首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of isolated bacterial flagellum filaments (BFF) and intact flagella from E. coli MS 1350 and B. brevis G.-B.p+ with rabbit skeletal myosin was studied. BFF were shown to coprecipitate with myosin (but not with isolated myosin rod) at low ionic strength, that is, under conditions of myosin aggregation. The data of electron microscopy indicate that filaments of intact bacterial flagella interact with isolated myosin heads (myosin subfragment 1, S1), and this interaction is fully prevented by addition of Mg2+ -ATP. Addition of BFF inhibited both K+ -EDTA- and Ca2+ -ATPase activity of skeletal muscle myosin, but had no effect on its Mg2+ -ATPase activity. Monomeric flagellin did not coprecipitate with myosin and had no effect on its ATPase activities. BFF were shown to compete with F-actin in myosin binding. It is concluded that BFF interact with myosin heads and affect their ATPase activity. Thus, BFF composed of a single protein flagellin are in many respects similar to actin filaments. Common origin of actin and flagellin may be a reason for this similarity.  相似文献   

2.
The actin-activated Mg2+-ATPase activities of phosphorylated Acanthamoeba myosins IA and IB were previously found to have a highly cooperative dependence on myosin concentration (Albanesi, J. P., Fujisaki, H., and Korn, E. D. (1985) J. Biol. Chem. 260, 11174-11179). This behavior is reflected in the requirement for a higher concentration of F-actin for half-maximal activation of the myosin Mg2+-ATPase at low ratios of myosin:actin (noncooperative phase) than at high ratios of myosin:actin (cooperative phase). These phenomena could be explained by a model in which each molecule of the nonfilamentous myosins IA and IB contains two F-actin-binding sites of different affinities with binding of the lower affinity site being required for expression of actin-activated ATPase activity. Thus, enzymatic activity would coincide with cross-linking of actin filaments by myosin. This theoretical model predicts that shortening the actin filaments and increasing their number concentration at constant total F-actin should increase the myosin concentration required to obtain the cooperative increase in activity and should decrease the F-actin concentration required to reach half-maximal activity at low myosin:actin ratios. These predictions have been experimentally confirmed by shortening actin filaments by addition of plasma gelsolin, an F-actin capping/severing protein. In addition, we have found that actin "filaments" as short as the 1:2 gelsolin-actin complex can significantly activate Acanthamoeba myosin I.  相似文献   

3.
A comparison is made between dynein [flagellar ATPase; EC 3.6.1.3], purified from sea urchin sperm flagella, and muscle myosin. The amino acid composition of dynein was found to be statistically different from that of myosin. The same was true of their tryptic fragments retaining ATPase activity, i.e., Fragment A of dynein and heavy meromyosin. At low ionic strength, no superprecipitation took place when ATP was added to a mixture of dynein and actin, and stimulation of the Mg2+-ATPase activity of dynein remained below 50% even when a one-hundred-fold excess of actin was present. No viscosity drop was caused by adding ATP to a solution containing dynein and actin. Anti-myosin antiserum did not react with dynein, while anti-Fragment A antiserum formed no precipit-n line against myosin. Furthermore, the amount of dynein that combined with F-actin was less than one-fifth of the amount of dynein that fully combined with microtubules. These results are consistent with the dissimilarity in enzymatic and other physiocochemical properties of these two proteins.  相似文献   

4.
The actin-activated Mg2+-ATPase of myosin II from Acanthamoeba castellanii is regulated by phosphorylation of 3 serine residues at the tip of the tail of each of its two heavy chains; only dephosphorylated myosin II is active, whereas the phosphorylated and dephosphorylated forms have identical Ca2+-ATPase activities and Mg2+-ATPase activities in the absence of F-actin. We have now chemically modified phosphorylated and dephosphorylated myosin II with N-ethylmaleimide (NEM). The modification occurred principally at a single site within the NH2-terminal 73,000 Da of the globular head of the heavy chain. NEM-myosin II bound to F-actin and formed filaments normally, but the Ca2+- and Mg2+-ATPase activities of phosphorylated and dephosphorylated myosin II and the actin-activated Mg2+-ATPase activity of NEM-dephosphorylated myosin II were inhibited. Only filamentous myosin II has actin-activated Mg2+-ATPase activity. Native phosphorylated myosin II acquired actin-activated Mg2+-ATPase activity when it was co-polymerized with NEM-inactivated dephosphorylated myosin II, and the increase in its activity was cooperatively dependent on the fraction of NEM-dephosphorylated myosin II in the filaments. From this result, we conclude that the specific activity of each molecule within a filament is independent of its own state of phosphorylation, but is highly cooperatively dependent upon the state of phosphorylation of the filament as a whole. This enables the actin-activated Mg2+-ATPase activity of myosin II filaments to respond rapidly and extensively to small changes in the level of their phosphorylation.  相似文献   

5.
Previous studies had led to the conclusion that the globular, single-headed myosins IA and IB from Acanthamoeba castellanii contain two actin-binding sites: one associated with the catalytic site and whose binding to F-actin activates the Mg2+-ATPase activity and a second site whose binding results in the cross-linking of actin filaments and makes the actin-activated ATPase activity positively cooperative with respect to myosin I concentration. We have now prepared a 100,000-Da NH2-terminal peptide and a 30,000-Da COOH-terminal peptide by alpha-chymotryptic digestion of the myosin IA heavy chain. The intact 17,000-Da light chain remained associated with the 100,000-Da fragment, which also contained the serine residue that must be phosphorylated for expression of actin-activated ATPase activity by native myosin IA. The 30,000-Da peptide, which contained 34% glycine and 21% proline, bound to F-actin with a KD less than 0.5 microM in the presence or absence of ATP but had no ATPase activity. The 100,000-Da peptide bound to F-actin with KD = 0.4-0.8 microM in the presence of 2 mM MgATP and KD less than 0.01 microM in the absence of MgATP. In contrast to native myosin IA, neither peptide cross-linked actin filaments. The phosphorylated 100,000-Da peptide had actin-activated ATPase activity with the same Vmax as that of native phosphorylated myosin IA but this activity displayed simple, noncooperative hyperbolic dependence on the actin concentration in contrast to the complex cooperative kinetics observed with native myosin IA. These results provide direct experimental evidence for the presence of two actin-binding sites on myosin IA, as was suggested by enzyme kinetic and filament cross-linking data, and also for the previously proposed mechanism by which monomeric myosins I could support contractile activities.  相似文献   

6.
A myosin B-like protein was extracted from the alga Nitella flexilis. SDS-polyacrylamide gel electrophoresis revealed the presence of myosin heavy chain and actin as the main components. At high ionic strength, its ATPase [EC 3.6.1.3] reaction was activated by EDTA or Ca2+ and inhibited by Mg2+. At low ionic strength, superprecipitation was induced by the addition of ATP. Myosin was purified from Nitella myosin B. The molecular weight of the heavy chain of Nitella myosin, estimated by SDS-gel electrophoresis, was slightly higher than that of skeletal muscle myosin. At low ionic strength, Nitella myosin aggregated to form bipolar filaments about 0.2 micron long. At high ionic strength, its ATPase reaction was activated by EDTA or Ca2+, and inhibited by Mg2+. The Mg2+-ATPase reaction of Nitella myosin was activated by skeletal muscle F-actin.  相似文献   

7.
Myosin X is a member of the diverse myosin superfamily that is ubiquitously expressed in various mammalian tissues. Although its association with actin in cells has been shown, little is known about its biochemical and mechanoenzymatic function at the molecular level. We expressed bovine myosin X containing the entire head, neck, and coiled-coil domain and purified bovine myosin X in Sf9 cells. The Mg(2+)-ATPase activity of myosin X was significantly activated by actin with low K(ATP). The actin-activated ATPase activity was reduced at Ca(2+) concentrations above pCa 5 in which 1 mol of calmodulin light chain dissociates from the heavy chain. Myosin X translocates F-actin filaments with the velocity of 0.3 microm/s with the direction toward the barbed end. The actin translocating activity was inhibited at concentrations of Ca(2+) at pCa 6 in which no calmodulin dissociation takes place, suggesting that the calmodulin dissociation is not required for the inhibition of the motility. Unlike class V myosin, which shows a high affinity for F-actin in the presence of ATP, the K(actin) of the myosin X ATPase was much higher than that of myosin V. Consistently nearly all actin dissociated from myosin X in the presence of ATP. ADP did not significantly inhibit the actin-activated ATPase activity of myosin X, suggesting that the ADP release step is not rate-limiting. These results suggest that myosin X is a nonprocessive motor. Consistently myosin X failed to support the actin translocation at low density in an in vitro motility assay where myosin V, a processive motor, supports the actin filament movement.  相似文献   

8.
Acanthamoeba myosins IA and IB are single-headed, monomeric molecules consisting of one heavy chain and one light chain. Both have high actin-activated Mg2+-ATPase activity, when the heavy chain is phosphorylated, but neither seems to be able to form the bipolar filaments that are generally thought to be required for actomyosin-dependent contractility. In this paper, we show that, at fixed F-actin concentration, the actin-activated Mg2+-ATPase activities of myosins IA and IB increase about 5-fold in specific activity in a cooperative manner as the myosin concentration is increased. The myosin concentration range over which this cooperative change occurs depends on the actin concentration. More myosin I is required for the cooperative increase in activity at high concentrations of F-actin. The cooperative increase in specific activity at limiting actin concentrations is caused by a decrease in the KATPase for F-actin. The high and low KATPase states of the myosin have about the same Vmax at infinite actin concentration. Both myosins are completely bound to the F-actin long before the Vmax values are reached. Therefore, much of the actin activation must be the result of interactions between F-actin and actomyosin. These kinetic data can be explained by a model in which the cooperative shift of myosin I from the high KATPase to the low KATPase state results from the cross-linking of actin filaments by myosin I. Cross-linking might occur either through two actin-binding sites on a single molecule or by dimers or oligomers of myosin I induced to form by the interaction of myosin I monomers with the actin filaments. The ability of Acanthamoeba myosins IA and IB to cross-link actin filaments is demonstrated in the accompanying paper (Fujisaki, H., Albanesi, J.P., and Korn, E.D. (1985) J. Biol. Chem. 260, 11183-11189).  相似文献   

9.
Approximately 8-10 mg of highly actin-activatable, CA2+-sensitive Acanthamoeba myosin II can be isolated in greater than 98% purity from 100 g of amoeba by the new procedure described in detail in this paper. The enzyme isolated by this procedure can be activated by actin because its heavy chains are not fully phosphorylated (Collins, J. H., and Korn, E. D. (1980) J. Biol Chem. 255, 8011-8014). We now show that Acanthamoeba myosin II Mg2+-ATPase activity is more highly activated by Acanthamoeba actin than by muscle actin. Also, actomyosin II ATPase is inactive at concentrations of free Mg2+ lower than about 3 mM and fully active at Mg2+ concentrations greater than 4 mM. Actomyosin II Mg2+-ATPase activity is stimulated by micromolar Ca2+ when assayed over the narrow range of about 3-4 mM Mg2+ but is not affected by Ca2+ at either lower or higher concentrations of Mg2+. The specific activity of te actomyosin II Mg2+-ATPase also increases with increasing concentrations of myosin II when the free Mg2+ concentration is in the range of 3-4 mM but is independent of the myosin II concentration at lower or higher concentrations of Mg2+ . This marked effect of the Mg2+ concentration on the Ca2+-sensitivity and myosin concentration-dependence of th specific activity of actomyosin II ATPase activity does not seem to be related to the formation of myosin filaments, and to be related to the formation of myosin filaments, and myosin II is insoluble only at high concentrations of free Mg2+ (6-7 mM) were neither of these effects is observed. Also, the Mg2+ requirements for actomyosin II ATPase activity and myosin II insolubility can be differentially modified by EDTA and sucrose.  相似文献   

10.
A third isoform of myosin I has been isolated from Acanthamoeba and designated myosin IC. Peptide maps and immunoassays indicate that myosin IC is not a modified form of myosin IA, IB, or II. However, myosin IC has most of the distinctive properties of a myosin I. It is a globular protein of native Mr approximately 162,000, apparently composed of a single 130-kDa heavy chain and a pair of 14-kDa light chains. It is soluble in MgATP at low ionic strength, conditions favoring filament assembly by myosin II. Myosin IC has high Ca2+- and (K+,EDTA)-ATPase activities. Its low Mg2+-ATPase activity is stimulated to a maximum rate of 20 s-1 by the addition of F-actin if its heavy chain has been phosphorylated by myosin I heavy chain kinase. The dependence of the Mg2+-ATPase activity of myosin IC on F-actin concentration is triphasic; and, at fixed concentrations of F-action, this activity increases cooperatively as the concentration of myosin IC is increased. These unusual kinetics were first demonstrated for myosins IA and IB and shown to be due to the presence of two actin-binding sites on each heavy chain which enable those myosins I to cross-link actin filaments. Myosin IC is also capable of cross-linking F-actin, which, together with the kinetics of its actin-activated Mg2+-ATPase activity, suggests that it, like myosins IA and IB, possesses two independent actin-binding domains.  相似文献   

11.
《The Journal of cell biology》1983,96(6):1761-1765
Tomato activation inhibiting protein (AIP) is a molecule of an apparent molecular weight of 72,000 that co-purifies with tomato actin. In an assay system containing rabbit skeletal muscle F-actin and rabbit skeletal muscle myosin subfragment-1 (myosin S-1), tomato AIP dissociated the acto-S-1 complex in the absence of Mg+2ATP and inhibited the ability of F-actin to activate the low ionic strength Mg+2ATPase activity of myosin S-1. At a molar ratio of 5 actin to 1 AIP, a 50% inhibition of the actin-activated Mg+2ATPase activity of myosin S-1 was observed. The inhibition can be reversed by raising the calcium ion concentration to 1 X 10(-5) M. The AIP had no effect on the basal low ionic strength Mg+2ATPase activity of myosin S-1 in the absence of actin. The protein did not bind directly to actin nor did it cause depolymerization or aggregation of F-actin but appeared, instead, to interact with the actin binding site on myosin S-1. Since AIP is a potent, reversible inhibitor of the rabbit acto-S-1 ATPase activity, it is postulated that it may be responsible for the low levels of actin activation exhibited by tomato F-actin fractions containing the AIP.  相似文献   

12.
Actin-activated Mg2+-ATPase activity of myosin II from Acanthamoeba castellanii is regulated by phosphorylation of three serine residues located at the carboxyl-terminal end of each of the two 185,000-Da heavy chains; the phosphorylated molecule has full Ca2+-ATPase activity but no actin-activated Mg2+-ATPase activity. Under controlled conditions, chymotrypsin removes a small peptide containing all three phosphorylation sites from the ends of the myosin II heavy chains producing a molecule with heavy chains of 175,000 Da and undigested light chains. The length of the myosin II tail decreased from 89 to 76 nm. Chymotrypsin-cleaved myosin II has complete Ca2+-ATPase activity but no actin-activated Mg2+-ATPase activity under standard assay conditions and binds to F-actin as well as undigested myosin II in the absence, but not in the presence, of MgATP. In the presence of MgCl2, undigested myosin II forms biopolar filaments but chymotrypsin-cleaved myosin II forms only parallel (monopolar) dimers, as assessed by analytical ultra-centrifugation and rotary shadow electron microscopy. We conclude that the short segment very near the end of the myosin II tail that contains the three phosphorylatable serines is necessary for the formation of biopolar filaments and, probably as a consequence of filament formation, for the high-affinity binding of myosin II to F-actin in the presence of ATP and the actin-activated Mg2+-ATPase activity of native myosin II. This supports our previous conclusion that actin-activated Mg2+-ATPase of native myosin II is expressed only when the enzyme is in bipolar filaments with the proper conformation as determined by the state of phosphorylation of the heavy chains.  相似文献   

13.
The interactions were analyzed between actin, myosin, and a recently discovered high molecular weight actin-binding protein (Hartwig, J. H., and Stossel, T. P. (1975) J. Biol Chem.250,5696-5705) of rabbit alveolar macrophages. Purified rabbit alveolar macrophage or rabbit skeletal muscle F-actins did not activate the Mg2+ATPase activity of purified rabbit alveolar macrophage myosin unless an additional cofactor, partially purified from macrophage extracts, was added. The Mg2+ATPase activity of cofactor-activated macrophage actomyosin was as high as 0.6 mumol of Pi/mg of myosin protein/min at 37 degrees. The macrophage cofactor increased the Mg2+ATPase activity of rabbit skeletal muscle actomyosin, and calcium regulated the Mg2+ATPase activity of cofactor-activited muscle actomyosin in the presence of muscle troponins and tropomyosin. However, the Mg2+ATPase activity of macrophage actomyosin in the presence of the cofactor was inhibited by muscle control proteins, both in the presence and absence of calcium. The Mg2+ATPase activity of the macrophage actomyosin plus cofactor, whether assembled from purified components or studied in a complex collected from crude macrophage extracts, was not influenced by the presence of absence of calcium ions. Therefore, as described for Acanthamoeba castellanii myosin (Pollard, T. D., and Korn, E. D. (1973) J. Biol. Chem. 248, 4691-4697), rabbit alveolar macrophage myosin requires a cofactor for activation of its Mg2+ATPase activity by F-actin; and no evidence was found for participation of calcium ions in the regulation of this activity.In macrophage extracts containing 0.34 M sucrose, 0.5 mM ATP, and 0.05 M KCl at pH 7.0,the actin-binding protein bound F-actin into bundles with interconnecting bridges. Purified macrophage actin-binding protein in 0.1 M KCl at pH 7.0 also bound purified macrophage F-actin into filament bundles. Macrophage myosin bound to F-actin in the absence but not the presence of Mg2+ATP, but the actin-binding protein did not bind to macrophage myosin in either the presence or absence of Mg2+ATP.  相似文献   

14.
A contractile protein closely resembling natural actomyosin (myosin B) of rabbit skeletal muscle was extracted from plasmodia of the slime mold, Physarum polycephalum, by protecting the SH-groups with beta-mercaptoethanol or dithiothreitol. Superprecipitation of the protein induced by Mg2+-ATP at low ionic strength was observed only in the presence of very low concentrations of free Ca2+ ions, and the Mg2+-ATPase [EC 3.6.1.3] reaction was activated 2- to 6-fold by 1 muM of free Ca2+ ions. Crude myosin and actin fractions were separated by centrifuging plasmodium myosin B in the presence of Mg2+-PPi at high ionic strength. The crude myosin showed both EDTA- and Ca2+-activated ATPase activities. The Mg2+-ATPase activity of crude myosin from plasmodia was markedly activated by the addition of pure F-actin from rabbit skeletal muscle. Addition of the F-action-regulatory protein complex prepared from rabbit skeletal muscle as well as the actin fraction of plasmodium caused the same degree of activation as the addition of pure F-actin only in the presence of very low concentrations of Ca2+ ion  相似文献   

15.
We studied the effects of caldesmon, a major actin- and calmodulin-binding protein found in a variety of muscle and non-muscle tissues, on the various ATPase activities of skeletal-muscle myosin. Caldesmon inhibited the actin-activated myosin Mg2+-ATPase, and this inhibition was enhanced by tropomyosin. In the presence of the troponin complex and tropomyosin, caldesmon inhibited the Ca2+-dependent actomyosin Mg2+-ATPase; this inhibition could be partly overcome by Ca2+/calmodulin. Caldesmon, phosphorylated to the extent of approximately 4 mol of Pi/mol of caldesmon, inhibited the actin-activated myosin Mg2+-ATPase to the same extent as did non-phosphorylated caldesmon. Both inhibitions could be overcome by Ca2+/calmodulin. Caldesmon also inhibited the Mg2+-ATPase activity of skeletal-muscle myosin in the absence of actin; this inhibition also could be overcome by Ca2+/calmodulin. Caldesmon inhibited the Ca2+-ATPase activity of skeletal-muscle myosin in the presence or absence of actin, at both low (0.1 M-KCl) and high (0.3 M-KCl) ionic strength. Finally, caldesmon inhibited the skeletal-muscle myosin K+/EDTA-ATPase at 0.1 M-KCl, but not at 0.3 M-KCl. Addition of actin resulted in no inhibition of this ATPase by caldesmon at either 0.1 M- or 0.3 M-KCl. These observations suggest that caldesmon may function in the regulation of actin-myosin interactions in striated muscle and thereby modulate the contractile state of the muscle. The demonstration that caldesmon inhibits a variety of myosin ATPase activities in the absence of actin indicates a direct effect of caldesmon on myosin. The inhibition of the actin-activated Mg2+-ATPase activity of myosin (the physiological activity) may not be due therefore simply to the binding of caldesmon to the actin filament causing blockage of myosin-cross-bridge-actin interaction.  相似文献   

16.
Calcium regulation of actomyosin activity in the nematode, Caenorhabditis elegans, has been studied with purified proteins and crude thin filaments. Actin and tropomyosin have been purified from C. elegans and shown to be similar in most respects to actin and tropomyosin from rabbit skeletal muscle. The actin comigrates with rabbit actin on polyacrylamide-sodium dodecyl sulfate gel electrophoresis, forms similar filaments and paracrystals, and activates the Mg2+-ATPase of rabbit myosin heads as efficiently as rabbit actin. Nematode tropomyosin has a greater apparent molecular weight (estimated by mobility on polyacrylamide-sodium dodecyl sulfate gels) than the rabbit protein, yet it forms Mg2+-paracrystals with a slightly shorter periodicity. Native thin filaments extracted from nematodes activate rabbit myosin subfragment 1 Mg2+-ATPase in a calcium sensitive manner; the extent of activation is threefold greater in 0.2 mM CaCl2 than in the absence of calcium. This observation suggests that the thin filaments contain components which are functionally equivalent to vertebrate troponins. Calcium is also required for maximal activation of the Mg2+-ATPase of purified nematode myosin by pure rabbit F-actin. C. elegans therefore has both myosin and thin filament-linked calcium regulatory systems. The origin of the actin, tropomyosin, and myosin from different tissues and the use of genetic analysis to answer questions about assembly and function in vivo are discussed.  相似文献   

17.
The actin-activated Mg2+-ATPase activity of phosphorylated Acanthamoeba myosin I was previously shown to be cooperatively dependent on the myosin concentration (Albanesi, J. P., Fujisaki, H., and Korn, E. D. (1985) J. Biol. Chem. 260, 11174-11179). This observation was rationalized by assuming that myosin I contains a high-affinity and a low-affinity F-actin-binding site and that binding at the low-affinity site is responsible for the actin-activated ATPase activity. Therefore, enzymatic activity would correlate with the cross-linking of actin filaments by myosin I, and the cooperative increase in specific activity at high myosin:actin ratios would result from the fact that cross-linking by one myosin molecule would increase the effective F-actin concentration for neighboring myosin molecules. This model predicts that high specific activity should occur at myosin:actin ratios below that required for cooperative interactions if the actin filaments are cross-linked by catalytically inert cross-linking proteins. This prediction has been confirmed by cross-linking actin filaments with either of three gelation factors isolated from Acanthamoeba, one of which has not been previously described, or by enzymatically inactive unphosphorylated Acanthamoeba myosin I.  相似文献   

18.
Actomyosin, myosin, and actin from different sources are adsorbed, apparently as a monolayer, by polystyrene particles teins for 1 mg of Lytron were about 10-7 liters mol-1, while heterogeneity indices (alpha) varied from 0.70 to 1.0 presumably as a function of spontaneous aggregation in the liquid phase. Adsorption was irreversible. Orientation of absorbed molecules permitted association of bound muscle actin with platelet or muscle myosin. The association constant of the former reaction was 2.78 times 10-6 liters mol-1. Enzymatic properties of adsorbed actomyosin, Mg2+ATPase activity was abolished, but association of myosin with bound actin, or association of actin with bound myosin was accompanied by restoration of Mg2+ATPase activity. Every subunit of F-actin strands, unless F-actin had been fully depolymerized to G-actin, could bind myosin and activate Mg2+ATPase activity. Immunogenic characteristics of muscle myosin were enhanced by Lytron adsorption. Elicited antibodies showed selective specificity for an antigenic determinant located near or at the actin combining site of muscle myosin. Antibodies did not react with actomyosin. Antibodies prevented association of actin with muscle myosin because they inhibited both superprecipitation and development of Mg2+ATPase activity.  相似文献   

19.
Several structural and functional properties of the covalent complex, formed upon cross-linking of the myosin heads (S-1) to F-actin with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, were characterized. The elevated Mg2+-ATPase activity was measured during a 1-month storage of the complex under various conditions. In aqueous medium it showed a rapid time-dependent decrease but it was significantly more stable in the presence of 50% ethylene glycol at -20 degrees C. The ATPase loss most likely reflects a progressive conformational change within the S-1 ATPase site resulting from its greater exposure to the medium, induced by the permanently bound F-actin. The covalent acto-S1 complex was submitted to depolymerization-repolymerization experiments using different depolymerizing agents (0.6 M KI; 4.7 M NH4Cl; low-ionic-strength solution). The depolymerization led to an immediate loss of the enhanced Mg2+-ATPase activity; this activity was almost entirely recovered upon repolymerization of the complex. The protein material formed upon depolymerization of the covalent acto-S1 was analyzed by gel chromatography, gel electrophoresis, analytical ultracentrifugation and electron microscopy. It comprised mainly small-sized actin oligomers associated with the covalently bound S-1 and only a limited amount of free G-actin. The results illustrate the relationships between the filamentous state of actin and its ability to stimulate the Mg2+-ATPase activity of S-1. They also indicate that the binding of S-1 to F-actin is transmitted to several neighbouring actin subunits and strengthens the interactions between actin monomers. Acto-S1 cross-linked complexes were prepared in the presence of tropomyosin and the tropomyosin-troponin system. Under the conditions employed, the regulatory proteins were not cross-linked to actin or S-1 and did not affect the extent or the pattern of S-1 cross-linking to F-actin. Measurements of the elevated Mg2+-ATPase activity of the cross-linked preparations revealed that tropomyosin and the tropomyosin-troponin complex, in the absence of Ca2+, inhibit ATP hydrolysis; the extent of ATPase inhibition (up to 50%) was dependent on the amount of covalently bound S-1, being larger at low level of S-1 cross-linking; the addition of Ca2+ restored the ATPase activity to the control value. The data provide direct evidence that the regulatory proteins can modulate directly the kinetics of ATP hydrolysis by the covalent acto-S1 complex as has earlier been suggested for the reversible complex [Chalovich, J. M. and Eisenberg, E. (1982) J. Biol. Chem. 257, 2432-2437].(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The actin-activated Mg2(+)-ATPase activity of myosin II from Acanthamoeba castellanii is regulated by phosphorylation of 3 serines in its 29-residue, nonhelical, COOH-terminal tailpiece, i.e., serines-1489, -1494, and -1499 or, in reverse order, residues 11, 16, and 21 from the COOH terminus. To investigate the essential requirements for regulation, myosin II filaments in the presence of F-actin were digested by arginine-specific submaxillary gland protease. Two-dimensional peptide mapping of purified, cleaved myosin II showed that the two most terminal phosphorylation sites, serines-1494 and -1499, had been removed. Cleaved dephosphorylated myosin II retained full actin-activated Mg2(+)-ATPase activity (with no change in Vmax or Kapp) and the ability to form filaments similar to those of the native enzyme. However, higher Mg2+ concentrations were required for both filament formation and maximal ATPase activity. The one remaining regulatory serine in the cleaved myosin II was phosphorylatable by myosin II heavy-chain kinase, and phosphorylation inactivated the actin-activated Mg2(+)-ATPase activity, as in the case of the native myosin II. Also as in the case of the native myosin II, phosphorylated cleaved myosin II inhibited the actin-activated Mg2(+)-ATPase activity of dephosphorylated cleaved myosin II when the two were copolymerized. These results suggest that at least 18 of the 29 residues in the nonhelical tailpiece of the heavy chain are not required for either actin-activated Mg2(+)-ATPase activity or filament formation and that phosphorylation of Ser-1489 is sufficient to regulate the actin-activated Mg2(+)-ATPase activity of myosin II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号