首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Reduction in host-activated protein C levels and resultant microvascular thrombosis highlight the important functional role of protein C anticoagulant system in the pathogenesis of sepsis and septic shock. Thrombomodulin (TM) is a critical factor to activate protein C in mediating the anticoagulation and anti-inflammation effects. However, TM protein content is decreased in inflammation and sepsis, and the mechanism is still not well defined. In this report, we identified that the TM 5′ untranslated region (UTR) bearing the internal ribosome entry site (IRES) element controls TM protein expression. Using RNA probe pulldown assay, HuR was demonstrated to interact with the TM 5′UTR. Overexpression of HuR protein inhibited the activity of TM IRES, whereas on the other hand, reducing the HuR protein level reversed this effect. When cells were treated with IL-1β, the IRES activity was suppressed and accompanied by an increased interaction between HuR and TM 5′UTR. In the animal model of sepsis, we found the TM protein expression level to be decreased while concurrently observing the increased interaction between HuR and TM mRNA in liver tissue. In summary, HuR plays an important role in suppression of TM protein synthesis in IL-1β treatment and sepsis.  相似文献   

5.
Paek KY  Kim CS  Park SM  Kim JH  Jang SK 《Journal of virology》2008,82(24):12082-12093
Hepatitis C virus (HCV) is one of the major causative agents of virus-related hepatitis, liver cirrhosis, and hepatocellular carcinoma in humans. Translation of the HCV polyprotein is mediated by an internal ribosomal entry site (IRES) in the 5′ nontranslated region of the genome. Here, we report that a cellular protein, hnRNP D, interacts with the 5′ border of HCV IRES (stem-loop II) and promotes translation of HCV mRNA. Overexpression of hnRNP D in mammalian cells enhances HCV IRES-dependent translation, whereas knockdown of hnRNP D with small interfering RNAs (siRNAs) inhibits translation. In addition, sequestration of hnRNP D with an interacting DNA oligomer inhibits the translation of HCV mRNA in an in vitro system. Ribosome profiling experiments reveal that HCV RNA is redistributed from heavy to light polysome fractions upon suppression of the hnRNP D level using specific siRNA. These results collectively suggest that hnRNP D plays an important role in the translation of HCV mRNA through interactions with the IRES. Moreover, knockdown of hnRNP D with siRNA significantly hampers infection by HCV. A potential role of hnRNP D in HCV proliferation is discussed.  相似文献   

6.
The survival of motor neurons protein (SMN) is part of a large complex that contains six other proteins, Gemins2-7. The SMN complex assembles the heptameric Sm protein core on small nuclear RNAs (snRNAs) and plays a critical role in the biogenesis of snRNPs, the major and essential components of mRNA splicing in eukaryotes. For its function, the SMN complex binds Sm proteins and snRNAs, which it distinguishes from other RNAs by specific features they contain. We show here that Gemin5, a 170 kDa WD-repeat protein, is the snRNA binding protein of the SMN complex. Gemin5 binds directly and specifically to the unique features, including the Sm site, of snRNAs. Reduction of Gemin5 results in reduced capacity of the SMN complex to bind snRNAs and to assemble Sm cores. Gemin5 therefore functions as the factor that allows the SMN complex to distinguish snRNAs from other cellular RNAs for snRNP biogenesis.  相似文献   

7.
8.
The gammaherpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) (or human herpesvirus 8) is associated with the endothelial tumor Kaposi's sarcoma (KS) and lymphoproliferative disorders in immunocompromised individuals. Only a small number of viral proteins are expressed in B cells latently infected with KSHV; here we characterize the mechanism of expression of one of these, the viral FLICE inhibitory protein v-FLIP (K13, ORF71). The v-FLIP coding region is present in a bicistronic message, following the v-cyclin coding region. Using both in vitro translation and cell transfection assays, we have identified an internal ribosome entry site (IRES) preceding the v-FLIP start codon and overlapping the v-cyclin (ORF 72) coding region, which allows v-FLIP translation. Using an antibody against v-FLIP we have detected expression of the endogenous protein in latently infected KSHV-positive primary effusion lymphoma (PEL) cell lines. Induction of apoptosis by serum withdrawal from PEL cells results in a relative increase in v-FLIP synthesis, as previously described for some cellular proteins translated from IRES.  相似文献   

9.
10.
11.
Reduced levels of kindlin-2 (K2) in endothelial cells derived from K2+/− mice or C2C12 myoblastoid cells treated with K2 siRNA showed disorganization of their actin cytoskeleton and decreased spreading. These marked changes led us to examine direct binding between K2 and actin. Purified K2 interacts with F-actin in cosedimentation and surface plasmon resonance analyses and induces actin aggregation. We further find that the F0 domain of K2 binds actin. A mutation, LK47/AA, within a predicted actin binding site (ABS) of F0 diminishes its interaction with actin by approximately fivefold. Wild-type K2 and K2 bearing the LK47/AA mutation were equivalent in their ability to coactivate integrin αIIbβ3 in a CHO cell system when coexpressed with talin. However, K2-LK47/AA exhibited a diminished ability to support cell spreading and actin organization compared with wild-type K2. The presence of an ABS in F0 of K2 that influences outside-in signaling across integrins establishes a new foundation for considering how kindlins might regulate cellular responses.  相似文献   

12.
13.
Zygote arrest (Zar) proteins are crucial for early embryonic development, but their molecular mechanism of action is unknown. The Translational Control Sequence (TCS) in the 3' untranslated region (UTR) of the maternal mRNA, Wee1, mediates translational repression in immature Xenopus oocytes and translational activation in mature oocytes, but the protein that binds to the TCS and mediates translational control is not known. Here we show that Xenopus laevis Zar2 (encoded by zar2) binds to the TCS in maternal Wee1 mRNA and represses translation in immature oocytes. Using yeast 3 hybrid assays and electrophoretic mobility shift assays, Zar2 was shown to bind specifically to the TCS in the Wee1 3'UTR. RNA binding required the presence of Zn(2+) and conserved cysteines in the C-terminal domain, suggesting that Zar2 contains a zinc finger. Consistent with regulating maternal mRNAs, Zar2 was present throughout oogenesis, and endogenous Zar2 co-immunoprecipitated endogenous Wee1 mRNA from immature oocytes, demonstrating the physiological significance of the protein-RNA interaction. Interestingly, Zar2 levels decreased during oocyte maturation. Dual luciferase reporter tethered assays showed that Zar2 repressed translation in immature oocytes. Translational repression was relieved during oocyte maturation and this coincided with degradation of Zar2 during maturation. This is the first report of a molecular function of zygote arrest proteins. These data show that Zar2 contains a zinc finger and is a trans-acting factor for the TCS in maternal mRNAs in immature Xenopus oocytes.  相似文献   

14.
Posttranslational modifications (PTMs) such as phosphorylation of RNA-binding proteins (RBPs) regulate several critical steps in RNA metabolism, including spliceosome assembly, alternative splicing, and mRNA export. Notably, serine-/arginine- (SR)-rich RBPs are densely phosphorylated compared with the remainder of the proteome. Previously, we showed that dephosphorylation of the splicing factor SRSF2 regulated increased interactions with similar arginine-rich RBPs U1-70K and LUC7L3. However, the large-scale functional and structural impact of these modifications on RBPs remains unclear. In this work, we dephosphorylated nuclear extracts using phosphatase in vitro and analyzed equal amounts of detergent-soluble and -insoluble fractions by mass-spectrometry-based proteomics. Correlation network analysis resolved 27 distinct modules of differentially soluble nucleoplasm proteins. We found classes of arginine-rich RBPs that decrease in solubility following dephosphorylation and enrich the insoluble pelleted fraction, including the SR protein family and the SR-like LUC7L RBP family. Importantly, increased insolubility was not observed across broad classes of RBPs. We determined that phosphorylation regulated SRSF2 structure, as dephosphorylated SRSF2 formed high-molecular-weight oligomeric species in vitro. Reciprocally, phosphorylation of SRSF2 by serine/arginine protein kinase 2 (SRPK2) in vitro decreased high-molecular-weight SRSF2 species formation. Furthermore, upon pharmacological inhibition of SRPKs in mammalian cells, we observed SRSF2 cytoplasmic mislocalization and increased formation of cytoplasmic granules as well as cytoplasmic tubular structures that associated with microtubules by immunocytochemical staining. Collectively, these findings demonstrate that phosphorylation may be a critical modification that prevents arginine-rich RBP insolubility and oligomerization.  相似文献   

15.
16.
Elastic fibers play the principal roles in providing elasticity and integrity to various types of human organs, such as the arteries, lung, and skin. However, the molecular mechanism of elastic fiber assembly that leads to deposition and crosslinking of elastin along microfibrils remains largely unknown. We have previously shown that developing arteries and neural crest EGF-like protein (DANCE) (also designated fibulin-5) is essential for elastogenesis by studying DANCE-deficient mice. Here, we report the identification of latent transforming growth factor-beta-binding protein 2 (LTBP-2), an elastic fiber-associating protein whose function in elastogenesis is not clear, as a DANCE-binding protein. Elastogenesis assays using human skin fibroblasts reveal that fibrillar deposition of DANCE and elastin is largely dependent on fibrillin-1 microfibrils. However, downregulation of LTBP-2 induces fibrillin-1-independent fibrillar deposition of DANCE and elastin. Moreover, recombinant LTBP-2 promotes deposition of DANCE onto fibrillin-1 microfibrils. These results suggest a novel regulatory mechanism of elastic fiber assembly in which LTBP-2 regulates targeting of DANCE on suitable microfibrils to form elastic fibers.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号