首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To develop a salt-tolerant upland rice cultivar (Oryza sativa L.), OsNHX1, a vacuolar-type Na+/H+ antiporter gene from rice was transferred into the genome of an upland rice cultivar (IRAT109), using an Agrobacterium-mediated method. Seven independent transgenic calli lines were identified by polymerase chain reaction (PCR) analysis. These 35S::OsNHX1 transgenic plants displayed a little accelerated growth during seedling stage but showed delayed flowering time and a slight growth retardation phenotype during late vegetative stage, suggesting that the OsNHX1 has a novel function in plant development. Northern and western blot analyses showed that the expression levels of OsNHX1 mRNA and protein in the leaves of three independent transgenic plant lines were significantly higher than in the leaves of wild type (WT) plants. T2 generation plants exhibited increased salt tolerance, showing delayed appearance and development of damage or death caused by salt stress, as well as improved recovery upon removal from this condition. Several physiological traits, such as increased Na+ content, and decreased osmotic potential in transgenic plants grown in high saline concentrations, further indicated that the transgenic plants had enhanced salt tolerance. Our results suggest the potential use of these transgenic plants for further agricultural applications in saline soil.  相似文献   

2.
Evidence for the participation of reactive oxygen species (ROS) and antioxidant systems in ectomycorrhizal (ECM) establishment is lacking. In this paper, we evaluated ROS production and the activities of superoxide dismutase (SOD) and catalase (CAT) during the early contact of the ECM fungus Pisolithus tinctorius with the roots of Castanea sativa (chestnut tree). Roots were placed in contact with P. tinctorius mycelia, and ROS production was evaluated by determining the levels of H2O2 and O2 ·− during the early stages of fungal contact. Three peaks of H2O2 production were detected, the first two coinciding with O2 ·− bursts. The first H2O2 production peak coincided with an increase in SOD activity, whereas CAT activity seemed to be implicated in H2O2 scavenging. P. tinctorius growth was evaluated in the presence of P. tinctorius-elicited C. sativa crude extracts prepared during the early stages of fungal contact. Differential hyphal growth that matched the H2O2 production profile with a delay was detected. The result suggests that during the early stages of ECM establishment, H2O2 results from an inhibition of ROS-scavenging enzymes and plays a role in signalling during symbiotic establishment.  相似文献   

3.
Here we examined whether Ca2+/Calmodulin (CaM) is involved in abscisic acid (ABA)-induced antioxidant defense and the possible relationship between CaM and H2O2 in ABA signaling in leaves of maize (Zea mays L.) plants exposed to water stress. An ABA-deficient mutant vp5 and its wild type were used for the experimentation. We found that water stress enhanced significantly the contents of CaM and H2O2, and the activities of chloroplastic and cytosolic superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR), and the gene expressions of the CaM1, cAPX, GR1 and SOD4 in leaves of wild-type maize. However, the increases mentioned above were almost arrested in vp5 plants and in the wild-type plants pretreated with ABA biosynthesis inhibitor tungstate (T), suggesting that ABA is required for water stress-induced H2O2 production, the enhancement of CaM content and antioxidant defense. Besides, we showed that the up-regulation of water stress-induced antioxidant defense was almost completely blocked by pretreatment with Ca2+ inhibitors, CaM antagonists and reactive oxygen (ROS) manipulators. Moreover, the analysis of time course of CaM and H2O2 production under water stress showed that the increase in CaM content preceded that of H2O2. These results suggested that Ca2+/CaM and H2O2 were involved in the ABA-induced antioxidant defense under water stress, and the increases of Ca2+/CaM contents triggered H2O2 production, which inversely affected the contents of CaM. Thus, a cross-talk between Ca2+/CaM and H2O2 may play a pivotal role in the ABA signaling.  相似文献   

4.
Foliar spraying ofArabidopsis thaliana (Columbia ecotype) plants with a 1.0-mM salicylic acid (SA) solution significantly improved their tolerance to subsequent paraquat (PQ)-induced oxidative damage. Leaf injuries, including losses of chlorophyll, protein, and fresh weight, were reduced. Our analysis of antioxidant enzymes in the leaves showed that SA pre-treatment effectively retarded rapid decreases in the activities of Superoxide dismutase (SOD), catalase, and ascorbate peroxidase that are normally associated with PQ exposure. In addition, guaiacol peroxidase activity was remarkably increased. In a native gel assay of peroxidase (POD) isozymes, staining activity of the POD1 isozyme, which disappeared in plants exposed only to 10 μM PQ, was significantly recovered by the 1.0-mM SA pre-treatment POD2 isozyme activity was also pronounced in all SA-treated plants compared with the control. A 12-h SA pre-treatment, without subsequent PQ stress, also caused a small increase in the endogenous H2O2 content that accompanies the symptoms of mild leaf injuries. This enhanced level occurred in parallel with a slight SOD increase and a catalase decrease. From our results, it can be assumed that, due to the small increase in SOD as well as catalase inactivation via SA pre-treatment, a moderate increase in H2O2 levels may occur. In turn, a large induction of guaiacol peroxidase leads to enhanced PQ tolerance inA. thaliana plants.  相似文献   

5.
The Arabidopsis vte1 mutant is devoid of tocopherol and plastochromanol (PC‐8). When exposed to excess light energy, vte1 produced more singlet oxygen (1O2) and suffered from extensive oxidative damage compared with the wild type. Here, we show that overexpressing the solanesyl diphosphate synthase 1 (SPS1) gene in vte1 induced a marked accumulation of total plastoquinone (PQ‐9) and rendered the vte1 SPS1oex plants tolerant to photooxidative stress, indicating that PQ‐9 can replace tocopherol and PC‐8 in photoprotection. High total PQ‐9 levels were associated with a noticeable decrease in 1O2 production and higher levels of Hydroxyplastoquinone (PQ‐C), a 1O2‐specific PQ‐9 oxidation product. The extra PQ‐9 molecules in the vte1 SPS1oex plants were stored in the plastoglobules and the chloroplast envelopes, rather than in the thylakoid membranes, whereas PQ‐C was found almost exclusively in the thylakoid membranes. Upon exposure of wild‐type plants to high light, the thylakoid PQ‐9 pool decreased, whereas the extrathylakoid pool remained unchanged. In vte1 and vte1 SPS1oex plants, the PQ‐9 losses in high light were strongly amplified, affecting also the extrathylakoid pool, and PQ‐C was found in high amounts in the thylakoids. We conclude that the thylakoid PQ‐9 pool acts as a 1O2 scavenger and is replenished from the extrathylakoid stock.  相似文献   

6.
Chloroplasts with high rates of photosynthetic O2 evolution (up to 120 mol O2· (mg Chl)-1·h-1 compared with 130 mol O2· (mg Chl)-1·h-1 of whole cells) were isolated from Chlamydomonas reinhardtii cells grown in high and low CO2 concentrations using autolysine-digitonin treatment. At 25° C and pH=7.8, no O2 uptake could be observed in the dark by high- and low-CO2 adapted chloroplasts. Light saturation of photosynthetic net oxygen evolution was reached at 800 mol photons·m-2·s-1 for high- and low-CO2 adapted chloroplasts, a value which was almost identical to that observed for whole cells. Dissolved inorganic carbon (DIC) saturation of photosynthesis was reached between 200–300 M for low-CO2 adapted chloroplasts, whereas high-CO2 adapted chloroplasts were not saturated even at 700 M DIC. The concentrations of DIC required to reach half-saturated rates of net O2 evolution (Km(DIC)) was 31.1 and 156 M DIC for low- and high-CO2 adapted chloroplasts, respectively. These results demonstrate that the CO2 concentration provided during growth influenced the photosynthetic characteristics at the whole cell as well as at the chloroplast level.Abbreviations Chl chlorophyll - DIC dissolved inorganic carbon - Km(DIC) coneentration of dissolved inorganic carbon required for the rate of half maximal net O2 evolution - PFR photon fluence rate - SPGM silicasol-PVP-gradient medium  相似文献   

7.
Aldehydes, a group of volatile organic compounds (VOCs) often detected in the atmosphere, play a key role in atmospheric chemistry and plant resistance to stresses. We used gas chromatography/mass spectrometry to examine the volatiles of saturated aldehydes C6–C10 that were emitted from cuttings of ashleaf maple (Acer negundo L.) under varying levels of light intensity (80, 400, and 800 μmol m−2 s−1), O2 (2% and 50%), and CO2 (600, 1,000, and 1,200 ppm). An apparent, positive correlation was found between light intensity and emissions, and their release also was significantly enhanced by higher O2 concentrations. In contrast, emissions clearly were negatively correlated with CO2 levels. We speculate that the reactive oxygen species (ROS) generated during photosynthesis contribute to these elevated emissions. However, the mechanism for this ROS trigger is unknown.  相似文献   

8.
9.
Prenylquinols (tocochromanols and plastoquinols) serve as efficient physical and chemical quenchers of singlet oxygen (1O2) formed during high light stress in higher plants. Although quenching of 1O2 by prenylquinols has been previously studied, direct evidence for chemical quenching of 1O2 by plastoquinols and their oxidation products is limited in vivo. In the present study, the role of plastoquinol‐9 (PQH2‐9) in chemical quenching of 1O2 was studied in Arabidopsis thaliana lines overexpressing the SOLANESYL DIPHOSPHATE SYNTHASE 1 gene (SPS1oex) involved in PQH2‐9 and plastochromanol‐8 biosynthesis. In this work, direct evidence for chemical quenching of 1O2 by plastoquinols and their oxidation products is presented, which is obtained by microscopic techniques in vivo. Chemical quenching of 1O2 was associated with consumption of PQH2‐9 and formation of its various oxidized forms. Oxidation of PQH2‐9 by 1O2 leads to plastoquinone‐9 (PQ‐9), which is subsequently oxidized to hydroxyplastoquinone‐9 [PQ(OH)‐9]. We provide here evidence that oxidation of PQ(OH)‐9 by 1O2 results in the formation of trihydroxyplastoquinone‐9 [PQ(OH)3‐9]. It is concluded here that PQH2‐9 serves as an efficient 1O2 chemical quencher in Arabidopsis, and PQ(OH)3‐9 can be considered as a natural product of 1O2 reaction with PQ(OH)‐9. The understanding of the mechanisms underlying 1O2 chemical quenching provides information on the role of plastoquinols and their oxidation products in the response of plants to photooxidative stress.  相似文献   

10.
Light is one of the most important factors inducing morphogenesis in Neurospora crassa. The reception of light triggers the generation of reactive oxygen species (ROS) including hydrogen peroxide (H2O2). Catalase-1 (Cat-1) is one of three catalases known to detoxify H2O2 into water and oxygen. We reported that the photomorphogenetic characteristics of mutants in nucleoside diphosphate kinase-1 (NDK-1), a light signal transducer, are severely affected, and NDK-1 interacted with Cat-1 in a yeast two-hybrid assay. To disclose the function of Cat-1, we created a Cat-1 loss-of-function mutant (cat-1 RIP ) by the repeat induced point-mutation (RIPing) method. No Cat-1 activity was detected in the mutant strain. Forty guanines were replaced with adenines in the cat-1 gene of cat-1 RIP , which caused 30 amino acid substitutions. The mutant strain grew normally, but its conidia and mycelia were more sensitive to H2O2 than those of the wild type. The lack of Cat-1 activity also caused a significant reduction in the conidial germination rate. Furthermore, light enhanced this reduction in cat-1 RIP more than that in the wild type. Introduction of cat-1 into the mutant reversed all of these defective phenotypes. These results indicate that Cat-1 plays an important role in supporting the survival of conidia under oxidative and light-induced stress. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

11.
低钾胁迫对番茄叶片活性氧及抗氧化酶系的影响   总被引:1,自引:0,他引:1  
以2种不同低钾耐性大果番茄(钾敏感型番茄081018和耐低钾型番茄081034)为材料,比较低钾处理下2种番茄叶片中活性氧产生及抗氧化酶系活性和相关基因表达差异,明确植物叶片对低钾胁迫的响应机制.结果显示:(1)钾敏感型番茄在低钾胁迫时,叶片中各种保护酶(SOD及其同工酶、POD、CAT、APX)活性随处理时间延长呈下降趋势,同时活性氧(O2-、H2O2)和MDA含量急剧增加;耐低钾型番茄在低钾胁迫条件下,其各类保护酶活性均比对照水平有所升高,而且O2-、H2O2和MDA的含量增加也较少.(2)钾敏感型番茄在低钾胁迫时叶片内Cu/Zn-SOD、CAT和APX基因的相对表达量均有下降趋势,而同期耐低钾型番茄在低钾胁迫时Cu/Zn-SOD、CAT和APX的表达却明显增加,这与其对应的酶活性变化趋势同步.研究表明,低钾胁迫使耐低钾型番茄具有较高保护酶基因表达量,产生较高的保护酶活性,可降低活性氧的破坏作用,防止膜渗透性增加,使之对低钾的适应性较强,而钾敏感番茄品系则相反.  相似文献   

12.
The 24 h O2 uptake and release together with the CO2 balance have been measured in two CAM plants, one a non-succulent Sempervivum grandifolium, the other a succulent Prenia sladeniana. The O2 uptake was estimated by the use of 18O2. It was found that the mean hourly O2 uptake in the light was 7 times that in the dark for Sempervivum and 5 times that for Prenia, after correction for the lightdark temperature difference. It was estimated that oxygen uptake in the light was 2.4 times greater than oxygen release (=net photosynthesis) in Sempervivum and 1.4 times greater in Prenia. In both plants there was a positive carbon balance over the 24 h period under the experimental conditions. It was estimated that malate formed during the night could, if completely oxidized to CO2 and water, account for 74% of the light phase O2 uptake in Sempervivum. In Prenia the O2 uptake was more than sufficient to account for a full oxidation of malate.Abbreviations CAM Crassulacean acid metabolism - PAR photosynthetically active radiation - PEP phosphoenolpyruvate - RrBP ribulose-1,5-bisphosphate - TCA tricarboxylic acid cycle  相似文献   

13.
Summary Isotopic15N2 experiments confirmed nitrogen fixation inParasponia parviflora. The conversion ratio C2H4/N2 was 6.7 under the experimental conditions employed. Measurements of the δ15N in leaves of Parasponia and Trema showed on the basis of these determinations thatParasponia parviflora possesses N2-fixing capacity and can be distinguished in this respect from the non-nitrogen-fixingTrema cannabina tested by the same method. Therefore, δ15N can be used to monitor N2 fixation in natural ecosystems. Hydrogen evolution and the relative efficiency of N2 fixation in this relation have been determined. DetachedParasponia parviflora root nodules grown in soil and tested in an argon/oxygen atmosphere produced appr. 4 μmol H2.h−1.g−1 fresh weight root nodules. The relative efficiency of hydrogen utilization as measured in argon, air, and in the presence of C2H2 10% (v/v) was for both equations used for to express this efficiency 0.96 and 0.97, respectively. This indicates that Parasponia like the root nodules of some actinorhizal symbioses (Alnus, Myrica, Elaeagnus) and some tropical legumes (Vigna sinensis) has evolved mechanisms of minimizing net hydrogen production in air, thus increasing the efficiency of electron transfer to nitrogen. The oxygen relation of nitrogen fixation (C2H2) inParasponia parviflora root nodules was determined. The nitrogenase activity of Parasponia root nodules increased at increasing oxygen concentrations up till c. 40% O2. At oxygen levels above 40% O2, the nitrogenase activity of the root nodules was nil or very erratic suggesting that at these oxygen levels the nitrogenase is not longer protected against the harmful effect of oxygen. In this respect Parasponia root nodules differ from actinorhizal root nodules in other nonlegumes, where optimal nitrogenase activity was observed in the range of 12–25% oxygen. Respiration experiments with Parasponia root nodules showed that in the range 10, 20, and 40% oxygen, the respiration rate (CO2 evolution) increased concomitantly with an increase of the acetylene reduction rate. The CO2/C2H4 values obtained varied between 8.1 and 19.2, being therefore 2–3 times higher than similar estimations in some actinorhizal and legume root nodules. The respiratory quotient (RQ) of detachedParasponia parviflora root nodules was in air initially approximately 2.0, but this value dropped to about 1.0 in a 3-hours period.  相似文献   

14.
以未老化和人工老化后的沙葱(Allium mongolicum Regel.)种子为材料,采用氯化铈(Ce3+)和氯化镧(La3+)浸种,测定种子萌发和生理指标,探讨Ce3+和La3+浸种对种子萌发、老化种子活力和生理特性的影响。结果显示:(1)在老化0~5 h时,Ce3+和La3+处理可显著促进沙葱种子萌发,提高种子活力;在老化5 h后,Ce3+和La3+处理对种子萌发无明显促进作用。(2)在老化0~15 h时,Ce3+和La3+处理的沙葱种子中抗氧化酶活性和抗坏血酸(AsA)含量提高,其超氧阴离子自由基(O2-·)产生速率、过氧化氢(H2O2)含量和丙二醛(MDA)含量显著降低;在老化15 h后,Ce3+和La3+处理的种子抗氧化酶活性提高、AsA含量降低,O2-·产生速率和MDA含量提高。(3)在老化5 h时,沙葱种子呼吸速率发生跃变达到最大,Ce3+和La3+处理显著降低了种子呼吸速率。(4)Ce3+和La3+处理在老化0~5 h时提高了沙葱种子超弱发光(UWL)强度,但在老化5 h后沙葱种子的UWL强度降低。研究认为,在沙葱种子人工老化初期,Ce3+和La3+浸种处理可以诱导增强种子抗氧化酶活性和提高AsA含量,有效清除因老化产生积累的过量活性氧(ROS),减轻过氧化伤害,提高种子活力;种子老化中后期,其内部ROS产生与清除系统发生紊乱,加剧了ROS对种子结构的损伤,Ce3+和La3+浸种处理的缓解效应丧失。  相似文献   

15.
为了探索拟南芥AtCIPK23基因对烟草耐旱能力的影响,对3个转AtCIPK23基因阳性纯合株系KA13、KA14和KA44与野生型烟草K326(对照)进行了自然干旱处理,测定离体叶片的失水速率、叶绿素含量、相对电导率、脯氨酸和可溶性糖含量,并分析了转基因及野生型材料对活性氧的清除能力,对活性氧清除基因NtSODNtCATNtAPX及干旱胁迫相关基因NtDREBNtLEA5NtCDPK2的表达量进行检测。结果表明:(1)转基因烟草离体叶片的失水速率明显低于K326;自然干旱7 d后,野生型K326出现了明显的干旱胁迫症状;干旱7 d进行复水后,转基因株系的复水存活率明显高于K326。(2)转基因株系中的叶绿素、脯氨酸及可溶性糖含量比K326显著提高,电导率则明显降低。(3)野生型烟草K326中H2O2的积累量明显高于3个转基因株系,转基因株系中ROS清除机制的3个关键基因NtSODNtCATNtAPX被诱导上调表达。(4)抗旱相关基因NtDREBNtLEA5NtCDPK2仅在转基因烟草中受干旱诱导。研究认为,AtCIPK23基因可能具有提高植物抗旱能力的功能。  相似文献   

16.
Prevention of the flowering of a tree,silver birch   总被引:3,自引:1,他引:2  
Genetic modification of trees presents great advantages but it is hampered by the possible spread of introduced genes to native populations. However, the spread would be prevented if the modified trees would be sterile. We have previously shown that the induction of sterility by the prevention of flowering is possible in tobacco and Arabidopsis by introducing a gene construct composed of the ribonuclease gene BARNASE ligated to the flower-specific promoter of the birch gene BpMADS1. In the present study, we test this gene construct in silver birch (Betula pendula Roth). When this gene construct was introduced into very early-flowering birch clones, 81 kanamycin resistant lines were obtained. In 38 lines, the vegetative development was disturbed, e.g., the leaves were small and the plants were short and bushy or the growth of plants was weak. More importantly, in 7 other lines no male inflorescences formed or they aborted early. If male inflorescences were formed, they did not contain any stamens. The initial growth of these lines was similar to the non-transgenic control lines. Later, however, the growth of the non-flowering lines differed from that of the controls in showing some dichotomic branching and a reduced number of branches. Preliminary results showed that the gene construct can prevent the development of female inflorescences as well. The results show clearly that BpMADS1::BARNASE can prevent the flowering in a tree but the prevention of flowering may cause some side effects. Studies with ordinary birch clones will show whether the side effects are a property of the early flowering clones or all birches.  相似文献   

17.
镉胁迫下紫花苜蓿幼苗内源一氧化氮和活性氧的生成   总被引:1,自引:0,他引:1  
以"甘农三号"紫花苜蓿幼苗为材料,在水培条件下,研究了不同浓度镉(Cd)胁迫下紫花苜蓿根、茎和叶内源一氧化氮(NO)和活性氧(ROS)的生成机制以及根系活力的变化.结果表明:在0~2.0 mmol·L-1范围内,随着Cd浓度的增加,幼苗内NO含量呈现先升高后降低的趋势,最后可维持在略高或持平于对照的水平.幼苗内一氧化氮合成酶(NOS)活性、硝酸还原酶(NR)活性、亚硝酸根离子(NO2-)含量和类胡萝卜素(Car)含量的变化与NO含量变化规律相似却又不全相同.NOS和NR是影响幼苗茎中NO含量的主要因素,NOS、NO2-和NR则是影响叶中NO含量的主要因素,而根中NO含量主要与NOS活性和NO2-含量有较大相关性.随着Cd浓度的增加,幼苗内过氧化氢(H2 O2)含量、丙二醛(MDA)含量、超氧阴离子(O-2·)含量和相对电导率(REC)呈现显著升高趋势,说明高浓度的Cd处理会使ROS大量积累,细胞膜遭破坏,细胞质外流,进而引发膜脂过氧化.随着Cd浓度的增加,紫花苜蓿根系活力的变化为先升高后降低,指示了低浓度Cd处理会促进植物代谢,增强其生命力;而高浓度Cd会致使植株代谢受抑制,细胞受损害.NO和ROS的相关性不大,说明二者虽同为自由基,但它们产生和变化方式大有差别.  相似文献   

18.
Our objective was to develop a rapid and accurate procedure to genotype common bean plants for the bc-1 2 allele, which conditions resistance to bean common mosaic and bean common mosaic necrosis viruses. A segregating F2 population was derived from the cross between pinto bean breeding lines P94207-43 (bc-1 2//bc-1 2) and P94207-189 (bc-1//bc-1). A quantitative PCR assay based on the detection of fluorescent labeled amplicons was developed to distinguish between homozygous (bc-1 2//bc-1 2), heterozygous (bc-1 2//bc-1) and null (bc-1//bc-1) F2 genotypes. Remnant F1 plants were used as a comparative reference sample. PCR results among this sample fit a normal distribution, and 99% and 95% confidence intervals for heterozygotes were determined. F2 plants for which no amplification was detected were classified as null (bc-1//bc-1) genotypes. F2 plants that fell within the confidence intervals for heterozygotes were classified as heterozygotes (bc-1 2//bc-1), while plants that fell outside the right tail of the heterozygote confidence intervals were classified as homozygotes (bc-1 2//bc-1 2). F2 plants were also genotyped for the bc-1 2 allele by performing F3 family progeny tests for virus resistance. Agreement between the two methods for genotyping plants was 100% (59/59) when PCR genotyping was based on a 99% heterozygote confidence interval, and 98.3% (58/59) when based on a 95% heterozygote confidence interval. This assay will accelerate breeding for virus resistance in bean by facilitating discrimination among plants that are heterozygous or homozygous for the bc-1 2 allele. The experimental design may be generally applicable towards developing other assays for the codominant interpretation of dominant markers in diploid plants.  相似文献   

19.
20.
Accumulation of reactive oxygen species in arbuscular mycorrhizal roots   总被引:1,自引:0,他引:1  
Fester T  Hause G 《Mycorrhiza》2005,15(5):373-379
We investigated the accumulation of reactive oxygen species (ROS) in arbuscular mycorrhizal (AM) roots from Medicago truncatula, Zea mays and Nicotiana tabacum using three independent staining techniques. Colonized root cortical cells and the symbiotic fungal partner were observed to be involved in the production of ROS. Extraradical hyphae and spores from Glomus intraradices accumulated small levels of ROS within their cell wall and produced ROS within the cytoplasm in response to stress. Within AM roots, we observed a certain correlation of arbuscular senescence and H2O2 accumulation after staining by diaminobenzidine (DAB) and a more general accumulation of ROS close to fungal structures when using dihydrorhodamine 123 (DHR 123) for staining. According to electron microscopical analysis of AM roots from Z. mays after staining by CeCl3, intracellular accumulation of H2O2 was observed in the plant cytoplasm close to intact and collapsing fungal structures, whereas intercellular H2O2 was located on the surface of fungal hyphae. These characteristics of ROS accumulation in AM roots suggest similarities to ROS accumulation during the senescence of legume root nodules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号