首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Large, charismatic and wide‐ranging animals are often employed as focal species for prioritizing landscape linkages in threatened ecosystems (i.e. ‘connectivity conservation’), but there have been few efforts to assess empirically whether focal species co‐occur with other species of conservation interest within potential linkages. We evaluated whether the African elephant (Loxodonta africana), a world‐recognized flagship species, would serve as an appropriate focal species for other large mammals in a potential linkage between two major protected area complexes. Location A 15,400 km2 area between the Ruaha and Selous ecosystems in central Tanzania, East Africa. Methods We used walking transects to assess habitat, human activity and co‐occurrence of elephants and 48 other large mammal species (> 1 kg) at 63 sites using animal sign and direct sightings. We repeated a subset of transects to estimate species detectability using occupancy modelling. We used logistic regression and AIC model selection to characterize patterns of elephant occurrence and assessed correlation of elephant presence with richness of large mammals and subgroups. We considered other possible focal species, compared habitat‐based linear regression models of large mammal richness and used circuit theory to examine potential connectivity spatially. Results Elephants were detected in many locations across the potential linkage. Elephant presence was highly positively correlated with the richness of large mammals, as well as ungulates, carnivores, large carnivores and species > 45 kg in body mass (‘megafauna’). Outside of protected areas, both mammal richness and elephant presence were negatively correlated with human population density and distance from water. Only one other potential focal species was more strongly correlated with species richness than elephants, but detectability was highest for elephants. Main conclusions Although African elephants have dispersal abilities that exceed most other terrestrial mammals, conserving elephant movement corridors may effectively preserve habitat and potential landscape linkages for other large mammal species among Tanzanian reserves.  相似文献   

2.
Deterministic feedbacks within populations interact with extrinsic, stochastic processes to generate complex patterns of animal abundance over time and space. Animals inherently differ in their responses to fluctuating environments due to differences in body sizes and life history traits. However, controversy remains about the relative importance of deterministic and stochastic forces in shaping population dynamics of large and small mammals. We hypothesized that effects of environmental stochasticity and density dependence are stronger in small mammal populations relative to their effects in large mammal populations and thus differentiate the patterns of population dynamics between them. We conducted an extensive, comparative analysis of population dynamics in large and small mammals to test our hypothesis, using seven population parameters to describe general dynamic patterns for 23 (14 species) time series of observations of abundance of large mammals and 38 (21 species) time series for small mammals. We used state‐space models to estimate the strength of direct and delayed density dependence as well as the strength of environmental stochasticity. We further used phylogenetic comparative analysis to detect differences in population dynamic patterns and individual population parameters, respectively, between large and small mammals. General population dynamic patterns differed between large and small mammals. However, the strength of direct and delayed density dependence was comparable between large and small mammals. Moreover, the variances of population growth rates and environmental stochasticity were greater in small mammals than in large mammals. Therefore, differences in population response to stochastic forces and strength of environmental stochasticity are the primary factor that differentiates population dynamic patterns between large and small mammal species.  相似文献   

3.
  1. Researchers have used multiple methods to understand spatial mapping memory used by arboreal mammals for orientation: the change-point test, measures of path tortuosity, field experiments with feeding platforms, nearest-neighbour feeding tree methods, complex calculations of travel route parameters, and theoretical models.
  2. This literature review provides details of all of these methods, highlights previous results from spatial mapping memory studies, and discusses perspectives for future studies.
  3. Previous studies have shown that various arboreal mammals, mostly in the order Primates, can memorise spatial environments using a cognitive map. Two types of maps are characterised: the topological map, based on landmarks and reused routes, and the Euclidean map, including the ability to create shortcuts by measuring distances and distinguishing between directions. Most of the studies showed that mammals do not travel randomly but, due to the difficulty of determining which spatial map is used, the use of cognitive maps remains hypothetical.
  4. When studying spatial mapping memory, data collection and analysis should account for the species’ characteristics, such as the home-range size, food preferences, and types of movements. The role of sensory cues (visual, auditory, olfactory) is crucial to understanding spatial orientation. The most relevant way to determine how arboreal mammals orientate themselves in space is by using a mix of methods: random theoretical models, collecting data in a controlled environment, measuring different parameters of travel patterns, and considering the use of sensory cues and environmental factors of the study sites.
  5. Research pertaining to spatial mapping memory in arboreal mammals and forest-dwelling mammals is important for understanding cognitive abilities in mammal species, and more studies are needed in mammals of various orders.
  相似文献   

4.
Neuronal correlates of corticalization in mammals: a theory   总被引:1,自引:0,他引:1  
The cerebral cortex of mammals has been found to be uniformly organized, and to be composed of elementary processing units or modules having an essentially constant number of neurons. In the present paper the hypothesis is put forward that the relative proportion of local circuit neurons (LCNs) within a module reflects the evolutionary level of corticalization of a mammal. The modules, in turn, are interconnected so as to form basic neuronal networks or columns with a species-specific width varying from 90 to 310 microns. A mathematical formalism is presented from which the hypothetical ratio between LCNs and projection neurons, as well as the size of the cortical column and the number of modular units that it contains, can be calculated.  相似文献   

5.
6.
The island of Newfoundland is unique because it has as many non-native terrestrial mammals as native ones. The impacts of non-native species on native flora and fauna can be profound and invasive species have been identified as one of the primary drivers of species extinction. Few studies, however, have investigated the effects of a non-native species assemblage on community and ecosystem properties. We reviewed the literature to build the first terrestrial mammal food web for the island of Newfoundland and then used network analyses to investigate how the timing of introductions and trophic position of non-native species has affected the structure of the terrestrial mammal food web in Newfoundland. The first non-native mammals (house mouse and brown rat) became established in Newfoundland with human settlement in the late 15th and early 16th centuries. Coyotes and southern red-backed voles are the most recent mammals to establish themselves on the island in 1985 and 1998, respectively. The fraction of intermediate species increased with the addition of non-native mammals over time whereas the fraction of basal and top species declined over time. This increase in intermediate species mediated by non-native species arrivals led to an overall increase in the terrestrial mammal food web connectance and generality (i.e. mean number of prey per predator). This diverse prey base and sources of carrion may have facilitated the natural establishment of coyotes on the island. Also, there is some evidence that the introduction of non-native prey species such as the southern red-backed vole has contributed to the recovery of the threatened American marten. Long-term monitoring of the food web is required to understand and predict the impacts of the diverse novel interactions that are developing in the terrestrial mammal food web of Newfoundland.  相似文献   

7.
Marine mammals can be infected with zoonotic pathogens and show clinical signs of disease, or be asymptomatic carriers of such disease agents. While isolated cases of human disease from contact with marine mammals have been reported, no evaluation of the risks associated with marine mammal work has been attempted. Therefore, we designed a survey to estimate the risk of work-related injuries and illnesses in marine mammal workers and volunteers. The 17-question survey asked respondents to describe their contact with marine mammals, injuries sustained, and/or illnesses acquired during their period of marine mammal exposure. Most respondents, 88% (423/483), were researchers and rehabilitators. Of all respondents, 50% (243/483) reported suffering an injury caused by a marine mammal, and 23% (110/483) reported having a skin rash or reaction. Marine mammal work-related illnesses commonly reported included: 'seal finger' (Mycoplasma spp. or Erysipelothrix rhusiopathiae), conjunctivitis, viral dermatitis, bacterial dermatitis, and non-specific contact dermatitis. Although specific diagnoses could not be confirmed by a physician through this study, severe illnesses were reported and included tuberculosis, leptospirosis, brucellosis, and serious sequelae to seal finger. Risk factors associated with increased odds of injury and illness included prolonged and frequent exposure to marine mammals; direct contact with live marine mammals; and contact with tissue, blood, and excretions. Diagnosis of zoonotic disease was often aided by veterinarians; therefore, workers at risk should be encouraged to consult with a marine mammal veterinarian as well as a physician, especially if obtaining a definitive diagnosis for an illness becomes problematic.  相似文献   

8.
Forest fragmentation and defaunation are considered the main drivers of biodiversity loss, yet the synergistic effects of landscape changes and biotic interactions on assemblage structure have been poorly investigated. Here, we use an extensive dataset of 283 assemblages and 105 species of small mammals to understand how defaunation of medium and large mammals and forest fragmentation change the community composition and diversity of rodents and marsupials in tropical forests of South America. We used structured equation models to investigate the relationship between small mammal species, functional and phylogenetic diversity with forest size, forest cover and the occurrence of medium and large mammals. The best‐fit model showed that defaunation reduced functional diversity, and that species diversity of small mammals increased with forest patch size. Forest cover did not affect functional and phylogenetic diversity. Our results indicate that occurrence of medium and large sized mammals (probably acting as predators, or competitors of small mammals) and forest patch size help to retain species and functional diversity in small mammal communities. Further, the number of species in a small mammal community was critical to the maintenance of phylogenetic diversity, and may have a pronounced influence on the ecological functions played by small mammals. Identifying how phylogenetic and functional diversity change in function of human pressures allows us to better understand the contribution of extant lineages to ecosystem functioning in tropical forests.  相似文献   

9.
Modern programmed (adaptive) theories of biological aging contend that organisms including mammals have generally evolved mechanisms that purposely limit their lifespans in order to obtain an evolutionary benefit. Modern non-programmed theories contend that mammal aging generally results from natural deteriorative processes, and that lifespan differences between species are explained by differences in the degree to which they resist those processes. Originally proposed in the 19th century, programmed aging in mammals has historically been widely summarily rejected as obviously incompatible with the mechanics of the evolution process. However, relatively recent and continuing developments described here have dramatically changed this situation, and programmed mammal aging now has a better evolutionary basis than non-programmed aging. Resolution of this issue is critically important to medical research because the two theories predict that very different biological mechanisms are ultimately responsible for age-related diseases and conditions.  相似文献   

10.
Mutations in the Pax 6 homologs of mammals and insects prevent eye development and targeted expression of both mammal and insect Pax 6 homologs is capable of inducing functional ectopic eyes. Supported by RNA interference experiments in planarians and nemerteans, these findings indicate that Pax 6 is a universal master control gene for eye morphogenesis. Since all metazoan eyes use rhodopsin as a photoreceptor molecule and the same master control gene for eye development, we postulate a monophyletic origin of the various eye types. The finding of well developed eyes in jellyfish which essentially lack a brain, leads us to propose that the eye as a sensory organ evolved before the brain which is an information processing organ. The finding of highly developed eyes with a lens, vitreous body, stacked membranes like a retina and shielding pigment in unicellular dinoflagellates, raises the possibility that the prototypic eyes might have been acquired from symbionts.  相似文献   

11.
Surface water has been extracted from Arusha National Park (ANP) to meet human demand for over 30 years; however, there has been no evaluation of the impact of extraction on surface water quality, budget or ecological integrity. A reduction in water availability and flow is likely to also have impacts on the distribution and space use of large mammals. To assess the surface water quality and budget, 30 water sources were measured for three months over the dry and wet seasons. Nearly 70% of water is extracted, with the complete extraction of surface water common during the dry and early wet seasons. However, extraction did not lead to a decrease in downstream water quality, but wetland plant diversity was highest in areas with no surface water extraction. Extraction also influences large mammal space use: abundance along seven transects was typically higher upstream of extraction sites, especially in the case of large herbivores. Impacts of extraction therefore include the disconnection of streams, changes in space use of large mammals, decreases in plant diversity and changes in species composition of the riparian wetlands. We therefore recommend that monitoring and evaluation of extraction as well as sustainable water use practices be introduced as a matter of urgency.  相似文献   

12.
It is a great concern whether human disturbed forest, i.e., secondary forest or monoculture forest, can be a habitat for the wildlife. We examined habitat preference of medium/large terrestrial mammal species in a human-disturbed mountainous settlement area of Akiyama Region, Central Japan, by using camera-traps, which were placed at conifer plantation forest, high/low-disturbed deciduous broad-leaved forest, and broad-leaved/conifer mixed forest in 2008 and 2009. Camera-traps were operational for 4568.6 trap-nights producing 740 photo-captures of 13 medium/large terrestrial mammal species. Japanese serow and Japanese hare dominated 54 % of all photo-captures. Low-disturbed deciduous broad-leaved forest showed the richest mammal fauna (12 spp.). We suggested that fruit trees and understory vegetation provided suitable habitat for frugivorous as well as herbivorous mammals. The mixed forest showed the lowest mammal fauna (6 spp.), which located higher elevation. High-disturbed deciduous broad-leaved forest (9 spp.) was also supposed to be a better habitat for some frugivorous mammals and herbivorous mammals, but tended to be avoided by Japanese marten and Japanese macaque. Conifer plantation forest (7 spp.) with understory vegetation was supposed to be a better habitat for Japanese serow and Japanese hare, but not for the other species. Without fruit trees, conifer plantation forest was supposed to be non-attractive habitat for frugivorous mammals. We demonstrated that, if a forest had been disturbed by human, the forest can be a habitat for terrestrial herbivores, but this was not always true for frugivores.  相似文献   

13.
A series of high profile outbreaks of newly described diseases in humans, domestic animals and wildlife has attracted widespread interest in the topic of Emerging Infectious Diseases (EIDs). Marine mammals are no exception: since 1987 several mass mortalities have been observed following infection with viruses previously undescribed in the populations or species in question. As with terrestrial examples, some of these outbreaks have followed either migrations associated with large-scale ecological changes or the introduction of virus from domestic animals. However, marine mammals warrant special concern in the context of emerging infectious diseases: they typically occupy high trophic levels and can therefore be highly contaminated with immunotoxic chemicals. Persistent Organic Pollutants (POPs), including polychlorinated -biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), -dibenzofurans (PCDFs) and related compounds, are demonstrated immunotoxicants in laboratory animals, as well as marine mammals. Immunotoxic contaminants may represent a factor that facilitates disease emergence, and may lead to the creation of susceptible “reservoirs” for new pathogens in contaminated marine mammal populations. The factors underlying the emergence and exchange of pathogens among marine mammals, domestic animals, and humans demand multidisciplinary study and invite regulatory and conservation scrutiny. The complexity of this issue may be best addressed through an integrated human and ecological risk assessment framework.  相似文献   

14.
Since the 1990s, Brucella strains not matching the characteristics of any of the six conventional species have been isolated worldwide from marine mammals. In this study, 31 Brucella strains isolated from various marine mammals were examined for their oxidative metabolic pattern on 12 amino-acid and carbohydrate substrates. Three main oxidative profiles different from those of the Brucella terrestrial mammal strains were identified for the marine mammal strains: one gathering strains isolated from pinnipeds and two gathering strains from cetaceans. Thus, both oxidative metabolism results and previous molecular studies are in agreement with the proposal of two new Brucella species, Brucella pinnipediae and Brucella cetaceae, to classify the Brucella strains isolated from marine mammals, and are also in accordance with a classification of species of the Brucella genus based on host preference.  相似文献   

15.
Ecology, evolution, and historical events all contribute to biogeographic patterns, but studies that integrate them are scarce. Here we focus on how biotic exchanges of mammals during the Late Cenozoic have contributed to current geographic body size patterns. We explore differences in the environmental correlates and phylogenetic patterning of body size between groups of mammals participating and not participating in past biotic exchanges. Both the association of body size with environmental predictors and its phylogenetic signal were stronger for groups that immigrated into North or South America than for indigenous groups. This pattern, which held when extinct clades were included in the analyses, can be interpreted on the basis of the length of time that clades have had to diversify and occupy niche space. Moreover, we identify a role for historical events, such as Cenozoic migrations, in configuring contemporary mammal body size patterns and illustrate where these influences have been strongest for New World mammals.  相似文献   

16.
To investigate the constraints placed on the location and design of mammal burrows by the resident mammal's need for an adequate exchange of respiratory gases with the free atmosphere, we constructed several simple mathematical models for the steady-state diffusion of these gases in sterile burrow-soil systems. In this exchange, diffusion through the soil is of prime importance. Openings of narrow tunnels further than three body lengths from a mammal have a negligible effect on its respiratory microenvironment. Since only a short length of a narrow tunnel around the mammal is of importance in this exchange we may confine attention to design and siting criteria for a discrete chamber containing the mammal.The porosity of the soil in which a burrow chamber is sited and the volume of the burrow chamber have strong and moderate effects respectively on the rate of gas exchange between a resident mammal and the free atmosphere. The depth of the burrow chamber, beyond two chamber diameters, has only a weak effect on this transfer. Soil temperature within the thermoneutral zone of the resident mammal has a weak effect on this transfer, but below the thermoneutral zone, where temperature modifies the rate of consumption (production) of respiratory gas, the effect is strong. Concentrations of respiratory gas in the burrow chamber approach free-atmosphere values when soil porosity, soil temperature, and chamber volume increase and burrow depth decreases.Large mammals are more restricted in the design and siting of burrows than small mammals. Our models indicate that normothermic eutherian mammals with masses much in excess of 0·5 kg are precluded from an indefinite occupation of deep burrows in most field situations. In considering the limitations to our models, several avenues for expanding a mammal's respiratory space are suggested.  相似文献   

17.
Large herbivores and termites are important functional groups in African savannahs. Both groups affect small mammals, which are also important determinants for savannah structure and function. Because vegetation on Macrotermes mounds are preferentially grazed by large herbivores, and mounds represent resource-rich distinct habitat patches for small mammals in relatively resource-poor savannahs, termite mounds are ideal sites for studies of how grazing by large mammals and productivity affect communities of small mammals. We conducted an experiment in Lake Mburo National Park, Uganda, with four treatments: large vegetated Macrotermes mounds (with and without large herbivores) and adjacent savannah areas (with and without large herbivores). We replicated the treatment blocks nine times and trapped small mammals regularly over a period of almost 2 years. Small mammal species assemblages differed considerably between mounds and savannah areas. Grazing had a substantial effect on small mammal species assemblages in the resource-poor savannah, but not in the relatively resource-rich termitaria. Small mammal species abundance, biomass, and richness were higher on termite mounds than adjacent savannah areas. Excluding large herbivores caused a major increase in species abundance, biomass, and richness both on savannah and termitaria. Herbaceous plant species evenness was an important determinant of the small mammal community. Small mammal biomass increased with high plant dominance, indicating that a few dominant plant species are important for biomass production of small mammals. Small mammal diversity was not related to any of the treatments, but increased with plant species evenness as well as richness. Fencing increased species dominance in the small mammal community on both savannah and termitaria, probably because competitive patterns shift from inter-guild (that is, between large and small mammals) to intra-guild (that is, between small mammals) when large mammals are excluded. The study highlights the complex interactions among large herbivores, termites, herbaceous plants, and small mammals in African savannahs. When studying the structure and function of small mammal communities it is therefore important to consider several coexisting functional groups.  相似文献   

18.
Species assemblages in disturbed habitats vary as a function of the interaction between species requirements and the spatial configuration of the habitat. There are many reports accounting for the presence of howler monkeys in fragments where other mammals are absent, suggesting that they are more resilient. In the present study we explored this idea and predicted that if howler monkeys were more resilient to habitat loss and fragmentation than other mammals, mammal assemblages in fragments occupied by howler monkeys should include fewer species with decreasing amount of habitat (smaller fragment size and less habitat in the landscape) and increasing number of forest fragments. We explored these relationships by additionally considering the feeding and life habits of mammal species, as well as the isolation and proximity of each fragment to human settlements and roads. We sampled the presence of mammals in five fragments occupied by black howler monkeys (Alouatta pigra) in the Mexican state of Campeche. Through direct sights performed during 240 h in each fragment, we observed 23 species. At the landscape scale, higher fragmentation was associated with a decrease in herbivores, omnivores and total number of species. At the fragment scale semiarboreal, omnivore, and total number of species increased with increasing fragment size. This study supports the idea that howler monkeys are more resilient to forest loss and fragmentation than other native mammals, and our exploratory analyses suggest that the specific mammal assemblages that are found in fragments are related to both landscape and fragment scale spatial attributes, as well as with species-specific characteristics.  相似文献   

19.
Past conservation initiatives and rapidly decreasing human populations in modern Japan have contributed to population recoveries of Sika deer (Cervus nippon), wild boar (Sus scrofa), and Japanese macaque (Macaca fuscata) throughout the country. Ironically, however, these recoveries have not always received a favorable reception, because these mammals can also be agricultural pests. To open public debate on the recoveries, based on a thorough understanding of their multifaceted roles in sustaining the local ecosystem, we evaluated the initial stage ripple effects caused by the mammalian population recovery on the community assembly of dung beetles, which are keystone decomposer organisms in terrestrial ecosystems. For the evaluation, we conducted manipulative snapshot experiments, using camera and pitfall traps, for mammal and dung beetle assemblages, respectively, in four different mountain ranges within the heavy snow areas of northern Japan, where the recovery of three mammal populations was at an early stage. The current findings implied that, although the feces of every recovering mammal species could provide valuable resources for most beetles, the ripple effects from the mammal population recoveries were subject to hysteresis of the local ecosystem, i.e., catastrophic shifts in ecosystems originating from the historical background of regional mammal defaunation. In particular, the abundance of tunnelers that could benefit from positive ripple effects decreased with an increase in past disturbances, which resulted in emptier forests, i.e., an ecosystem with fewer large mammals. The findings suggested that recovering populations of large mammals do not always contribute to the restoration of the original dung beetle communities, at least initially.  相似文献   

20.
Current levels of endangerment and historical trends of species and habitats are the main criteria used to direct conservation efforts globally. Estimates of future declines, which might indicate different priorities than past declines, have been limited by the lack of appropriate data and models. Given that much of conservation is about anticipating and responding to future threats, our inability to look forward at a global scale has been a major constraint on effective action. Here, we assess the geography and extent of projected future changes in suitable habitat for terrestrial mammals within their present ranges. We used a global earth-system model, IMAGE, coupled with fine-scale habitat suitability models and parametrized according to four global scenarios of human development. We identified the most affected countries by 2050 for each scenario, assuming that no additional conservation actions other than those described in the scenarios take place. We found that, with some exceptions, most of the countries with the largest predicted losses of suitable habitat for mammals are in Africa and the Americas. African and North American countries were also predicted to host the most species with large proportional global declines. Most of the countries we identified as future hotspots of terrestrial mammal loss have little or no overlap with the present global conservation priorities, thus confirming the need for forward-looking analyses in conservation priority setting. The expected growth in human populations and consumption in hotspots of future mammal loss mean that local conservation actions such as protected areas might not be sufficient to mitigate losses. Other policies, directed towards the root causes of biodiversity loss, are required, both in Africa and other parts of the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号