首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
陈敏  唐文倩  沈杰  王丹 《昆虫知识》2016,(6):1402-1407
【目的】在昆虫基因表达和功能研究中,RNA原位杂交技术越来越受到青睐。该技术不仅能定性定量反应基因表达的时空特异性,而且能在细胞水平上检测基因表达的调控模式。为了将该技术更好地在昆虫小器官研究中运用,我们以果蝇幼虫翅芽为例优化了改技术。【方法】解剖果蝇3龄幼虫翅芽进行原位杂交实验。【结果】我们发现影响原位杂交结果的因素十分复杂,包括取材时期,探针的合成,预杂交/杂交的时间和温度,清洗时间,适当的对照等。通过RNA荧光原位杂交实验,我们揭示了调控细胞记忆的trithorax基因在3龄翅芽广泛表达,并且受到转录因子Optomotor-blind的负调控。【结论】这一技术方法为研究昆虫小器官的基因表达和调控提供了便捷手段。  相似文献   

2.
3.
Roman G  He J  Davis RL 《Genetics》2000,155(3):1281-1295
The kurtz gene encodes a novel nonvisual arrestin. krz is located at the most-distal end of the chromosome 3R, the third gene in from the telomere. krz is expressed throughout development. During early embryogenesis, krz is expressed ubiquitously and later is localized to the central nervous system, maxillary cirri, and antennal sensory organs. In late third instar larvae, krz message is detected in the fat bodies, the ventral portion of the thoracic-abdominal ganglia, the deuterocerebrum, the eye-antennal imaginal disc, and the wing imaginal disc. The krz(1) mutation contains a P-element insertion within the only intron of this gene and results in a severe reduction of function. Mutations in krz have a broad lethal phase extending from late embryogenesis to the third larval instar. The fat bodies of krz(1) larva precociously dissociate during the midthird instar. krz(1) is a type 1 melanotic tumor gene; the fat body is the primary site of melanotic tumor formation during the third instar. We have functionally rescued these phenotypes with both genomic and cDNA transgenes. Importantly, the expression of a full-length krz cDNA within the CNS rescues the krz(1) lethality. These experiments establish the krz nonvisual arrestin as an essential neural gene in Drosophila.  相似文献   

4.
In order to identify novel genes enriched in adult heart, we performed a subtractive hybridization for genes expressed in mouse heart but not in skeletal muscle. We identified two alternative splicing variants of a novel PDZ-LIM domain protein, which we named Oracle. Both variants contain a PDZ domain at the amino-terminus and three LIM domains at the carboxy-terminus. Highest homology of Oracle was found with the human and rat enigma proteins in the PDZ domain (62 and 61%, respectively) and in the LIM domains (60 and 69%, respectively). By Northern hybridization analysis, we showed that expression is highest in adult mouse heart, low in skeletal muscle and undetectable in other adult mouse tissues. In situ hybridization in mouse embryos confirmed and extended these data by showing high expression of Oracle mRNA in atrial and ventricular myocardial cells from E8.5. From E9.5 low expression of Oracle mRNA was detectable in myotomes. These data suggest a role for Oracle in the early development and function of heart and skeletal muscle.  相似文献   

5.
Hedgehog (Hh) plays an important role in Drosophila wing patterning by inducing expression of Dpp, which serves to organize the wing globally across the A-P axis. We show here how Hh signalling also plays a direct role in patterning the medial wing through the activation of the Hh-target gene, knot (kn). kn is expressed in Hh-responsive cells near the A-P compartment boundary, where its expression is dependent on fu, a component of Hh signalling. kn is required for the proper positioning of veins 3 and 4 and to prevent ectopic venation between them. Furthermore, the expansion anteriorly of the normal kn expression domain causes an associated anterior shift in the position of vein 3 in the resultant wing. Ectopic expression of kn elsewhere in the wing imaginal disc results in the failure to properly activate the vein initiation genes, rho and Dl. Expression of the gene encoding the EGF-receptor (EGFR), which is required for vein initiation and subsequent differentiation, is normally depressed in the 3-4 intervein region. This downregulation of EGFR in the medial portion of the imaginal disc is dependent on kn activity and ectopic expression of kn inactivates EGFR elsewhere in the wing primordium. We propose kn expression in Hh-responsive cells of the wing blade anlagen during the late third instar creates a zone of cells in the medial wing in which vein primordia cannot be induced. The primordia for veins 3 and 4 are laid down adjacent to the kn-imposed vein-free zone, presumably by a signalling factor (such as Vn) also synthesized in the medial region of the wing.  相似文献   

6.
The Drosophila wing imaginal disc is subdivided into notum, hinge and blade territories during the third larval instar by formation of several deep apical folds. The molecular mechanisms of these subdivisions and the subsequent initiation of morphogenic processes during metamorphosis are poorly understood. Here, we demonstrate that the Dorsocross (Doc) T-box genes promote the progression of epithelial folds that not only separate the hinge and blade regions of the wing disc but also contribute to metamorphic development by changing cell shapes and bending the wing disc. We found that Doc expression was restricted by two inhibitors, Vestigial and Homothorax, leading to two narrow Doc stripes where the folds separating hinge and blade are forming. Doc mutant clones prevented the lateral extension and deepening of these folds at the larval stage and delayed wing disc bending in the early pupal stage. Ectopic Doc expression was sufficient to generate deep apical folds by causing a basolateral redistribution of the apical microtubule web and a shortening of cells. Cells of both the endogenous blade/hinge folds and of folds elicited by ectopic Doc expression expressed Matrix metalloproteinase 2 (Mmp2). In these folds, integrins and extracellular matrix proteins were depleted. Overexpression of Doc along the blade/hinge folds caused precocious wing disc bending, which could be suppressed by co-expressing MMP2RNAi.  相似文献   

7.
N. Juni  T. Awasaki  K. Yoshida    S. H. Hori 《Genetics》1996,143(3):1257-1270
Optic morphology (Om) mutations in Drosophila ananassae are a group of retrotransposon (tom)-induced gain-of-function mutations that map to at least 22 independent loci and exclusively affect the compound eye morphology. In marked contrast to other Om mutations, which are characterized by fewer-than-normal and disorganized ommatidia, the Om(1E) mutation exhibits a peculiar phenotype as enlarged eyes with regularly arrayed normal ommatidia. To characterize the Om(1E) mutation, we have carried out molecular analyses. A putative Om(1E) locus cloned by tom tagging and chromosome walking contained two transcribed regions in the vicinity of tom insertion sites of the Om(1E) mutant alleles, and one of these regions was shown to be the Om(1E) gene by P element-mediated transformation experiments with D. melanogaster. The Om(1E) gene encodes a novel protein having potential transmembrane domain(s). In situ hybridization analyses demonstrated that the Om(1E) gene is expressed ubiquitously in embryonic cells, imaginal discs, and the cortex of the central nervous system of third instar larvae, and specifically in lamina precursor cells. Artificially induced ubiquitous overexpression of Om(1E) affected morphogenesis of wing imaginal disc derivatives or large bristle formation. These findings suggest that the Om(1E) gene is involved in a variety of developmental processes.  相似文献   

8.
Expression of the Sex combs reduced protein in Drosophila larvae   总被引:6,自引:0,他引:6  
We have generated a monoclonal antibody that binds specifically to the protein product of the homeotic Sex combs reduced (Scr) gene of Drosophila, and have mapped the patterns of Scr expression in late third instar larvae. Virtually the entire prothoracic leg imaginal disc expresses the gene, although the levels of expression vary in different disc regions. This heterogeneity does not reflect the compartmental domains defined by engrailed gene expression. Expression is also observed in the cells of the humeral and labial discs, and there is a small patch of Scr-expressing cells in the antenna disc. The gene is expressed in adepithelial cells of the three thoracic leg discs, but not in the wing or haltere discs. In the central nervous system, Scr expression is confined to a narrow band of cells in the subesophageal region of the ventral ganglion. The results are discussed with respect to the known genetic requirements for Scr+ function.  相似文献   

9.
10.
Abstract Wg/Wnt signaling is a key signaling pathway in Drosophila. Many genes involved in Wingless(wg) signal transduction pathway downstream of Wg, or it s vertebrate Wg homologue Wnt, have been identified. Transduction of the Wg signal downstream of Wg is mediated by nuclear TCF/LEF-1, through association with Armadillo (Arm)β-catenin. Pygopus (pygo) is a new identified component in this pathway. Cellular localization experiment showed that pygo was expressed specifically in the nucleus. The expression profile of pygo in embryos was examined using in situ hybridization. Although pygo expressed ubiquitously in the embryos, it expressed at relatively high level in pre-blastoderm embryos which indicate a high degree of maternally provided message, followed by a low level of ubiquitous zygotic expression. This continues into larval tissues (including wing disc, eye disc and leg disc), where pygo appears to be expressed at low level. Comparison of pygo expression levels, in the wing disc, eye disc and leg disc, showed pygo expression level in the wing disc pouch and leg disc were relative higher.  相似文献   

11.
Receptors and various molecules in neurons are localized at precise locations to perform their respective functions, especially in synaptic sites. Among synaptic molecules, PDZ domain proteins play major roles in scaffolding and anchoring membrane proteins for efficient synaptic transmission. In the present study, we isolated CIP98, a novel protein (98 kDa) consisting of three PDZ domains and a proline-rich region, which is widely expressed in the central nervous system. In situ hybridization and immunohistochemical staining patterns demonstrate that CIP98 is expressed strongly in certain types of neurons, i.e. pyramidal cells in layers III-V of the cerebral cortex, projecting neurons in the thalamus and interneurons in the cerebellum. The results of immunocytochemical staining and electron microscopy revealed that CIP98 is localized both in dendrites and axons. Interestingly, CIP98 interacts with CASK (calmodulin-dependent serine kinase), a member of the membrane-associated guanylate kinase (MAGUK) family that plays important roles in the molecular organization of proteins at synapses. CIP98 was shown to co-localize with CASK along the dendritic processes of neurons. In view of its direct association with CASK, CIP98 may be involved in the formation of CASK scaffolding proteins complex to facilitate synaptic transmission in the CNS.  相似文献   

12.
13.
Elfin (previously named CLIM1) is a protein that possesses an N-terminal PDZ domain and a C-terminal LIM domain. It belongs to the family of Enigma proteins. Enigma proteins are a family of cytoplasmic proteins that contain an N-terminal PDZ domain and a series of C-terminal LIM domains. By virtue of these two protein interacting domains, Enigma proteins are capable of protein-protein interactions. It has been proposed that Enigma proteins may act as adapters between kinases and the cytoskeleton. We have previously shown that Elfin is most abundantly expressed in the heart and it colocalizes with alpha-actinin 2 at the Z-disks of the myocardium. In this report, Elfin was shown to localize at the actin stress fibers of myoblasts, as revealed by green fluorescent protein (GFP) tagging. In situ hybridization and immunostaining showed that Elfin expression begins at an early stage in mouse development and is present throughout the developing heart. Taken together, our experimental results suggest that Elfin may play an important role in myofibrillogenesis and heart development.  相似文献   

14.
Cellular interaction between the proximal and distal domains of the limb plays key roles in proximal-distal patterning. In Drosophila, these domains are established in the embryonic leg imaginal disc as a proximal domain expressing escargot, surrounding the Distal-less expressing distal domain in a circular pattern. The leg imaginal disc is derived from the limb primordium that also gives rise to the wing imaginal disc. We describe here essential roles of Wingless in patterning the leg imaginal disc. Firstly, Wingless signaling is essential for the recruitment of dorsal-proximal, distal, and ventral-proximal leg cells. Wingless requirement in the proximal leg domain appears to be unique to the embryo, since it was previously shown that Wingless signal transduction is not active in the proximal leg domain in larvae. Secondly, downregulation of Wingless signaling in wing disc is essential for its development, suggesting that Wg activity must be downregulated to separate wing and leg discs. In addition, we provide evidence that Dll restricts expression of a proximal leg-specific gene expression. We propose that those embryo-specific functions of Wingless signaling reflect its multiple roles in restricting competence of ectodermal cells to adopt the fate of thoracic appendages.  相似文献   

15.
We have isolated three classes of enhancertrap lines of Drosophila in which lacZ expression patterns in the imaginal discs are consistent with the idea of a polar (radial and angular) coordinate system of positional information. In the first class (HZ76), a circular pattern was expressed transiently during the mid-third instar larval stage when the radial components of the coordinate are probably generated. The expression patterns of the second class (HZ84) were sector-shaped and circular in the leg disc, suggesting a correlation with both radial and angular coordinate values. The expression patterns found in the third class (PZ63 and PZ22) were circular and appeared to reflect radial positional values. Expression in the latter two classes always began in the presumptive dorsal region of the leg disc and gradually spread to the ventral region. These developmental profiles of expression suggested the existence of a centre that initiates patterned gene expression in the presumptive dorsal region of the leg disc. The PZ22 line showed transient expression during tarsal segmentation, suggesting its involvement in tarsal segment formation. We have cloned the PZ22 gene and partially determined its sequence. The deduced amino acid sequence contained a zinc finger motif found in DNA/RNA binding proteins. By in situ hybridization, we determined that the PZ22 gene was transcribed in the leg disc in a pattern identical to that of the lacZ expression. In addition, it was expressed transiently in the embryonic mesoderm during mesoderm segmentation. The PZ22 gene, therefore, may function both in mesodermal segmentation in the embryo and in tarsal segmentation in the imaginal disc.  相似文献   

16.
17.
18.
19.
The Drosophila serum response factor (DSRF) is expressed in the precursors of the terminal tracheal cells and in the future intervein territories of the third instar wing imaginal disc. Dissection of the DSRF regulatory region reveals that a single enhancer element, which is under the control of the fibroblast growth factor (FGF)-receptor signalling pathway, is sufficient to induce DSRF expression in the terminal tracheal cells. In contrast, two separate enhancers direct expression in distinct intervein sectors of the wing imaginal disc. One element is active in the central intervein sector and is induced by the Hedgehog signalling pathway. The other element is under the control of Decapentaplegic and is active in two separate territories, which roughly correspond to the intervein sectors flanking the central sector. Hence, each of the three characterized enhancers constitutes a molecular link between a specific territory induced by a morphogen signal and the localized expression of a gene required for the final differentiation of this territory.  相似文献   

20.
The developing wing of Drosophila melanogaster was examined at larval and pupal stages of development to determine whether the anterior-posterior lineage boundary, as identified by lineage restrictions, was congruent with the boundaries defined by the expression of posterior-specific (engrailed, invected), and anterior-specific (cubitus interruptus-D) genes. The lineage boundary was identified by marking mitotic recombinant clones, using an enhancer trap line with ubiquitous beta-gal expression in imaginal tissues; clones of +/+ cells were identified by their lack of beta-gal expression. Domains of gene expression were localized using antibodies and gene specific lacZ constructs. Surprisingly, it was found that engrailed expression extended a small distance into the anterior lineage compartment of the wing blade, as identified with anti-en/inv mAb, anti-en polyclonal antiserum, or an en-promoter-lacZ insert, ryxho25. This anterior expression was not present in early third instar discs, but appeared during subsequent larval and pupal development. In contrast, the expression of cubitus interruptus-D, as identified using the ci-Dplac insert, appeared to be limited to the anterior lineage compartment. Thus, en expression is not limited to cells from the posterior lineage compartment, and en and ci-D activities can overlap in a region just anterior to the lineage compartment boundary in the developing wing. The lineage boundary could also be identified by a line of aligned cells in the prospective wing blade region of wandering third instar discs. A decapentaplegic-lacZ construct was expressed in a stripe several cells anterior to the lineage boundary, and did not define or overlap into the posterior lineage compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号