首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study was undertaken to examine the localization patterns of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) by enzyme histochemistry and neuronal nitric oxide synthase (NOS) by immunohistochemistry in the vomeronasal organ of rat from postnatal day 0 for 8 weeks (adult). Nicotinamide adenine dinucleotide phosphate-diaphorase activity was not observed in the sensory epithelium of the vomeronasal organ at postnatal day 0 (the day of birth) and at day 1. At postnatal day 2, NADPH-d activity was observed in several vomeronasal neurons and on the surface of the sensory epithelium. From 25 days through adulthood, the number of vomeronasal neurons having NADPH-d activity increased gradually. On the other hand, neuronal NOS immunoreactivity was not observed in the sensory epithelium of the vomeronasal organ in newborns or in the adult rat. In this study, it is suggested that the nitric oxide pathway in the sensory epithelium of the vomeronasal organ comes into play beyond postnatal day 3. Moreover, it was found that NADPH-d and neuronal NOS are not colocalized in the sensory epithelium of the developing rat vomeronasal organ.  相似文献   

2.
Three basic types of cells are distinguished in the rat vomeronasal epithelium at birth: bipolar neurons, supporting cells, and basal cells. Neurons at this time include both immature and differentiated cells. By the end of the first postnatal week, all neurons show morphological signs of maturity in their cytoplasm, including abundant granular and smooth endoplasmic reticulum, neurotubules, dense lamellar bodies, apical centrioles, and tufts of microvilli. During the third week microvilli are more frequently encountered and appear to be longer and more branched. Supporting cells appear well-developed by the second day after birth. During the first ten days of life, supporting cells lose their centrioles and all of the complex associated with ciliary generation in the apical zone. Basal cells appear to be more numerous in newborns than in older animals. Protrusions projecting into the lumen are frequently observed in the epithelium of newborn animals, both on the dendrites of neurons and on supporting cells. After the third week, such protrusions are only observed in the transitional zone between the sensory and the non-sensory epithelia of the vomeronasal tubes. In this transitional zone, a fourth cell type showing apical protrusions with microvilli differentiates. Cytoplasm in this type resembles that of neighboring ciliated cells but has no cilia or centrioles. These transitional cells are considered to be cells in an intermediate state of differentiation, between that of the differentiated neurons and supporting cells of the sensory epithelium and that of the predominate ciliated cells of the non-sensory epithelium. The results suggest that by the end of the third week the vomeronasal epithelium is morphologically mature.  相似文献   

3.
The vomeronasal organ (VNO) of the mammal nose is specialized to detect pheromones. The presumed site of the chemosensory signal transduction of pheromones is the vomeronasal brush border of the VNO sensory epithelium, which has been shown to contain two different sets of microvilli: (i) the tall microvilli of supporting cells and (ii) the short microvilli of the chemoreceptive VNO neurons that branch and intermingle with the basal portions of the longer supporting cell microvilli. A key problem when studying the subcellular distribution of possible VNO signal transduction molecules at the light microscope level is the clear discrimination of immunosignals derived from dendritic microvilli of the VNO neurons and surrounding supporting cell structures. In the present study we therefore looked for cytoskeletal marker proteins, that might help to distinguish at the light microscope level between the two sets of microvilli. By immunostaining we found that the VNO dendritic microvilli can be selectively labelled with antibodies to the calcium-sensitive actin filament-bundling protein villin, whereas supporting cell microvilli contain the actin filament cross-linking protein fimbrin, but not villin. Useful cytoplasmic marker molecules for cellular discrimination were cytokeratin 18 for supporting cells and β-tubulin for dendrites of VNO neurons. A further finding was that the non-sensory epithelium of the rat VNO contains brush cells, a cell type that appears to be involved in certain aspects of chemoreception in the gut. Brush cells or other structures of the vomeronasal brush border did not contain α-gustducin.  相似文献   

4.
The vomeronasal organ consists of receptor cells of microvillous type, supporting and basal cells. According to their ultrastructural organization the microvillar cells are analogous to those in the main olfactory organ in the pig and have all signs of the receptor cell: microvilli at the top and centrioles in cytoplasm, as well as the central process getting off the cell body. Both in the pig and in the sheep the supporting cells contain in their apical region a number of basal bodies with cilia, getting them off. In the receptor zones of epithelium albuminous glands predominate, in the respiratory zones--mucous ones. A great amount of liquid mucus, excreted on the surface of the epithelium by numerous glands and supporting cells, apparently, facilitates adsorption and desorption of odorous molecules from the receptor cells after their stimulation. The cilia of the supporting cells probably from the stream of the vomeronasal mucus. The cartilagenous torus epithelium of the vomeronasal organ of the pig and sheep has in general a similar structural organization. This demonstrates general for Vertebrata receptor mechanisms of odorous substances, evidently connected with perception of feramones or contact olfaction.  相似文献   

5.
The squamates are composed of many taxa, among which there is morphological variation in the vomeronasal organ (VNO). To elucidate the evolution of chemoreception in squamate reptiles, morphological data from the VNO from a variety of squamate species is required. In this study, the morphology of the VNO of the grass lizard Takydromus tachydromoides was examined using light and electron microscopy. The VNO consists of a pair of dome-shaped structures, which communicate with the oral cavity. There are no associated glandular structures. Microvilli are present on the apical surfaces of receptor cells in its sensory epithelium, as well as on supporting cells, and there are centrioles and ciliary precursor bodies on the dendrites. In addition to ciliated cells and basal cells in the non-sensory epithelium, there is a novel type of non-ciliated cell in T. tachydromoides. They have constricted apical cytoplasm and microvilli instead of cilia, and are sparsely distributed in the epithelium. Based on these results, the variation in the morphology of the VNO in scincomorpha, a representative squamate taxon, is discussed.  相似文献   

6.
This study examined the gross morphology and ultrastructure of the olfactory organ of larvae, neotenic adults, and terrestrial adults of the Coastal Giant Salamander (Dicamptodon tenebrosus). The olfactory organ of all aquatic animals (larvae and neotenes) is similar in structure, forming a tube extending from the external naris to the choana. A nonsensory vestibule leads into the main olfactory cavity. The epithelium of the main olfactory cavity is thrown into a series of transverse valleys and ridges, with at least six dorsal and nine ventral valleys lined with olfactory epithelium, and separated by ridges of respiratory epithelium. The ridges enlarge with growth, forming large flaps extending into the lumen in neotenes. The vomeronasal organ is a diverticulum off the ventrolateral side of the main olfactory cavity. In terrestrial animals, by contrast, the vestibule has been lost. The main olfactory cavity has become much broader and dorsoventrally compressed. The prominent transverse ridges are lost, although small diagonal ridges of respiratory epithelium are found in the lateral region of the ventral olfactory epithelium. The posterior and posteromedial wall of the main olfactory cavity is composed of respiratory epithelium, in contrast to the olfactory epithelium found here in aquatic forms. The vomeronasal organ remains similar to that in large larvae, but is now connected to the mouth by a groove that extends back through the choana onto the palate. Bowman's glands are present in the main olfactory cavity at all stages, but are most abundant and best developed in terrestrial adults. They are lacking in the lateral olfactory epithelium of the main olfactory cavity. At the ultrastructural level, in aquatic animals receptor cells of the main olfactory cavity can have cilia, short microvilli, a mix of the two, or long microvilli. Supporting cells are of two types: secretory supporting cells with small, electron-dense secretory granules, and ciliated supporting cells. Receptor cells of the vomeronasal organ are exclusively microvillar, but supporting cells are secretory or ciliated, as in the main olfactory cavity. After metamorphosis two distinct types of sensory epithelium occur in the main olfactory cavity. The predominant epithelium, covering most of the roof and the medial part of the floor, is characterized by supporting cells with large, electron-lucent vesicles. The epithelium on the lateral floor of the main olfactory cavity, by contrast, resembles that of aquatic animals. Both types have both microvillar and ciliated receptor cells. No important changes are noted in cell types of the vomeronasal organ after metamorphosis. A literature survey suggests that some features of the metamorphic changes described here are characteristic of all salamanders, while others appear unique to D. tenebrosus.  相似文献   

7.
Specific immunohistochemical staining for the olfactory marker protein (OMP) is first demonstrated in rat olfactory receptor neurons at embryonic day 18, at which age no OMP can be seen in the olfactory bulb or vomeronasal epithelium. At 21 days OMP staining in the olfactory epithelium is more extensive and is evident in the fibrous and glomerular layers of the bulb as well. Staining intensity increases progressively until the full adult pattern is seen by 1 month postnatally. In the vomeronasal organ, staining is not observed until the fourth postnatal day and, even then, only with higher antiserum concentrations. In mice, very similar results are obtained, except for a much earlier appearance of OMP, on embryonic day 14. Olfactory epithelium from 12- and 13-day rat embryos maintained in organ culture for up to 2 weeks did not exhibit OMP staining, nor did several neural or nonneural tissues from adult animals. The temporal and causal interrelationships between OMP and other indicators of olfactory receptor cell maturation are considered.  相似文献   

8.
啮齿动物的犁鼻器和副嗅球与社会通讯和生殖行为有关,主嗅球影响其觅食行为。达乌尔黄鼠(Spermophilus dauricus)是一种具有较低社会行为的储脂类冬眠动物。本研究用组织学和免疫组织化学方法探究了其犁鼻器和副嗅球的结构特点及嗅球神经元活动对季节变化的适应。结果发现,达乌尔黄鼠犁鼻器具有较大的血管,犁鼻器管腔外侧为非感觉性的呼吸上皮(Respiratory epithelium,RE),内侧为感觉上皮(Sensory epithelium,SE),RE较SE薄,靠近管腔处为假复层柱状上皮。选取犁鼻器中间部位比较,发现SE的厚度、长度及感觉细胞密度均无性别差异。副嗅球位于主嗅球后方背内侧,由6层细胞构成。侧嗅束穿过副嗅球,位于颗粒细胞层之上。雄性达乌尔黄鼠较雌性有更长的僧帽细胞层和颗粒细胞层。春季(3月)和冬季(1月)达乌尔黄鼠主嗅球的嗅小球层、僧帽细胞层和颗粒细胞层的c-Fos-ir神经元密度显著低于夏季(7月)和秋季(10月),且冬季外网织层的c-Fos-ir神经元密度显著低于夏季和秋季,说明达乌尔黄鼠在冬季和春季的嗅觉神经活动较弱,呈现出对冬眠的生理性适应。这些结果丰富了动物犁鼻器和副嗅球的形态学资料,并有助于理解冬眠动物嗅觉系统对季节变化和冬眠的适应。  相似文献   

9.
The vomeronasal organ comprises a pair of narrow tubes in the mammalian nasal septum, serving as a chemosensory system for pheromones. We examined the expression and localization of water channel aquaporins (AQPs) in the rat vomeronasal organ. AQP1 was localized in blood vessels, being particularly abundant in cavernous tissues of the nonsensory mucosa. AQP5 was found in the apical membrane of the gland acinar cells in the vomeronasal organ. AQP3 was detected in the basal cells of the nonsensory epithelium, whereas it was absent in the sensory epithelium. AQP4 was found in both the sensory and the nonsensory epithelia. Interestingly, AQP4 was highly concentrated in the sensory cells of the sensory epithelium. Immunoelectron microscopic examination clearly showed that AQP4 was localized at the plasma membrane in the cell body and lateral membrane of the dendrite, except for the microvillous apical membrane. Nerve fiber bundles emanating from neuronal sensory cells were positive for AQP4, whereby the plasma membrane of each axon was positive for AQP4. These observations clearly show that neuronal sensory cells in the vomeronasal organ are unique in that they express abundant AQP4 at their plasma membrane. This is in marked contrast to the olfactory and central nervous systems, where AQPs are not detectable in neurons, and instead, AQP4 is abundant in the supporting cells and astrocytes surrounding them. The present findings suggest a unique water-handling feature in neuronal sensory cells in the vomeronasal organ.  相似文献   

10.
Summary Sections from the nasal cavity of 12-day-old Swiss albino mice (NMRI strain) were subjected to lectin histochemistry. A panel of biotinylated lectins (Con A, WGA, s-WGA, PNA, SBA, DBA and UEA I) and a horseradish peroxidase-conjugated lectin (GSA II) showed marked differences in binding to the respiratory and the neuroepithelial cells. SBA (affinity for galactose andN-acetylgalactosamine), PNA (galactose) and WGA (sialic acids andN-acetylglucosamine) labelled the receptor neurons in the olfactory and vomeronasal epithelium. DBA (N-acetylgalactosamine) labelled a subgroup of about 5% of the olfactory receptor neurons, but most neurons in the vomeronasal organ. UEA I (fucose) and s-WGA (N-acetylglucosamine) intensely labelled the entire nerve cell population in the vomeronasal organ, but in the olfactory epithelium the labelling with these lectins was stratified. In the respiratory epithelium the ciliated cells were labelled with WGA and s-WGA, while the secretory cells bound most of the lectins. Thus different sugars are exposed on the surface of the different types of epithelia in the nasal cavity, providing a basis for selectivity in microbial attacks on these areas.  相似文献   

11.
Summary The apical cell coat of the olfactory epithelium proper and the vomeronasal neuroepithelium of the rat was investigated electronmicroscopically by means of the Ruthenium-red reaction. In the olfactory epithelium proper, the cilia of receptor cells and microvilli of supporting cells possess a cell coat measuring approximately 10 nm in thickness. In the vomeronasal neuroepithelium, the apical cell coat is thicker than in the olfactory epithelium proper. On microvilli of vomeronasal receptor cells the cell coat varies in thickness from 15 to 20 nm, and on microvilli of supporting cells it measures approximately 75 nm. The functional implications of these findings are discussed.A portion of this study was presented at the 6th European Anatomical Congress in Hamburg. This publication is dedicated to Prof. E. KlikaSupported by the Deutsche Forschungsgemeinschaft (Br 358/5-1).  相似文献   

12.
Summary The vestibulum is very short and lined by stratified squamous epithelium which contains many alveolar cells. The cavum nasi proprium is exceedingly complex, with three conchal formations and a series of six recesses and sinuses. Olfactory epithelium lines the whole dorsal or dorso-medial half of the cavum, but not the deep sinuses. Non sensory respiratory epithelium lines the ventral or ventro-lateral half of the cavum, all the caviconchal recess, the posterolateral recess, the postturbinal sinus, the postconchal cavity, and the nasopharyngeal duct. In olfactory epithelium the proportion of sensory cells is about 61 % inCrocodylus and 59 % inCaiman; the ratio of sensory cells to supporting cells is about 2.6/1 in the former and 1.8/1 in the latter. Bowman's glands are sero-mucous and normally developed. As in other reptiles, the respiratory epithelium is composed with mucous and ciliated cells; but, in ventrolateral part of the cavum, there are also sero-mucous cells forming small multicellular glands. The hypertrophied lachrymal duct constitutes a very large naso-lachrymal not previously described gland. The lumen is lined by mucous and ciliated cells, the collet of each branched tubular gland by mucous cells and the glandular tubes by sero-mucous cells. Adult crocodilians lack a Jacobson's organ and there are no vomeronasal sensory epithelium in the cavum.In reptiles, aquatic way of life generally involves regression in olfactory epithelium, while Jacobson's organ (or, in Testudines, vomeronasal epithelium) persists and occasionally increases. In crocodilians, things are exactly reverse. After comparing with other Tetrapods, it seems likely that Jacobson's organ has been lost by terrestrial ancestor of crocodilians and birds. Now, only crocodilians posses olfactory epithelium, and naso-lachrymal gland gives them a supplementary protection, necessary in semiaquatic environment.  相似文献   

13.
Immunohistochemical properties of monoclonal antibodies raised against the rat vomeronasal epithelium were examined in adult rats. Three monoclonal antibodies, VOBM1, VOBM2, and VOM2, reacted specifically to the luminal surface of the sensory epithelium of the vomeronasal organ. In addition, the reactivities of VOBM1 and VOBM2 were detected in the vomeronasal nerve layer and the glomerular layer of the accessory olfactory bulb. Electron-microscopic study revealed differential patterns of the immunoreactivity of the three antibodies to the microvilli of vomeronasal sensory epithelium. VOBM1 immunoreactivity was found on the microvilli of the supporting cells, whereas VOBM2 immunoreactivity was found on those of the sensory cells. VOM2 immunoreactivity was observed on the microvilli of both the sensory and supporting cells. These results suggest that the three antibodies recognize different antigens on the vomeronasal sensory epithelium. In particular, VOBM2 antibody appears to react to an antigen specific to the microvilli of the vomeronasal sensory cells.  相似文献   

14.
15.
Cells infiltrating the nonsensory epithelium of the vomeronasal organ of virus-antibody-free rats exhibited surface immunoreactivity for 2-microglobulin and immunoglobulin (Ig) E. They were further characterized by using immunohistochemical techniques with antibodies to cell-specific markers or histochemical techniques for immunocytes with surface receptors for IgE. Localization of intracellular granules immunoreactive for lactoferrin and CD18, a leukocyte adhesion molecule, unequivocally identified these cells as neutrophils. The low number of IgA-and IgG-immunoreactive B lymphocytes, T lymphocytes, and accessory immunocytes in the vomeronasal organ as well as the rest of the nasal cavity confirmed the absence of infection. We hypothesize that the operation of the vomeronasal pump induces repeated episodes of transient focal ischemia followed by reperfusion, which results in release of neutrophil chemoattractants and modulation of adhesion factors that regulate the extravasation and migration of neutrophils into the nonsensory epithelium. The distribution of immunoreactivity for interleukin 8 suggests that it is not the primary neutrophil chemoattractant in this system while that of CD18 suggests its active involvement in neutrophil extravasation. In addition to their role in immune surveillance, neutrophils may stimulate ion/water secretion into the vomeronasal lumen, affecting the perireceptor processes regulating stimulus access and clearance from the sensory epithelium.  相似文献   

16.
Summary The free surfaces and cell contacts in the epithelia of the vomeronasal organ of the rat were investigated by freeze-etching. The microvilli of receptor cells show a lower density of intramembranous particles (IMP) than the microvilli in the receptor-free epithelium. The ratio between the IMP on P and E-face is approximately 111 in the receptor terminals, and 3.51 in the cilia and microvilli of the receptor-free epithelium. Although atypical in length and only poorly equipped with rootlet fibers, the cilia of the receptor-free epithelium are furnished with typical ciliary necklace structures of up to 10 rows of membrane particles. Differences in the density of IMP on the P-faces of different cilia are probably due to continual ciliogenesis and also due to the different age of cilia in the receptor-free epithelium. Zonulae occludentes show different configurations in the neuroepithelium and in the receptor-free epithelium. In the former, they show a tendency to cross-link and form facet-like patterns, reflecting a constant morphology and relative stability for this apical region. In the receptor-free epithelium the junctional rows of zonulae occludentes display only loosely interconnected networks and a tendency to orient parallel to each other and to the free surface. In addition to zonulae occludentes, typical square aggregations of IMP are observed in the receptor-free epithelium. They are not exclusively restricted to the zone of intensive cell contacts by means of fine interdigitating cell processes, and their function has yet to be identified experimentally.This paper is dedicated to Dr. David G. MoultonPortions of this work are from a thesis in preparation by F.M. Supported by the Deutsche Forschungsgemeinschaft (SFB 114)  相似文献   

17.
In mammals, olfactory sensory perception is mediated by two anatomically and functionally distinct sensory organs: the main olfactory epithelium (MOE) and the vomeronasal organ (VNO). Pheromones activate the VNO and elicit a characteristic array of innate reproductive and social behaviors, along with dramatic neuroendocrine responses. Recent approaches have provided new insights into the molecular biology of sensory transduction in the vomeronasal organ. Differential screening of cDNA libraries constructed from single sensory neurons from the rat VNO has led to the isolation of a family of genes which are likely to encode mammalian pheromone receptors. The isolation of these receptors from the vomeronasal organ might permit the analysis of the molecular events which translate the bindings of pheromones into innate stereotypic behaviors and help to elucidate the logic of pheromone perception in mammals.  相似文献   

18.
19.
The vomeronasal organ (VNO) is a chemosensory organ specialized in the detection of pheromones in higher vertebrates. In mouse and rat, two gene superfamilies, V1r and V2r vomeronasal receptor genes, are expressed in sensory neurons whose cell bodies are located in, respectively, the apical and basal layers of the VNO epithelium. Here, we report that neurons of the basal layer express another multigene family, termed H2-Mv, representing nonclassical class I genes of the major histocompatibility complex. The nine H2-Mv genes are expressed differentially in subsets of neurons. More than one H2-Mv gene can be expressed in an individual neuron. In situ hybridization with probes for H2-Mv and V2r genes reveals complex and nonrandom combinations of coexpression. While neural expression of Mhc class I molecules is increasingly being appreciated, the H2-Mv family is distinguished by variegated expression across seemingly similar neurons and coexpression with a distinct multigene family encoding neural receptors. Our findings suggest that basal vomeronasal sensory neurons may consist of multiple lineages or compartments, defined by particular combinations of V2r and H2-Mv gene expression.  相似文献   

20.
Salamanders in the family Plethodontidae show a unique behavior (nose-tapping) and have unique structures (nasolabial grooves) that may be used specifically to convey chemicals to the vomeronasal organ. The nasal structure of Plethodon cinereus was studied to determine if there is enhanced development of the vomeronasal organ compared with other salamander families that would correlate with use of these unique features. The vomeronasal organ in salamanders is found in a ventrolateral diverticulum of each main olfactory organ. P. cinereus has a more anteriorly placed vomeronasal organ within the diverticulum, and the posterior limit of each nasolabial groove is adjacent to the anterior limit of the vomeronasal organs. This suggests that the grooves deliver chemicals preferentially to the vomeronasal organs instead of to the main olfactory organs. In addition, the vomeronasal sensory epithelium is thickest anteriorly and is at its thinnest at about the level corresponding to the location of the vomeronasal organ in other salamander families. These adaptations suggest a specific mechanism of odorant delivery to the vomeronasal organ in plethodontid salamanders not found in other salamander families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号