首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant E. coli plasmids are known to be obtained from E. coli cells using the plasmids coding EcoR1 restriction endonuclease. These plasmids were shown to possess various chromosomal or plasmid genes. The paper presents data on the construction of conjugative recombinant plasmid pSA1002, capable of conjugate transfer into V. cholerae cells. The stable maintenance and inheritance of the plasmid in V. cholerae cells have been demonstrated as well as phenotypic expression of its genes, including EcoR1 restriction endonuclease genes. The possibility of recombinant plasmids formation in V. cholerae cells dependent on EcoR1 restriction endonuclease, coded by pSA1002, is discussed.  相似文献   

2.
Phage Mu-1 and a thermoinducible derivative, Mu-1 cts 62 were inserted into the broad host range R factor RP4. These hybrid plasmids were transferred by conjugation to a phytopathogenic bacterium Pseudomonas solanacearum GMI 1000 and a legume-root nodule bacterium Rhizobium meliloti 2011. The Mu genome is transcribed and tranlated in these new hosts: P. solanacearum (RP4:Mu cts) cultures have a spontaneous production of about 5 X 10(5) plaque-forming units ml-1 which is similar to the frequency of spontaneous Mu production in E. coli; the Mu production of R. meliloti is lower (about 10(2) plaque-forming units ml-1).  相似文献   

3.
NIH 3T3 cells were transfected with plasmids containing Moloney murine leukemia virus long terminal repeats and either chicken c-src or v-src genes. In contrast with the effects observed after transfection with plasmids containing c-src and avian retrovirus or simian virus 40 promoter-enhancers (H. Hanafusa, H. Iba, T. Takeya, and F. R. Cross, p. 1-8, in G. F. Vande Woude, A. J. Levine, W. C. Topp, and J. D. Watson, ed., Cancer Cells, vol. 2, 1984; H. Iba, T. Takeya, F. R. Cross, T. Hanafusa, and H. Hanafusa, Proc. Natl. Acad. Sci. U.S.A. 81:4424-4428, 1984; R. C. Parker, R. Swanstrom, H. E. Varmus, and J. M. Bishop, p. 19-26, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984; R. C. Parker, H. E. Varmus, and J. M. Bishop, Cell 37:131-139, 1984; D. Shalloway, P. M. Coussens, and P. Yaciuk, p. 9-17, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984; D. Shalloway, P. M. Coussens, and P. Yaciuk, Proc. Natl. Acad. Sci. U.S.A. 81:7071-7075; and K. C. Wilhelmsen, W. G. Tarpley, and H. M. Temin, p. 303-308, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984), we found that both types of Moloney murine leukemia virus long terminal repeat-src expression plasmids induced focus formation, although c-src induced only 1% as many foci as v-src. The focus-selected c-src overexpressed cells had altered morphology and limited growth in soft agarose but were not tumorigenic in vivo. Cleveland digests, comparative in vitro kinase assays, secondary transfections, and immunoprecipitations indicated that focus formation was caused by rare transfection events that resulted in very high-level pp60c-src expression rather than by mutations of the transfected c-src genes. These results suggest that pp60v-src induced transformation is not a completely spurious activity which is unrelated to the function of pp60c-src but that it represents a perturbation of already existent molecular control processes involving pp60c-src.  相似文献   

4.
Tumor-associated aldehyde dehydrogenase (T-ALDH) is strongly expressed in hepatocellular carcinoma (HCC) but undetectable in normal liver. In the present study, this enzyme from human HCC, HCC T-ALDH, was purified and the partial amino acid sequences (384 residues) determined by direct protein sequencing matched the amino acid sequence (453 residues) deduced from cloned HCC T-ALDH cDNAs with an open reading frame. The coding sequences of HCC T-ALDH cDNA, human stomach ALDH3A1 cDNA [Hsu et al., J. Biol. Chem. 267 (1992) 3030-3037] and human squamous cell carcinoma (SCC) T-ALDH cDNA (Schuuring et al., GenBank I.D. M74542) matched one another except for discrepancies at four positions, with consequent P12R, I27F and S134A substitutions. R and A were found in HCC and SCC T-ALDHs, whereas P and S were present in stomach ALDH3A1. To confirm that these discrepancies would have general occurrence, coding sequences of HCC T-ALDH cDNAs from six patients and stomach ALDH3A1 cDNAs from two individuals were examined and all were found to encode ALDH3A1 having R, I and A at protein positions 12, 27 and 134, respectively, indicating HCC T-ALDH to be variant ALDH3A1 which is common in human stomach tissues.  相似文献   

5.
The results of genetic studies of R6K Tra1- and R6Kdelta[Sm1] mutants of R6K plasmid and those of heteroduplex analysis of DNAs have shown that DNA of this drug-resistant factor contains three loops flanked by the inverted repeats. The latter are designated as IR1, IR2 and IR3 and are of 50, 100 and 120 nucleotides in size respectively. IR1 is inserted into the loop flanked by IR2. Loops with these two repeats are located in major EcoR1 fragment, IR3 having been found in minor EcoRI fragment of the plasmid. The evidence obtained from the analysis of heteroduplex R6K/RSF2124 has shown that the loop with IR1 is corresponding to transposon Tn3. The extent of the deletion deltaSm1 indicates that IR2 may be a part of a transposon bearing the resistance to streptomycin. By comparing present data with those obtaine from the analysis of the RSF1040 factor of DNA replication initiation sites (Grosa et al., 1976), it has been suggested that the loop with IR3 represents a transposon with replicative functions (TnRep). The deletion of the mutant plasmid R6Kdelta[Sm1] (7.2 . 10(6) daltons in size) which affected one of the EcoRI sites not only confers the sensitivity to streptomycin but enhances also the efficiency of conjugational transfer and results in the loss of the R6K ability to bring about integrative suppression and to inhibit the fertility of the plasmids from IncP and IncN groups. The deletion mutant proved to have lost the property of incompatibility with the initial plasmid R6K and with itself.  相似文献   

6.
Gene structure and nucleotide sequence for rat cytochrome P-450c   总被引:2,自引:0,他引:2  
Two clones from rat genomic libraries that contain the entire gene for rat cytochrome P-450c have been isolated. lambda MC4, the first clone isolated from an EcoR1 library, contained a 14-kb insert. A single 5.5-kb EcoR1 fragment from lambda MC4, the EcoR1 A fragment, hybridized to a partial cDNA clone for the 3' end of the cytochrome P-450c mRNA. This fragment was sequenced using the dideoxynucleotide chain termination methodology with recombinant M13 bacteriophage templates. Comparison of this sequence with the complete cDNA sequence of cytochrome P-450MC [Yabusaki et al. (1984) Nucleic. Acids Res. 12, 2929-2938] revealed that the EcoR1 A fragment contained the entire cytochrome P-450c gene with the exception of a 90-bp leader sequence. The gene sequence is in perfect agreement with the cDNA sequence except for two bases in exon 2. A second genomic clone, lambda MC10, which was isolated from a HaeIII library, contains the missing leading sequence as well as 5' regulatory sequences. The entire gene is about 6.1 kb in length with seven exons separated by six introns, all of the intron/exon junctions being defined by GT/AG. Amino- and carboxy-terminal information are contained in exons 2 and 7, respectively. These exons contain the highly conserved DNA sequences that have been observed in other cytochrome P-450 species. Potential regulatory sequences have been located both 5' to the gene as well as within intron I. A comparison of the coding information for cytochrome P-450c with the sequence of murine cytochrome P3-450 and rat cytochrome P-450d revealed a 70% homology in both the DNA and amino acid sequence, suggesting a common ancestral gene. Genomic blot analyses of rat DNA indicated that the 3-methylcholanthrene-inducible family of cytochrome P-450 isozymes is more limited in number compared to the phenobarbital-inducible isozymes. Cross-hybridization studies with human DNA suggest a high degree of conservation between rat cytochrome P-450c and its human homolog although gross structural differences do exist between the two genes.  相似文献   

7.
为了表达丝状支原体丝状亚种SC型(MmmSC)中国分离株HVRIⅩ脂蛋白Q(LppQ)N末端基因,将该基因经PCR扩增后克隆至原核表达载体pET32a中,经酶切、PCR、测序证实获得了重组表达质粒,转化Escherichia coliBL21(DE3)菌,经IPTG诱导后获得可溶性融合蛋白,表达量占菌体总蛋白的53.7%,用Ni-NTAHis.Bind纯化试剂盒纯化后,蛋白纯度达95%以上。表达蛋白经Western blot检测其抗原活性,结果表明纯化蛋白可与CBPP标准阳性血清发生强烈的反应,而与阴性血清不发生反应。  相似文献   

8.
9.
R404 plasmid aggregate is composed of two conjugative and two nonconjugative plasmids. Plasmid aggregate reconstructed from separated plasmids had the same genetic properties as the original R404 plasmid aggregate. It was found that plasmids of R404 factor could be transferred in conjugation in twelve different sets. These twelve genetically distinct classes of transconjugants formed only six groups differing in phenotypic characters.  相似文献   

10.
The thymidine kinase (TK) gene of HSV-1 has been cloned in Escherichia coli K12 plasmids, pMH1, pMH1A, and pMH4. These plasmids contain a 1,92Obp HSV-1 TK DNA sequence, which replaces a 2,067 bp EcoR I to Pvu II sequence of plasmid pBR322 DNA. Superhelical DNAs of plasmids pMH1, pMH1A, and pMH4 as well as plasmid DNAs cleaved by EcoR I, Hinc II, Bg1 II, Sma I, and Pvu II transformed TK-deficient LM(TK-) cells to the TK+ phenotype. A 1,230bp EcoR I-Sma I fragment purified from pMH1 DNA (and from plasmid pAGO, DNA, the parent of pMH1) also transformed LM(TK-) cells. Serological and disc PAGE studies demonstrated that the TK activity expressed in biochemically transformed cells were HSV-1-specific. The experiments suggest that the HSV-1 TK coding region may be contained within a l.1kbp DNA sequence extending from about the Hinc II (or Bgl II) cleavage site to the Sma I site. 35S-methionine labeling experiments carried out on cell lines transformed by Hinc II-cleaved pMH1 DNA and by the EcoR I-Sma I fragment showed that the TKs purified from the transformed cells consisted of about 39-40,000 dalton polypeptides.  相似文献   

11.
Insertion sequence (IS) regions have been identified previously as a cause of strongly polar mutations in Escherichia coli and several bacteriophages. The present experiments indicate that genetically characterized IS regions occur on bacterial plasmid deoxyribonucleic acid (DNA) as both direct and inverted DNA sequence duplications. The DNA insertion which has been shown previously (Sharp et al., 1973) to control expression of tetracycline resistance in the R6-5 plasmid, and which occurs as directly and inversely repeated DNA sequences adjacent to the region believed to contain the tetracycline resistance gene, has been identified as IS3. A second genetically characterized insertion sequence (IS1) has been identified as a direct DNA duplication occurring at both junctions of the resistance transfer factor and R-determinant components of R6-5 and related plasmids. A model is presented for the reversible dissociation of resistance transfer factor and R-determinant components of co-integrate R plasmids at the sites of DNA sequence homology provided by the repeated IS regions.  相似文献   

12.
The isolation of the two hybrid plasmids 56H8 and 132E3, which contain D. melanogaster (Dm) DNA sequences complementary to the mRNA coding for the 70,000 dalton heat shock protein, has been reported (Schedl et al., 1978). Here we compare the sequence arrangement in the two cloned Dm DNA segments by restriction, cross-hybridization and heteroduplex analysis. The results show that the two cloned DNA segments derive from nonoverlapping regions of the Dm genome; that they contain homologous regions present once in 56H8 and twice in 132E3; and that each homologous region is composed of three distinct contiguous sequence elements, x, y and z, which together define a 3 kb common unit. While the 2.5 kb z elements show a high degree of sequence homology in all three common units, the three x and y elements display an intriguing relationship. The localization of the mRNA coding sequences within each of these common units is presented in the accompanying paper (Artavanis-Tsakonas et al., 1979).  相似文献   

13.
The specifities of restriction of bacteriophages P1 and lambda controlled by R plasmids in Escherichia coli have been investigated. The isogenic strains harbouring the plasmids pAS26 coding for restriction endonuclease R.EcoRI, R245 coding for restriction endonuclease R.EcoRII and and R124 have been investigated in the present work. Modification-restriction controlled by R124 has been found to differ in specificity from those controlled by R245 and pAS26. Frequencies of restriction of bacteriophages P1vir and lambdavir specified by R124 pasmid differ from the frequencies in the strains harbouring pAS26 and R245 plasmids as well. The difference is due to the specifity of restriction-modification controlled by R124 plasmid. The data obtained are consistent with the determination of R124 specified restriction-modification activity as a novel one designated R.EcoRIII.  相似文献   

14.
采用异硫氰酸胍(GuSCN)和硅藻从B95-8细胞中快速抽摸板DNA。根据EB病毒(EBV)B95-8株DNA全序列及编码EBV胸苷激酶(TK)的开放读框BXLF1的结构,设计合成一对引物,并在引物的5′一端分别引入EcoRI和PstI切点,用PCR技术扩增出一含完整的EBVTK基因的1.843KbDNA片段,NcoI酶切分析鉴定,EcoRI/PstI双酶切PCR产物和载体,使目的基因定向克隆至选  相似文献   

15.
A bovine papillomavirus (BPV) type 1-encoded function (M) which is a negative regulator of viral plasmid replication has been described elsewhere (Berg et al. Cell, in press; Roberts and Weintraub, Cell, in press). We report here that expression of M, which is a repressor of transient BPV replication and is not required as a positive factor in these assays, is required for the establishment of the viral genome as a stable nuclear plasmid. This function is encoded in part by the 5' portion of the BPV E1 open reading frame, whereas the 3' part of this open reading frame encodes a positive replication function (R). The R function is required for early replication events. We used transient replication assays to define the phenotypes of mutants in both the R and M genes and complementation tests to show that R and M define two separate genes. We showed that R- and M- mutants could also complement each other in stable assays. In cotransfection experiments, M- mutants had a lethal effect on the growth of G418-resistant colonies, and in addition their morphological transformation efficiencies were reduced. The rare colonies which did appear contained the mutant DNA integrated into the cellular genome. R- mutants transformed with wild-type efficiency, and the mutant DNA was also found integrated. When cotransfected, R- and M- mutants could each be established as unrearranged plasmids.  相似文献   

16.
We have previously described the isolation and characterization of genomic clones corresponding to the mouse alpha 1-antitrypsin gene (Krauter et al., DNA 5:29-36, 1986). In this report, we have analyzed the DNA sequences upstream of the RNA start site that direct hepatoma cell-specific expression of this gene when incorporated into recombinant plasmids. The 160 nucleotides 5' to the cap site direct low-level expression in hepatoma cells, and sequences between -520 and -160 bp upstream of the RNA start site functioned as a cell-specific enhancer of expression both with the alpha 1-antitrypsin promoter and when combined with a functional beta-globin promoter. Within the enhancer region, three binding sites for proteins present in hepatoma nuclear extracts were identified. The location of each site was positioned, using both methylation protection and methylation interference experiments. Each protein-binding site correlated with a functionally important region necessary for full enhancer activity. These experiments demonstrated a complex arrangement of regulatory elements comprising the alpha 1-antitrypsin enhancer. Significant qualitative differences exist between the findings presented here and the cis-acting elements operative in regulating expression of the human alpha 1-antitrypsin gene (Ciliberto et al., Cell 41:531-540, 1985; De Simone et al., EMBO J. 6:2759-2766, 1987).  相似文献   

17.
I. Silva Pereira  F. Bey  O. Coux  K. Scherrer 《Gene》1992,120(2):235-242
Screening of a λgt11 cDNA expression library of the HeLa cell genome with a monoclonal antibody that specifically recognizes prosomal 30-33-kDa proteins, allowed isolation of a 1264-nucleotide (nt) recombinant cDNA containing a 327-nt untranslated 5'-end. The amino acid (aa) sequence deduced from this cDNA revealed a protein of 269 aa (Mr of 30 227) that includes a consensus box characteristic for Tyr phosphorylation, also observed in other prosomal proteins. Comparison with another prosomal 27-kDa protein, cloned in our laboratory, indicated the presence of three prosomespecific homology boxes observed in these proteins from archaebacteria to man. Interestingly, except for the untranslated 5'-end, as well as the sequence coding for the N-terminal six aa, this cDNA is identical to two recently published cDNAs encoding subunit C2 of human liver proteasome [Tamura et al., Biochim. Biophys. Acta 1089 (1991) 95–102] and subunit NU of human erythrocyte macropain [DeMartino et al., Biochim. Biophys. Acta 1079 (1991) 29–38]. Primer extension and Northern blot analysis using two specific 18-mer oligodeoxyribonucleotides indicated the presence of two mRNAs that have divergent 5'-ends. These results, as confirmed by the polymerase chain reaction, establish the existence of two distinct Hs PROS-30 mRNAs, differing in their 5'-noncoding regions and in the N-terminal six aa of their protein products.  相似文献   

18.
We have previously constructed and selected six recombinant plasmids containing cDNA sequences specific for different ribosomal proteins of Xenopus laevis (Bozzoni et al., 1981). DNA cloned in these plasmids have been isolated and sequenced. Amino acid sequences of the corresponding portions of the proteins have been derived from DNA sequences; they are arginine- and lysine-rich as expected for ribosomal proteins. One of the cDNA sequences has an open reading frame also on the strand complementary to the one coding for the ribosomal protein; this fragment has inverted repeats twenty nucleotides long at the two ends. The codon usage for the six sequences appears to be non-random with some differences among the ribosomal proteins analysed.  相似文献   

19.
To determine the P3 region protein-processing sites cleaved by the hepatitis A virus 3C protease, a nested set of constructs containing a portion of 3A (3A* [the asterisk denotes an incomplete protein]), 3B and 3C and various amounts of 3D, fused in frame to Escherichia coli TrpE-coding sequences under control of the tryptophan promoter, was made. Additional plasmids that encoded a portion of 2C (2C*) and the P3 proteins, including complete or incomplete 3D sequences, were constructed. After induction, E. coli containing these recombinant plasmids produced high levels of fusion proteins as insoluble aggregates. 3C-mediated cleavage products were identified by comparison of expression with a matching set of plasmids, containing an engineered mutation in 3C. Cleavage products were detected by immunoblot analyses by using antisera against the TrpE protein, against 3D*, and against 3CD*. Scissile bonds were determined by N-terminal amino acid sequencing of the proteins formed by cleavage. The results showed that when a portion of 2C was present, the primary cleavage by the 3C protease was between 2C and 3A, and the cleavage site was QG, as predicted by J. I. Cohen, J. R. Ticehurst, R. H. Purcell, A. Buckler-White, and B. M. Baroudy, J. Virol. 61:50-59, 1987. Very little further cleavage of the released P3 protein was detected. When the fusion protein contained no 2C and included only 3A*-to-3D sequences, efficient cleavage occurred between 3B and 3C, at the QS pair, also as predicted by Cohen et al. (J. Virol. 61:50-59, 1987). The latter proteins were also cleaved between 3C and 3D, but less efficiently than between 3B and 3C. Extracts of bacteria expressing proteins from 3A* to 3D also cleaved a radiolabelled hepatitis A virus substrate containing VP1*2ABC* sequences in trans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号