” The distinctive carposporophyte of Placentophora is compared to patterns of gonimoblast development, known in other members of the Solieriaceae.  相似文献   

7.
The ultrastructure of carposporophyte development is described for the red alga Gloiosiphonia verticillaris Farl. The auxiliary cell produces gonimoblast initials, which divide to produce two types of gonimoblast cells—the nondividing vacuolate cells and terminal generative gonimoblast cells. The generative gonimoblast cells form clusters of carpospore initials, which eventually differentiate into carpospores. After gonimoblast filaments are formed, the auxiliary cell undergoes autolysis, causing degeneration of septal plugs between the auxiliary cell and adjacent cells, thus forming a fusion cell. Since this cell lacks starch and appears degenerate throughout carposporophyte development, a nutritive function cannot be ascribed to the fusion cell. Carpospore differentiation is simple and proceeds through three developmental stages. Young carpospores structurally resemble gonimoblast cells, because they contain undeveloped plastids, large quantities of floridean starch, and are surrounded by extensive mucilage instead of a distinct wall. In addition, dictyosomes form and begin to produce vesicles with fibrous contents representing carpospore wall material. During the intermediate stage, dictyosomes continue to produce vesicles that contribute additional carpospore wall material, thereby compressing the mucilage and creating a darker-staining layer outside the carpospore wall. Plastids form internal thylakoids by invaginations of the inner membrane of the peripheral thylakoid. The endoplasmic reticulum forms large granular vacuoles that appear to be degraded during subsequent stages of development. Mature carpospores form cored vesicles. They also contain mature chloroplasts, large amounts of floridean starch, and occasionally granular vacuoles. During this stage, interconnecting carpospore-carpospore and carpospore-gonimoblast cell septal plugs begin to undergo degeneration. This process may be mediated by tubular structures.  相似文献   

8.
Gracilaria verrucosa is a very common marine red alga of Greekcoasts. The diploid carposporophyte which develops attachedto the female gametophyte of Gracilaria is described. The immaturecystocarps are very small while the mature ones are globose,ostiolate and are borne profusely all over the surface of thethallus. The earliest observed fusion cell is small and fusesprogressively with adjacent vegetative cells to form a largemultinucleate cell. From this fusion cell gonimoblast initialsoriginate, dividing further and giving rise to a large numberof gonimoblast cells. The resultant carposporophyte consistsof a basal-central, multinucleate cell surrounded by a conicalor hemispherical mass of gonimoblast cells. Chains or clustersof successively maturing carpospores are borne from the terminalgonimoblast cells. The liberation of mature carpospores takesplace through the ostiole of the cystocarp. The liberated carposporeslack cell walls and are naked in a mucilage mass. Gracilaria verrucosa (Hudson) Papenfuss, Gigartinales, Gracilariaceae, Rhodophyta, carposporophyte, development  相似文献   

9.
Ahnfeltia plicata (Hudson) Fries, the type species of Ahnfeltia Fries, is currently assigned to the Phyllophoraceae (Gigartinales). Several morphological and biochemical characters distance A. plicata from the Phyllophoraceae but, because sexual reproduction has never been demonstrated, an alternative placement has not been possible. A. plicata now is shown to have a heteromorphic sexual life history. Erect branched gametophytes are dioecious. In male sori, spermatangia are cut off transversely from spermatangial mother cells. Female sori form numerous terminal sessile carpogonia. Following fertilization, several zygotes in each sorus fuse facultatively with undifferentiated intercalary cells of the female sorus and cut off gonimoblast initials obliquely outwards. These initials give rise to branching gonimoblast filaments that fuse with apical and intercalary female sorus cells and with each other, then grow radially outward in the compound external carposporophyte and terminate in carposporangia. Carpospores develop in culture into crustose tetrasporophytes identical to Porphyrodiscus simulans Batters. Field-collected P. simulans tetraspores grew into erect A. plicata axes. Tetrasporangia are formed by division and enlargement of crust apical cells followed by sequential enlargement and maturation of tetrasporocytes in an erosive process. Monosporangia are formed in sori on male gametophytes. Pit plugs of both gametophyte and tetrasporophyte phases consist of naked plug cores without cap layers of membranes. Gametophytes exhibit both cell fusions and secondary pit connections whereas tetrasporophytes form cell fusions but lack secondary pit connections. On the basis of the unique female and postfertilization reproductive development and in conjunction with the pit plug structure which is unique among florideophytes, the order Ahnfeltiales, containing the family Ahnfeltiaceae, is proposed.  相似文献   

10.
The ultra structure of post-fertilization development in Faucheocolax attenuata Setch. is described. Following fertilization and transfer of the diploid nucleus to the auxiliary cell, four gonimoblast initials usually are produced of the multinucleate auxiliary cell. Gonimoblast initials originally are uninucleate but undergo karyokinesis to form multinudeate gonimoblast cells. Terminal or generative gonimoblast cells cleave successively to form lobes of incipient carpospores, with each group of spores differentiating synchronously. Portions of the initial generative gonimoblast cells, however, remain to resume karyokinesis and repeat the process of cleavage into carpospores. Axial gonimoblast cells are transformed into secretory cells, which produce mucilage. Generative gonimoblast cells and auxiliary cells are similar in cellular structure. Both contain typical red algal proplastids, some dictyosomes, cytoplasmic concentric membranes, and numerous small vesicles. In addition, dark staining spherical masses, occurring in the cytoplasm of all cell types, may represent dehydrated haploid chromatin. Large septal plugs interconnect gonimoblast cells and the auxiliary cell. These plugs are small when first formed but increase dramatically in size during carposporophyte development.  相似文献   

11.
The development of the carposporophyte of Scinaia pseudojaponica Yamada et Tanaka is described for the first time. The carpogonial branch is 3-celled. Before fertilization the hypogynous cell divides into a group of 4 cells. Concurrently the cell beneath the hypogynous cells also produces initials which, following fertilization, develop into branched filaments that envelop the carposporophyte. After fertilization the gonimoblast initial is produced laterally from the basal part of the carpogonium. Carposporangia are produced in chains from the free ends of the gonimoblast filaments which grow toward the surface of the thyllus. A very thick pericarp surrounds the mature carposporophyte.  相似文献   

12.
The red alga Cubiculosporum koronicarpis gen. et sp. nov. is described from material collected during 1968 in the Philippines. The species differs substantially in regard to its carposporophyte development from other red algae in the order Gigartinales, and a new family is created based on its unique combination of reproductive features. A single, short, connecting filament is formed between the fertilized carpogonium and a nearby auxiliary cell. The latter produces several ramifying gonimoblast filaments towards the interior of the thallus. No fusion cell is formed and the gonimoblast filaments grow inward among the cells of the central axis, form secondary connections to them, and give rise to outwardly directed carposporangial filaments that develop within peripheral chambers formed between elongating inner cortical cells. The alga is a low, clump-forming species of well-washed intertidal reef platforms at the one Philippine locality where it has been found. There it contributed a uniform but very minor amount to the wet weight of the standing crops that were studied during two separate seasons of the year.  相似文献   

13.
Development of the vegetative gametophyte of Batrachospermum sirodotii Skuja was examined with light and both transmission and scanning electron microscopy. Patterns of wall growth were followed using the Calcofluor White ST pulse-chase method. Thallus structure was analysed in terms of the pattern of development of the apical, periaxial and pleuridial initials that generate the axial and whorled lateral filaments characteristic of Batrachospermum. Apical cells of axial filaments elongate initially by tip growth with the nucleus maintaining a distal position. Nuclear division is horizontal. One daughter nucleus migrates basipetally and a thin, convoluted annular septum and perforate-occluded pit connection are then formed. Elongating axial cells subsequently extend by wall deposition at the base of the cell. Periaxial cells are initiated laterally and elongate primarily by tip growth while the nucleus remains within the axial cell. The nucleus then migrates to the boundary between the initial and the axial cell, divides, and one daughter nucleus moves into the initial and the other back into the axial cell. A slightly irregular annular septum and simple-occluded pit connection are then formed. Pleuridial cell initials begin as terminal to subterminal protuberances on periaxial or pleuridial cells. They first extend by tip growth and later by bipolar band growth. The nucleus remains within the parent cell as the pleuridial initial expands and a narrow septal ring is formed between the two cells. It then migrates through the septal ring into the initial and divides transversely. One nucleus passes back into the parent cell and a thick, flat septum and perforate-occluded pit connection are formed. It is concluded that the potentially indeterminate axial filaments and the determinate lateral pleuridia represent distinct developmental types in Batrachospermum.  相似文献   

14.
Some Liagora and Izziella distributed in Taiwan display a wide range of morphological variation and can be difficult to distinguish. To clarify species concepts, we applied DNA sequence analyses and examined carposporophyte development in detail. These studies revealed two new species, which are described herein as Izziella hommersandii sp. nov. and Izziella kuroshioensis sp. nov. I. kuroshioensis superficially resembles Izziella formosana and Izziella orientalis in that its involucral filaments subtend rather than surround the lower portion of the gonimoblast mass (= Izziella type) and a fusion cell is formed from cells of the carpogonial branch, but it can be separated by differences in the cell numbers and branching pattern of the involucral filaments, as well as thallus morphology. In contrast to other species that also bear short lateral branchlets, I. hommersandii is unique in possessing a mixture of short and long involucral filaments, a phenomenon not reported before. The length of the involucral filaments is species specific among species of Izziella and contrasts to the behavior of the involucral filaments after fertilization in species such as “Liagorasetchellii [= Titanophycus setchellii comb. nov.], in which the filaments completely envelop the gonimoblast. In addition, the cells of the carpogonial branch in Titanophycus do not fuse after fertilization to form a fusion cell. Thus, a combination of characters with respect to the behavior of the carpogonial branch and the involucral filaments after fertilization is very useful for delineating species boundaries in Izziella and for separating Titanophycus from Izziella and Liagora.  相似文献   

15.
The ultrastructure of post-fertilization development in Nienburgia andersoniana (J. Ag.) Kyl. is described. Above the auxiliary cell there is a group of four sterile cells. The presence of abundant storage products (starch granules, lipid bodies and protein crystals) in these cells indicates that the sterile cells function as nutrient suppliers to the young auxiliary and gonimoblast cells of the carposporophyte during its early steps of development. Following fertilization and transfer of the diploid nucleus to the auxiliary cell, the trichogyne disappears and large multinucleate gonimoblast initials are produced. These subsequently produce generative gonimoblast cells which cleave successively to form young carpospores. Those of the gonimoblast cells which will not differentiate into carpospores are transformed into cells producing mucilage. Both kinds of gonimoblast cells contain plastids, starch granules, cytoplasmic concentric membrane bodies and small vesicles. Dark-staining spherical masses occurring in the cytoplasm of the auxiliary and gonimoblast cells may represent degenerating haploid nuclei. Septal plugs interconnecting the auxiliary cell and gonimoblast cells increase considerably in size during carposporophyte development. The fusion cell at the late stage of carposporophyte development appears degenerative. Young carpospores have plastids and mitochondria, and concentric membrane bodies that will form mucilage sacs. Medium-aged carpospores have fully developed plastids, starch granules and fibrous vacuoles. Mature carpospores possess, in addition, cored vesicles. The inner pericarp cells contribute large amounts of mucilage to the cytostocarpic cavity and eventually are consumed. © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 142 , 289–299.  相似文献   

16.
The phylogenetic systematics of the Gigartinaceae is discussed for seven genera and three undescribed generic lineages and 65 taxa representing 62 species based on an analysis of rbcL sequences and morphological evidence. An examination of rbcL trees resulting from analyses of these taxa identifies seven lineages: (i) ‘Gigartina’ alveata; (ii) Rhodoglossum/Gigartina; (iii) Chondracanthus; (iv) Ostiophyllum; (v) Sarcothalia; (vi) ‘Gigartina’ skottsbergii; and (vii) a large clade containing Iridaea/‘Sarcothalia’, Mazzaella and Chondrus. These lineages and Chondrus are strongly supported; however, two groups, Iridaea/‘Sarcothalia’ and Mazzaella, receive no bootstrap support. The morphology of the female reproductive system is investigated with the aid of computer-generated, color-coded tracings of photographs of cystocarps seen in cross section at different developmental stages. Seven basic cystocarp types were found which corresponded to species groups seen in rbcL trees. These were: (i) a ‘Gigartina’ alveata group in which the carposporangia-bearing filaments develop apomictically from gametophytic cells; (ii) a Rhodoglossum/Gigartina group in which gonimoblast filaments penetrate the surrounding envelope fusing progessively with envelope cells; (iii) a Chondracanthus group in which gonimoblast filaments penetrate the envelope but fuse with envelope cells only at late developmental stages; (iv) a Sarcothalia group in which the gonimoblast filaments displace an envelope composed mainly of secondary gametophytic filaments and link to envelope cells by terminal tubular gonimoblast cells; (v) an Iridaea group similar to the Sarcothalia group, but with an envelope composed of a mixture of medullary cells and secondary gametophytic filaments; (vi) a Mazzaella group that lacks a true envelope and in which gonimoblast filaments connect to modified gametophytic cells by means of terminal tubular cells; (vii) a Chondrus group in which gonimoblast filaments penetrate the medulla and link to modified medullary cells by means of conjunctor cells forming secondary pit connections. The further separation of these groups into genera is based largely on tetrasporangial characters.  相似文献   

17.
The ultrastructure of carposporogenesis for Erythrocystis saccata is described. The fusion and gonimoblast cells contain few organelles, and chloroplasts are in a proplastid state, with pit plugs between gonimoblast cells dissolving early in development. Carpospore development may be separated into 3 stages, the first stage being characterized by the appearance of straight-profiled dictyosomes, fibrous vesicles, and an increase of discoid thylakoids within the chloroplasts. During the second, stage the dictyosomes assume a curved profile and striped vesicles are formed by the endoplasmic reticulum. The third stage is initiated by the disappearance of striped vesicles and the appearance of straight-profiled dictyosomes secreting vesicles with cores. Mature carpospores consist of many cored vesicles, fibrous vesicles, and floridean starch grains. A single wall layer surrounds each carpospore since the carposporangial wall becomes incorporated into a mucilaginous matrix surrounding the spores.  相似文献   

18.
The fusion cell in Asterocolax gardneri Setch, is a large, multinucleate, irregularly-shaped cell resulting from cytoplasmic fusions of haploid and diploid cells. Subsequent enlargement takes place by incorporating adjacent gonimoblast cells. The resultant cell consists of two parts—a central portion of isolated cytoplasm, surrounded by an electron dense cytoplasmic barrier, and the main component of the fusion cell cytoplasm surrounding the isolated cytoplasm. The fusion cell contains many nuclei, large quantities of floridean starch, endoplasmic reticulum, and vesicles, but few mitochondria, plastids and dictyosomes. The endoplasmic reticulum forms vesicles that apparently secrete large quantities of extracellular mucilage which surrounds the entire carposporophyte. The isolated cytoplasm also is multinucleate but lacks starch and a plasma membrane. Few plastids, ribosomes and mitochondria are found in this cytoplasm. However, numerous endoplasmic reticulum cisternae occur near the cytoplasmic barrier and they appear to secrete material for the barrier. In mature carposporophytes, all organelles in the isolated cytoplasm have degenerated.  相似文献   

19.
Traditional studies suggest that the Kallymeniaceae can be divided into two major groups, a nonprocarpic Kallymenia group, in which carposporophyte formation involves an auxiliary cell branch system separate from the carpogonial branch system, and a procarpic Callophyllis group, in which the carpogonial branch system gives rise to the carposporophyte directly after fertilization. Based on our phylogenetic studies and unpublished observations, the two groups each contain both procarpic and nonprocarpic genera. Here, we describe a new method of reproductive development in Callophyllis concepcionensis Arakaki, Alveal et Ramírez from Chile. The carpogonial branch system consists of a supporting cell bearing both a three‐celled carpogonial branch with trichogyne and two‐lobed “subsidiary” cells. After fertilization, large numbers of secondary subcortical and medullary cells are produced. Lobes of the carpogonial branch system cut off connecting cells containing enlarged, presumably diploid nuclei that fuse with these secondary vegetative cells and deposit their nuclei. Derivative enlarged nuclei are transferred from one vegetative cell to another, which ultimately cut off gonimoblast initials that form filaments that surround the central primary medullary cells and produce carposporangia. The repeated involvement of vegetative cells in gonimoblast formation is a new observation, not only in Callophyllis, but in red algae generally. These results call for a revised classification of the Kallymeniaceae based on new morphological and molecular studies.  相似文献   

20.
Our morphological and molecular studies indicate that species from the southern hemisphere previously placed in Delesseria belong in Paraglossum and that Paraglossum and Apoglossum comprise a separate tribe, the Apoglosseae, S.-W. Lin, Fredericq & Hommersand, trib. nov., within the family Delesseriaceae. From a vegetative perspective the Apoglosseae is readily recognized because some or all fourth-order cell rows are formed on the inner sides of third-order cell rows. All fourth-order cell rows grow adaxially in Apoglossum, whereas both adaxial and abaxial cell rows are present in Paraglossum. Periaxial cells do not divide in Apoglossum, whereas they divide transversely in Paraglossum in the same way as in Delesseria. Major branches are formed mainly from the margins of midribs in the Apoglosseae. The procarp consists of a straight carpogonial branch and two sterile cells, with the second formed on the same side as the first. The carpogonium cuts off two connecting cells in tandem from its apical end, the terminal cell being nonfunctional and the subterminal cell typically fusing with the auxiliary cell. Gonimoblast filaments radiate in all directions from the gonimoblast initials and produce carposporangia terminally in branched chains, with pit connections between the inner gonimoblast cells broadening and enlarging. The auxiliary cell, supporting cell, and sterile cells unite into a fusion cell, which remains small in Apoglossum but incorporates the branched inner gonimoblast filaments and cells in the floor of the cystocarp in Paraglossum. Elongated inner cortical cells seen in mature cystocarps in the Delesserieae are absent in the Apoglosseae. Phylogenetic studies based on rbcL (RuBisCO large subunit gene) sequence analyses strongly support the recognition of the Apoglosseae within the subfamily Delesserioideae of the Delesseriaceae, in agreement with our previous observations based primarily on analyses of large subunit ribosomal DNA (LSU).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号