首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously demonstrated that male mice deficient in the soluble adenylyl cyclase (sAC) are sterile and produce spermatozoa with deficits in progressive motility and are unable to fertilize zona-intact eggs. Here, analyses of sAC(-/-) spermatozoa provide additional insights into the functions linked to cAMP signaling. Adenylyl cyclase activity and cAMP content are greatly diminished in crude preparations of sAC(-/-) spermatozoa and are undetectable after sperm purification. HCO(3)(-) is unable to rapidly accelerate the flagellar beat or facilitate evoked Ca(2+) entry into sAC(-/-) spermatozoa. Moreover, the delayed HCO(3)(-)-dependent increases in protein tyrosine phosphorylation and hyperactivated motility, which occur late in capacitation of wild-type spermatozoa, do not develop in sAC(-/-) spermatozoa. However, sAC(-/-) sperm fertilize zona-free oocytes, indicating that gamete fusion does not require sAC. Although ATP levels are significantly reduced in sAC(-/-) sperm, cAMP-AM ester increases flagellar beat frequency, progressive motility, and alters the pattern of tyrosine phosphorylated proteins. These results indicate that sAC and cAMP coordinate cellular energy balance in wild-type sperm and that the ATP generating machinery is not operating normally in sAC(-/-) spermatozoa. These findings demonstrate that sAC plays a critical role in cAMP signaling in spermatozoa and that defective cAMP production prevents engagement of multiple components of capacitation resulting in male infertility.  相似文献   

2.
3.
In order to fertilize, mammalian sperm must hyperactivate. Hyperactivation is triggered by increased flagellar Ca(2+), which switches flagellar beating from a symmetrical to an asymmetrical pattern by increasing bending to one side. Thimerosal, which releases Ca(2+) from internal stores, induced hyperactivation in mouse sperm within seconds, even when extracellular Ca(2+) was buffered with BAPTA to approximately 30 nM. In sperm from CatSper1 or CatSper2 null mice, which lack functional flagellar alkaline-activated calcium currents, 50 microM thimerosal raised the flagellar bend amplitudes from abnormally low levels to normal pre-hyperactivated levels and, in 20-40% of sperm, induced hyperactivation. Addition of 1 mM Ni(2+) diminished the response. This suggests that intracellular Ca(2+) is abnormally low in the null sperm flagella. When intracellular Ca(2+) was reduced by BAPTA-AM in wild-type sperm, they exhibited flagellar beat patterns more closely resembling those of null sperm. Altogether, these results indicate that extracellular Ca(2+) is required to supplement store-released Ca(2+) to produce maximal and sustained hyperactivation and that CatSper1 and CatSper2 are key elements of the major Ca(2+) entry pathways that support not only hyperactivated motility but possibly also normal pre-hyperactivated motility.  相似文献   

4.
HCO(3) (-) is the signal for early activation of sperm motility. In vivo, this occurs when sperm come into contact with the HCO(3) (-) containing fluids in the reproductive tract. The activated motility enables sperm to travel the long distance to the ovum. In spermatozoa HCO(3) (-) stimulates the atypical sperm adenylyl cyclase (sAC) to promote the cAMP-mediated pathway that increases flagellar beat frequency. Stimulation of sAC may occur when HCO(3) (-) enters spermatozoa either directly by anion transport or indirectly via diffusion of CO(2) with subsequent hydration by intracellular carbonic anhydrase (CA). We here show that murine sperm possess extracellular CA IV that is transferred to the sperm surface as the sperm pass through the epididymis. Comparison of CA IV expression by qRT PCR analysis confirms that the transfer takes place in the corpus epididymidis. We demonstrate murine and human sperm respond to CO(2) with an increase in beat frequency, an effect that can be inhibited by ethoxyzolamide. Comparing CA activity in sperm from wild-type and CA IV(-/-) mice we found a 32.13% reduction in total CA activity in the latter. The CA IV(-/-) sperm also have a reduced response to CO(2). While the beat frequency of wild-type sperm increases from 2.86±0.12 Hz to 6.87±0.34 Hz after CO(2) application, beat frequency of CA IV(-/-) sperm only increases from 3.06±0.20 Hz to 5.29±0.47 Hz. We show, for the first time, a physiological role of CA IV that supplies sperm with HCO(3) (-), which is necessary for stimulation of sAC and hence early activation of spermatozoa.  相似文献   

5.
Digital image analysis of the flagellar movements of cynomolgus macaque spermatozoa hyperactivated by caffeine and cAMP was carried out to understand the change in flagellar movements during hyperactivation. The degree of flagellar bending increased remarkably after hyperactivation, especially at the base of the midpiece. Mainly two beating patterns were seen in the hyperactivated monkey sperm flagella: remarkably asymmetrical flagellar bends of large amplitude and relatively symmetrical flagellar bends of large amplitude. The asymmetrical bends were often seen in the early stage of hyperactivation, whereas the symmetrical bends executed nonprogressive, figure-of-eight movement. Beat frequency of the hyperactivated spermatozoa significantly decreased while wavelength of flagellar waves roughly doubled. To determine the conditions under which the axonemes of hyperactivated sperm flagella have asymmetrical or symmetrical bends, the plasma membranes of monkey spermatozoa were extracted with Triton X-100 and motility was reactivated with MgATP(2-) under various conditions. The asymmetrical flagellar bends were brought about by Ca(2+), whereas the symmetrical flagellar bends resulted from low levels of Ca(2+) and high levels of cAMP. Under these conditions, beat frequency and wavelength of flagellar waves of demembranated, reactivated spermatozoa were similar to those of the hyperactivated spermatozoa. These results suggest that during hyperactivation of monkey spermatozoa intracellular Ca(2+) concentrations first rise, and then decrease while cAMP concentrations increase simultaneously.  相似文献   

6.
Flagellar movement of intact and demembranated, reactivated ram spermatozoa   总被引:2,自引:0,他引:2  
The flagellar movement of intact ejaculated ram sperm, and of demembranated models reactivated with ATP, has been studied using high-speed, high-resolution video microscopy. Intact sperm attached to the coverslip by their heads had an average beat frequency of 20.9 Hz and an average wave amplitude of 20.2 micron. There was little difference in the beat frequency or waveform of these sperm and sperm swimming freely near the coverslip or captured by their heads with a micropipette and held far from the coverslip, indicating that the flagellar waveform of ram sperm is relatively resistant to distortion as a result of immobilization of the head or proximity to a surface. The beat envelope was nearly planar as determined by observations of free-swimming sperm and sperm captured by their head and oriented so they were beating either parallel or perpendicular to the plane of focus. The effect of various conditions for demembranation and reactivation of the sperm were examined. Treatment of sperm with 0.2% Triton X-100 removed most of their plasma membrane. Under optimal conditions, nearly 100% of the demembranated sperm reactivated at MgATP2- concentrations ranging from approximately 4 microM to approximately 20 mM. From approximately 1 mM to approximately 10 mM MgATP2-, their beat pattern closely resembled that of intact sperm; beat frequency depended on MgATP2- concentration. Percent motility was maximal between pH 7.5 and 8.0 and decreased sharply below pH 7.0 and above pH 8.5. The addition of 50 microM cAMP to the reactivation medium had no effect on percent motility or the beat pattern and did not accelerate the initiation of movement.  相似文献   

7.
Stimulation of muscarinic receptors in duodenal mucosa raises intracellular Ca(2+), which regulates ion transport, including HCO(3)(-) secretion. However, the underlying Ca(2+) handling mechanisms are poorly understood. The aim of the present study was to determine whether Na(+)/Ca(2+) exchanger (NCX) plays a role in the regulation of duodenal mucosal ion transport and HCO(3)(-) secretion by controlling Ca(2+) homeostasis. Mouse duodenal mucosa was mounted in Ussing chambers. Net ion transport was assessed as short-circuit current (I(sc)), and HCO(3)(-) secretion was determined by pH-stat. Expression of NCX in duodenal mucosae was analyzed by Western blot, and cytosolic Ca(2+) in duodenocytes was measured by fura 2. Carbachol (100 muM) increased I(sc) in a biphasic manner: an initial transient peak within 2 min and a later sustained plateau starting at 10 min. Carbachol-induced HCO(3)(-) secretion peaked at 10 min. 2-Aminoethoxydiphenylborate (2-APB, 100 muM) or LiCl (30 mM) significantly reduced the initial peak in I(sc) by 51 or 47%, respectively, and abolished the plateau phase of I(sc) without affecting HCO(3)(-) secretion induced by carbachol. Ryanodine (100 muM), caffeine (10 mM), and nifedipine (10 muM) had no effect on either response to carbachol. In contrast, nickel (5 mM) and KB-R7943 (10-30 muM) significantly inhibited carbachol-induced increases in duodenal mucosal I(sc) and HCO(3)(-) secretion. Western blot analysis showed expression of NCX1 proteins in duodenal mucosae, and functional NCX in duodenocytes was demonstrated in Ca(2+) imaging experiments where Na(+) depletion elicited Ca(2+) entry via the reversed mode of NCX. These results indicate that NCX contributes to the regulation of Ca(2+)-dependent duodenal mucosal ion transport and HCO(3)(-) secretion that results from stimulation of muscarinic receptors.  相似文献   

8.
Capacitation of mammalian sperm, including alterations in flagellar motility, is presumably modulated by chemical signals encountered in the female reproductive tract. This work investigates signaling pathways for adenosine and catecholamine agonists that stimulate sperm kinetic activity. We show that 2-chloro-2'-deoxyadenosine and isoproterenol robustly accelerate flagellar beat frequency with EC50s near 10 and 0.05 microM, respectively. The several-fold acceleration is maximal by 60 sec. Although extracellular Ca2+ is required for agonist action on the flagellar beat, agonist treatment does not elevate sperm cytosolic [Ca2+] but does increase cAMP content. Acceleration does not require the conventional transmembrane adenylyl cyclase ADCY3, since it persists in sperm of ADCY3 knockout mice and in wild-type sperm in the presence of the inhibitors of conventional adenylyl cyclases SQ-22536, MDL-12330A, or 2', 5'-dideoxyadenosine. In contrast, the acceleration by these agents is absent in sperm that lack the predominant atypical adenylyl cyclase, SACY. Responses to these agonists are also absent in sperm from mice lacking the sperm-specific Calpha2 catalytic subunit of protein kinase A (PRKACA). Agonist responses also are strongly suppressed in wild-type sperm by the protein kinase inhibitor H-89. These results show that adenosine and catecholamine analogs activate sperm motility by mechanisms that require extracellular Ca2+, the atypical sperm adenylyl cyclase, cAMP, and protein kinase A.  相似文献   

9.
To reach the egg in the ampulla, sperm have to travel along the female genital tract, thereby being dependent on external energy sources and substances to maintain and raise the flagellar beat. The vaginal fluid is rich in lactate, whereas in the uterine fluid glucose is the predominant substrate. This evokes changes in the lactate content of sperm as well as in the intracellular pH (pH(i)) since sperm possess lactate/proton co-transporters. It is well documented that glycolysis yields ATP and that HCO(3)- is a potent factor in the increase of beat frequency. We here show for the first time a pathway that connects both parts. We demonstrate a doubling of beat frequency in the mere presence of glucose. This effect can reversibly be blocked by 2-deoxy-D-glucose, dichloroacetate and aminooxyacetate, strongly suggesting that it requires both glycolysis and mitochondrial oxidation of glycolytic end products. We show that the glucose-mediated acceleration of flagellar beat and ATP production are hastened by a pH(i) ≥7.1, whereas a pH(i) ≤7.1 leaves both parameters unchanged. Since we observed a diminished rise in beat frequency in the presence of specific inhibitors against carbonic anhydrases, soluble adenylyl cyclase and protein kinase, we suggest that the glucose-mediated effect is linked to CO(2) hydration and thus the production of HCO(3)- by intracellular CA isoforms. In summary, we propose that, in sperm, glycolysis is an additional pH(i)-dependent way to produce HCO(3)-(,) thus enhancing sperm beat frequency and contributing to fertility.  相似文献   

10.
To investigate the activation mechanism of mouse sperm motility, the intact sperm in various activities were further investigated after demembranation. When dry sperm was diluted into sucrose solution, the sperm exhibited low motility with the swimming velocity of 13.5 ± 3.8 μm/s and the beat frequency of 1.5 ± 0.4 Hz. The demembranated sperm were immotile in the reactivation solution lacking cAMP. Meanwhile, when dry sperm was diluted into the solution containing either high concentration of NaCl or Ca2+, they exhibited the beat frequency of about 9 Hz. The demembranated ones exhibited the intermediate motility in the absence of cAMP. When dry sperm were diluted into the sucrose solution containing HCO3, the sperm exhibited a vigorous motility with the swimming velocity of 181.2 ± 10.1 μm/s and the beat frequency of 11.3 ± 1.2 Hz. The demembranated sperm exhibited the high reactivation motility (90%) and flagellar beat frequency (9 Hz) in the absence of cAMP. These values were almost equivalent to those obtained in the demembranated sperm pretreated with sucrose or Ca2+ or NaCl and reactivated in the presence of cAMP. The activation induced by bicarbonate was considered complete in comparison with the activation by Ca2+ or NaCl. It was likely that the activation of mouse sperm motility took multiple states. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Demembranated sea urchin sperm were extracted with 0.5 M KCl as described earlier and reactivated in a solution containing 1 mM ATP. Their flagellar beat frequency was approximately 13 Hz, while that of standard reactivated sperm which had not been extracted with KCl was approximately 31 Hz at 23°C. Addition of soluble dynein 1 caused a gradual increase in the flagellar beat frequency to approximately 25 Hz after 10 min at room temperature. This restoration of frequency occurred in the absence or presence of ATP. Examination by electron microscopy showed that, whereas KCl-extracted sperm were lacking the majority of the outer arms on the doublet tubules, they had regained most of their outer arms following incubation with soluble dynein 1.  相似文献   

12.
We examined, by using a specific PGE receptor subtype EP4 agonist and antagonist, the involvement of EP4 receptors in duodenal HCO(3)(-) secretion induced by PGE(2) and mucosal acidification in rats. Mucosal acidification was achieved by exposing a duodenal loop to 10 mM HCl for 10 min, and various EP agonists were given intravenously 10 min before the acidification. Secretion of HCO(3)(-) was dose-dependently stimulated by AE1-329 (EP4 agonist), the maximal response being equivalent to that induced by sulprostone (EP1/EP3 agonist) or PGE(2). The stimulatory action of AE1-329 and PGE(2) but not sulprostone was attenuated by AE3-208, a specific EP4 antagonist. This antagonist also significantly mitigated the acid-induced HCO(3)(-) secretion. Coadministration of sulprostone and AE1-329 caused a greater secretory response than either agent alone. IBMX potentiated the stimulatory action of both sulprostone and AE1-329, whereas verapamil mitigated the effect of sulprostone but not AE1-329. Chemical ablation of capsaicin-sensitive afferent neurons did not affect the response to any of the EP agonists used. We conclude that EP4 receptors are involved in the duodenal HCO(3)(-) response induced by PGE(2) or acidification in addition to EP3 receptors. The process by which HCO(3)(-) is secreted through these receptors differs regarding second-messenger coupling. Stimulation through EP4 receptors is mediated by cAMP, whereas that through EP3 receptors is regulated by both cAMP and Ca(2+); yet there is cooperation between the actions mediated by these two receptors. The neuronal reflex pathway is not involved in stimulatory actions of these prostanoids.  相似文献   

13.
Hyperactivated sperm motility is characterized by high-amplitude and asymmetrical flagellar beating that assists sperm in penetrating the oocyte zona pellucida. Other functional changes in sperm, such as activation of motility and capacitation, involve cross talk between the cAMP/PKA and tyrosine kinase/phosphatase signaling pathways. Our objective was to determine the role of the cAMP/protein kinase A (PKA) signaling pathway in hyperactivation. Western blot analyses of detergent extracts of whole sperm and flagella were performed using antiphosphotyrosine antibody. Bull sperm capacitated by 10 microg/ml heparin and/or 1 mM dibutyryl-cAMP plus 100 microM 3-isobutyl-1-methylxanthine exhibited increased protein tyrosine phosphorylation without becoming hyperactivated. Procaine (5 mM) or caffeine (10 mM) immediately induced hyperactivation in nearly 100% of motile sperm but did not increase protein tyrosine phosphorylation. After 4 h of incubation with caffeine, sperm expressed capacitation-associated protein tyrosine phosphorylation but hyperactivation was significantly reduced. Sperm initially hyperactivated by procaine or caffeine remained hyperactivated for at least 4 h in the presence of Rp-cAMPS (cAMP antagonist) or PKA inhibitors H-89 or H-8. Pretreatment with inhibitors also failed to block induction of hyperactivation; however, the inhibitors did block protein tyrosine phosphorylation when sperm were incubated with capacitating agents, thereby verifying inhibition of the cAMP/PKA pathway. While induction of hyperactivation did not depend on cAMP/PKA, it did require extracellular Ca(2+). These findings indicate that hyperactivation is mediated by a Ca(2+) signaling pathway that is separate or divergent from the pathway associated with acquisition of acrosomal responsiveness and does not involve protein tyrosine phosphorylation downstream of the actions of procaine or caffeine.  相似文献   

14.
Whole animal studies using seawater European flounder (Platichthys flesus) revealed that increasing intestinal [Ca(2+)] to 20 mM stimulated net HCO(3)(-) base secretion by 57%, but this was effectively balanced by an increase in net acid secretion, likely from the gills, to maintain whole animal acid-base status. Higher Ca(2+) concentrations (40 and 70 mM) in ambient seawater resulted in reduced plasma total CO(2). This indicates (1) imperfect acid-base compensation, and (2) that endogenous metabolic CO(2) is insufficient to fuel intestinal HCO(3)(-) secretion, under hyper-stimulated conditions. Bicarbonate secretion plays an important role in preventing calcium absorption by precipitating a large fraction of the imbibed calcium as CaCO(3). Indeed, under high Ca(2+) conditions (20 mM), up to 75% of the intestinal Ca(2+) is precipitated as CaCO(3) and then excreted. This is undoubtedly important in protecting the marine teleost kidney from the need for excessive calcium excretion and risk of renal stone formation. Using an in vitro pH-stat technique with the isolated intestinal epithelium, the replacement of serosal CO(2) with a HEPES buffered saline had no effect on HCO(3)(-) secretion, indicating that the endogenous supply of HCO(3)(-) from CO(2) hydration within epithelial cells is adequate for driving baseline secretion rates. Further, in vitro data demonstrated a stimulatory effect of low pH on intestinal HCO(3)(-) secretion. Thus, both luminal Ca(2+) and H(+) can regulate HCO(3)(-) secretion but the precise mechanisms and their potential interaction are currently unresolved.  相似文献   

15.
Ninety to 100% of paddlefish Polyodon spathula were motile just after transfer into distilled water, with a velocity of 175 μm s-1, a flagellar beat frequency of 50 Hz and motility lasting 4–6 min. Similarly, 80–95% of shovelnose sturgeon Scaphirhynchus platorynchus spermatozoa were motile immediately when diluted in distilled water, with a velocity of 200 μm s-1, a flagellar beat frequency of 48 Hz and a period of motility of 2–3 min. In both species, after sperm dilution in a swimming solution composed of 20 mM Tris–HCl (pH 8·2) and 20 mM NaCl, a majority of the samples showed 100% motility of spermatozoa with flagella beat frequency of 50 Hz within the 5 s following activation and a higher velocity than in distilled water. In such a swimming medium, the time of motility was prolonged up to 9 min for paddlefish and 5 min for sturgeon and a lower proportion of sperm cells had damage such as blebs of the flagellar membrane or curling of the flagellar tip, compared with those in distilled water. The shape of the flagellar waves changed during the motility phase, mostly through a restriction at the part of the flagellum most proximal to the head. A rotational movement of whole cells was observed for spermatozoa of both species. There were significant differences in velocity of spermatozoa between swimming media and distilled water and between paddlefish and shovelnose sturgeon.  相似文献   

16.
Mammalian sperm must undergo a physiological maturation, termed capacitation, before they are able to fertilize eggs. Despite its importance, the molecular mechanisms underlying capacitation are poorly understood. In this paper, we describe the capacitation phenotype of sperm lacking the long isoform of beta1,4-galactosyltransferase I (GalT I), a sperm surface protein that functions as a receptor for the zona pellucida glycoprotein, ZP3, and as an inducer of the acrosome reaction following ZP3-dependent aggregation. As expected, wild-type sperm must undergo capacitation in order to bind the zona pellucida and undergo a Ca(2+) ionophore-induced acrosome reaction. By contrast, GalT I-null sperm behave as though they are precociously capacitated, in that they demonstrate maximal binding to the zona pellucida and greatly increased sensitivity to ionophore-induced acrosome reactions without undergoing capacitation in vitro. The loss of GalT I from sperm results in an inability to bind epididymal glycoconjugates that normally maintain sperm in an 'uncapacitated' state; removing these decapacitating factors from wild-type sperm phenocopies the capacitation behavior of GalT I-null sperm. Interestingly, capacitation of GalT I-null sperm is independent of the presence of albumin, Ca(2+) and HCO(3)(-); three co-factors normally required by wild-type sperm to achieve capacitation. This implies that intracellular targets of albumin, Ca(2+) and/or HCO(3)(-) may be constitutively active in GalT I-null sperm. Consistent with this, GalT I-null sperm have increased levels of cAMP that correlate closely with both the accelerated kinetics and co-factor-independence of GalT I-null sperm capacitation. By contrast, the kinetics of protein tyrosine phosphorylation and sperm motility are unaltered in mutant sperm relative to wild-type. These data suggest that GalT I may function as a negative regulator of capacitation in the sperm head by suppressing intracellular signaling pathways that promote this process.  相似文献   

17.
Ciliated airway epithelial cells are subject to sustained changes in intracellular CO(2)/HCO(3)(-) during exacerbations of airway diseases, but the role of CO(2)/HCO(3)(-)-sensitive soluble adenylyl cyclase (sAC) in ciliary beat regulation is unknown. We now show not only sAC expression in human airway epithelia (by RT-PCR, Western blotting, and immunofluorescence) but also its specific localization to the axoneme (Western blotting and immunofluorescence). Real time estimations of [cAMP] changes in ciliated cells, using FRET between fluorescently tagged PKA subunits (expressed under the foxj1 promoter solely in ciliated cells), revealed CO(2)/HCO(3)(-)-mediated cAMP production. This cAMP production was specifically blocked by sAC inhibitors but not by transmembrane adenylyl cyclase (tmAC) inhibitors. In addition, this cAMP production stimulated ciliary beat frequency (CBF) independently of intracellular pH because PKA and sAC inhibitors were uniquely able to block CO(2)/HCO(3)(-)-mediated changes in CBF (while tmAC inhibitors had no effect). Thus, sAC is localized to motile airway cilia and it contributes to the regulation of human airway CBF. In addition, CO(2)/HCO(3)(-) increases indeed reversibly stimulate intracellular cAMP production by sAC in intact cells.  相似文献   

18.
Sea bass spermatozoa are maintained immotile in the seminal fluid, but initiate swimming for 45 s at 20 degrees C, immediately after dispersion in a hyperosmotic medium (1100 mOsm kg-1). The duration of this motile period could be extended by a reduction of the amplitude of the hyperosmotic shock. Five seconds after the initiation of motility, 94.4 +/- 1.8% of spermatozoa were motile with a swimming velocity of 141.8 +/- 1.2 microns s-1, a flagellar beat frequency of 60 Hz and a symmetric type of flagellar swimming, resulting in linear tracks. Velocity, flagellar beat frequency, percentage of motile cells and trajectory diameter decreased concomitantly throughout the swimming phase. After 30 s of motility, the flagellar beat became asymmetric, leading to circular trajectories. Ca2+ modulated the swimming pattern of demembranated spermatozoa, suggesting that the asymmetric waves produced by intact spermatozoa after 30 s of motility were induced by an accumulation of intracellular Ca2+. Moreover, increased ionic strength in the reactivation medium induced a dampening of waves in the distal portion of the flagellum and, at high values, resulted in an arrest of wave generation in demembranated spermatozoa. In non-demembranated cells, the intracellular ATP concentration fell immediately after transfer to sea water. In contrast, the AMP content increased during the same period, while the ADP content increased slightly. In addition, several morphological changes affected the mitochondria, chromatin and midpiece. These results indicate that the short swimming period of sea bass spermatozoa is controlled by energetic and cytoplasmic ionic conditions and that it is limited by osmotic stress, which induces marked changes in cell morphology.  相似文献   

19.
The involvement of anion channels in the mechanism of the acrosome reaction (AR) was investigated. The AR was induced by Ca2+ or by addition of the Ca2+ ionophore A23187. The occurrence of AR was determined by following the release of acrosin from the cells. In order to investigate the role of anion channels in the AR, several anion-channel inhibitors were tested, mainly DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid). Other blockers, like SITS (4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid), furosemide, probenecid and pyridoxal 5-phosphate, were also tested. We found that DIDS binds covalently to sperm plasma membrane in a time- and concentration-dependent manner. Maximal binding occurs after 2 h with 0.3 mM DIDS. DIDS and SITS inhibit AR in a concentration-dependent manner. The IC50 of DIDS and SITS in the presence of A23187 is 0.15 and 0.22 mM, respectively. Tributyltin chloride (TBTC), an Cl-/OH- exchanger, partially overcomes DIDS inhibition of the AR. HCO3- is required for a maximal acrosin release and Ca(2+)-uptake, in the presence or absence of A23187. It is known that HCO3- activates adenylate cyclase and therefore, increases the intracellular level of cAMP. The inhibition of the AR by DIDS decreases from 95 to 50% when (dibutyryl cyclic AMP (dbcAMP) was added, i.e., HCO3- is no longer required while elevating the level of cAMP in an alternative way. Moreover, we show that the stimulatory effect of HCO3- on Ca(2+)-uptake is completely inhibited by DIDS. We conclude that DIDS inhibits AR by blocking anion channels, including those that transport HCO3- into the cell.  相似文献   

20.
Free Ca2+ changes the curvature of epididymal rat sperm flagella in demembranated sperm models. The radius of curvature of the flagellar midpiece region was measured and found to be a continuous function of the free Ca2+ concentration. Below 10(-7) M free Ca2+, the sperm flagella assumed a pronounced curvature in the same direction as the sperm head. The curvature reversed direction at 2.5 x 10(-6) M Ca2+ to assume a tight, hook-like bend at concentrations of 10(-5) to 10(-4) M free Ca2+. Sodium vanadate at 2 x 10(-6) M blocked flagellar motility, but did not inhibit the Ca2+-mediated change in curvature. Nickel ion at 0.2 mM and cadmium ion at 1 microM interfered with the transition and induced the low Ca2+ configuration of the flagellum. The forces that maintain the Ca2+-dependent curvature are locally produced, as dissection of the flagella into segments did not significantly alter the curvature of the excised portions. Irrespective of the induced pattern of curvature, the sperm exhibited coordinated, repetitive flagellar beating in the presence of ATP and cAMP. At 0.3 mM ATP the flagellar waves propagated along the principal piece while the level of free Ca2+ controlled the overall curvature. When Ca2+-treated sperm models with hooked midpieces were subjected to higher concentrations of ATP (1-5 mM), some cells exhibited a pattern of movement similar to hyperactivated motility in capacitated live sperm. This type of motility involved repetitive reversals of the Ca2+-induced bend in the midpiece, as well as waves propagated along the principal piece. The free Ca2+ available to the flagellum therefore appeared to modify both the pattern of motility and the flagellar curvature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号